Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма.

Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

  • 1 История термина
  • 2 Основные характеристики гена
  • 3 Гены и мимы
  • 4 Свойства гена
  • 5 Классификация
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

История термина


Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Иогансеном три года спустя после введения Уильямом Бэтсоном термина «генетика». За сорок лет до появления понятия «ген» Чарльз Дарвин в 1868 году предложил «временную гипотезу» пангенеза, согласно которой все клетки организма отделяют от себя особые частицы или геммулы, а из них, в свою очередь, образуются половые клетки. Затем Гуго де Фриз в 1889 году, спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин «панген» для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида. Ещё через 20 лет В. Иогансен счёл удобным пользоваться только второй частью термина Гуго де Фриза «ген» и заменить им неопределенное понятие «зачатка», «детерминанта», «наследственного фактора». При этом В. Иогансен подчеркивал, что «этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями». В. Иогансен сразу же образовал ключевое производное понятие «генотип» для обозначения наследственной конституции гамет и зигот в противоположность фенотипу[1].

Основные характеристики гена

Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передаче по наследству признаков при скрещивании гороха. Сформулированные им закономерности впоследствии назвали Законами Менделя.


Среди учёных нет единого мнения под каким углом рассматривать ген. Одни учёные его рассматривают как информационную наследственную единицу, а единицей естественного отбора является вид, группа, популяция или отдельный индивид. Другие учёные, как например Ричард Докинз в своей книге «Эгоистичный ген», рассматривают ген как единицу естественного отбора, а сам организм — как машину для выживания генов.

В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК (англ.)русск., таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.


Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне.

iv>
нако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека[2]. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу, по имени которой и получила название сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Гены и мимы

По аналогии с генами Ричардом Докинзом был введён в употребление термин «мим» — единица культурной информации. Если ген распространяется в химической среде, используя для размножения химические вещества, то мим распространяется в информационной среде: на носителях информации, в человеческой памяти, а также в сети. Также как гены конкурируют между собой за ресурсы: химические вещества, так и мимы конкурируют за информационное пространство. По целому ряду причин, между пространственным распределением генов и мимов могут наблюдаться достаточно жёсткие корреляции.

Свойства гена


  1. дискретность — несмешиваемость генов;
  2. стабильность — способность сохранять структуру;
  3. лабильность — способность многократно мутировать;
  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность — в генотипе диплоидных организмов только две формы гена;
  6. специфичность — каждый ген кодирует свой признак;
  7. плейотропия — множественный эффект гена;
  8. экспрессивность — степень выраженности гена в признаке;
  9. пенетрантность — частота проявления гена в фенотипе;
  10. амплификация — увеличение количества копий гена.

Классификация

  1. Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).
  2. Функциональные гены.

См. также

  • Непосредственно ранние гены
  • Аллели
  • Геном
  • Генотерапия
  • Реализация генетической информации
  • Эпигенетика
  • Репликация
  • ДНК
  • РНК
  • Библиотека генов

Источник: dic.academic.ru

Свойства гена

  1. дискретность — не смешиваемость генов;

    >
  2. стабильность — способность сохранять структуру;

  3. лабильность — способность многократно мутировать;

  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

  5. аллельность — в генотипе диплоидных организмов только две формы гена;

  6. специфичность — каждый ген кодирует свой признак;

  7. плейотропия — множественный эффект гена;

  8. экспрессивность — степень выраженности гена в признаке;

  9. пенетрантность — частота проявления гена в фенотипе;

  10. амплификация — увеличение количества копий гена

Классификация

  1. Структурные гены — гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном (гены, кодирующие необходимые для клетки белки-ферменты или структурные элементы).

  2. Функциональные гены — гены, которые контролируют и направляют деятельность структурных генов (гены, кодирующие белок, контролирующий транскрипцию структурных генов).

Гены одного метаболического пути объединяются в кластер.

Биологическое значение такой организации генов в том, что обеспечивается быстрое переключение метаболических путей и как результат, быстрое приспособление к изменяющимся условиям внешней среды и экономии энергии.


Современное состояние теории гена. В результате исследований элементарных единиц наследственности сложились представления, носящие общее название теории гена. Основные положения этой теории следующие:

1. Ген – участок молекулы ДНК, имеющей определенную последовательность нуклеотидов. Представляет собой сложную функциональную единицу наследственной информации, состоящую из различных функциональных сегментов.

2. Разные гены имеют разный качественный и количественный состав нуклеотидов.

3. Каждый ген имеет определенное место (локус) в хромосоме.

4. Гены способны к рекомбинации (в процессе кроссинговера) и мутации, что обеспечивает изменчивость.

5. В хромосоме есть гены мРНК (структурные гены), гены рРНК и гены тРНК.

6. Среди структурных генов есть регуляторные гены, продукты которых регулируют работу других структурных генов.

7. Ген не принимает непосредственного участия в синтезе белков, он является «матрицей» для образования посредников – различных молекул РНК, непосредственно участвующих в синтезе.

8. Количество генов может удваиваться в процессе репликации, а затем распределяться в дочерние клетки в результате митоза или мейоза.


9. Ген может существовать в виде разных аллелей, определяющих варианты признаков.

10. Определенный структурный ген кодирует синтез одного полипептида. Отдельный белок может обуславливать определенный признак. Этим обусловлены моногенные признаки.

11. Клетка, орган или организм обладают многими сложными признаками, которые слагаются из взаимодействия многих генов – это полигенные признаки.

12. Действие гена строго специфично, т. к. ген может кодировать только одну аминокислотную последовательность и регулирует синтез только одного конкретного полипептида.

13. Некоторые гены обладают плейотропностью действия, определяя развитие сразу нескольких признаков. Например, синдром Марфана.

14. Дозированность действия гена заключается в зависимости интенсивности проявления признака (экспрессивность) от количества определенного аллеля. Например, многие заболевания в гетерозиготном состоянии проявляются слабее, чем в гомозиготном.

15. На активность гена может оказать влияние как внешняя, так и внутренняя среда.

16. Конститутивные гены – это гены, которые постоянно экспрессируются, т. к. белки, которые они кодируют, необходимы для постоянной клеточной деятельности, обеспечивают синтез белков «домашнего хозяйства» — белки рибосом, цитохромов, ферментов гликолиза, переносчиков ионов и др. Эти гены не требуют специальной регуляции.


17. Неконститутивные гены – это гены обычно неактивные, но экспессируются только тогда, когда белок, который они кодируют, нужен клетке. Эти гены регулируются клеткой или организмом. Эти белки обеспечивают дифференцировку, специфичность структуры и функции каждой клетки.

18. Молекулы ДНК способны к репарации, поэтому не всякие повреждения гена ведут к мутациям.

19. Генотип, будучи дискретным (состоящим из отдельных генов) функционирует как единое целое.

Источник: StudFiles.net

Что такое ген?

Ген – это наименьшая структурная и функциональная частица информации о наследственности у живых организмов. По сути он представляет собой небольшой участок ДНК, в котором содержится знание об определенной последовательности аминокислот для построения белка либо функциональной РНК (с которой также будет синтезирован белок). Ген определяет те признаки, которые будут наследоваться и передаваться потомками дальше по генеалогической цепи. У некоторых одноклеточных организмов существует перенос генов, который не имеет отношения к воспроизведению себе подобных, он называется горизонтальным.

«На плечах» генов лежит огромная ответственность за то, как будет выглядеть и работать каждая клетка и организм в целом. Они управляют нашей жизнью от момента зачатия до самого последнего вздоха.


Первый научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 году опубликовал свои наблюдения о результатах при скрещивании гороха. Наследственный материал, который он использовал, четко показывал закономерности передачи признаков, таких как цвет и форма горошин, а также цветки. Этот монах сформулировал законы, которые сформировали начало генетики как науки. Наследование генов происходит потому, что родители отдают своему чаду по половинке всех своих хромосом. Таким образом, признаки мамы и папы, смешиваясь, образуют новую комбинацию уже имеющихся признаков. К счастью, вариантов больше, чем живых существ на планете, и невозможно отыскать двух абсолютно идентичных существ.

Мендель показал, что наследст­венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен­ных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются по­следующим поколениям в мужских и женских га­метах, каждая из которых содержит по одной едини­це из каждой пары. В 1909 году датский ботаник Иогансен назвал эти единицы генами. В 1912 году генетик из Соединенных Штатов Америки Морган показал, что они находятся в хромосомах.

С тех пор прошло больше полутора веков, и исследования продвинулись дальше, чем Мендель мог себе представить. На данный момент ученые остановились на мнении, что информация, находящаяся в генах, определяет рост, развитие и функции живых организмов. А может быть, даже и их смерть.

Классификация

Структура гена содержит в себе не только информацию о белке, но и указания, когда и как ее считывать, а также пустые участки, необходимые для разделения информации о разных белках и остановки синтеза информационной молекулы.

Существует две формы генов:

  1. Структурные – они содержат в себе информацию о строении белков или цепей РНК. Последовательность нуклеотидов соответствует расположению аминокислот.
  2. Функциональные гены отвечают за правильную структуру всех остальных участков ДНК, за синхронность и последовательность ее считывания.

На сегодняшний день ученые могут ответить на вопрос: сколько генов в хромосоме? Ответ вас удивит: около трех миллиардов пар. И это только в одной из двадцати трех. Геном называется наименьшая структурная единица, но она способна изменить жизнь человека.

Мутации

Случайное или целенаправленное изменение последовательности нуклеотидов, входящих в цепь ДНК, называется мутацией. Она может практически не влиять на структуру белка, а может полностью извратить его свойства. А значит, будут локальные или глобальные последствия такого изменения.

Сами по себе мутации могут быть патогенными, то есть проявляться в виде заболеваний, либо летальными, не позволяющими организму развиваться до жизнеспособного состояния. Но большинство изменений проходит незаметно для человека. Делеции и дупликации постоянно совершаются внутри ДНК, но не влияют на ход жизни каждого отдельного индивидуума.

Делеция – это потеря участка хромосомы, который содержит определенную информацию. Иногда такие изменения оказываются полезными для организма. Они помогают ему защититься от внешней агрессии, например вируса иммунодефицита человека и бактерии чумы.

Дупликация – это удвоение участка хромосомы, а значит, и совокупность генов, которые он содержит, также удваивается. Из-за повторения информации она хуже подвержена селекции, а значит, может быстрее накапливать мутации и изменять организм.

Свойства гена

У каждого человека имеется огромная молекула ДНК. Гены — это функциональные единицы в ее структуре. Но даже такие малые участки имеют свои уникальные свойства, позволяющие сохранять стабильность органической жизни:

  1. Дискретность – способность генов не смешиваться.
  2. Стабильность – сохранение структуры и свойств.
  3. Лабильность – возможность изменяться под действием обстоятельств, подстраиваться под враждебные условия.
  4. Множественный аллелизм – существование внутри ДНК генов, которые, кодируя один и тот же белок, имеют разную структуру.
  5. Аллельность – наличие двух форм одного гена.
  6. Специфичность – один признак = один ген, передающийся по наследству.
  7. Плейотропия – множественность эффектов одного гена.
  8. Экспрессивность – степень выраженности признака, который кодируется данным геном.
  9. Пенетрантность – частота встречаемости гена в генотипе.
  10. Амплификация – появление значительного количества копий гена в ДНК.

Геном

Геном человека – это весь наследственный материал, который находится в единственной клетке человека. Именно в нем содержатся указания о построении тела, работе органов, физиологических изменениях. Второе определение данного термина отражает структуру понятия, а не функцию. Геном человека — это совокупность генетического материала, упакованного в гаплоидном наборе хромосом (23 пары) и относящегося к конкретному виду.

Основу генома составляет молекула дезоксирибонуклеиновой кислоты, хорошо известная как ДНК. Все геномы содержат по крайней мере два вида информации: кодированная информация о структуре молекул-посредников (так называемых РНК) и белка (эта информация содержится в генах), а также инструкции, которые определяют время и место проявления этой информации при развитии организма. Сами гены занимают небольшую часть генома, но при этом являются его основой. Информация, записанная в генах, — своего рода инструкция для изготовления белков, главных строительных кирпичиков нашего тела.

Однако для полной характеристики генома недостаточно заложенной в нем информации о структуре белков. Нужны еще данные об элементах генетического аппарата, которые принимают участие в работе генов, регулируют их проявление на разных этапах развития и в разных жизненных ситуациях.

Но даже и этого мало для полного определения генома. Ведь в нем присутствуют также элементы, способствующие его самовоспроизведению (репликации), компактной упаковке ДНК в ядре и еще какие-то непонятные пока еще участки, иногда называемые «эгоистичными» (то есть будто бы служащими только для самих себя). По всем этим причинам в настоящий момент, когда заходит речь о геноме, обычно имеют в виду всю совокупность последовательностей ДНК, представленных в хромосомах ядер клеток определенного вида организмов, включая, конечно, и гены.

Размер и структура генома

Логично предположить, что ген, геном, хромосома отличаются у разных представителей жизни на Земле. Они могут быть как бесконечно маленькими, так и огромными и вмещать в себе миллиарды пар генов. Структура гена также будет зависеть от того, чей геном вы исследуете.

По соотношению между размерами генома и числом входящих в него генов можно выделить два класса:

  1. Компактные геномы, имеющие не более десяти миллионов оснований. У них совокупность генов строго коррелирует с размером. Наиболее характерны для вирусов и прокариотов.
  2. Обширные геномы состоят более чем из 100 миллионов пар оснований, не имеющих взаимосвязи между их длиной и количеством генов. Чаще встречаются у эукариотов. Большинство нуклеотидных последовательностей в этом классе не кодируют белков или РНК.

Исследования показали, что в геноме человека находится около 28 тысяч генов. Они неравномерно распределены по хромосомам, но значение этого признака остается пока загадкой для ученых.

Хромосомы

Хромосомы – это способ упаковки генетического материала. Они находятся в ядре каждой эукариотической клетки и состоят из одной очень длинной молекулы ДНК. Их легко можно увидеть в световой микроскоп в процессе деления. Кариотипом называется полный набор хромосом, который является специфичным для каждого отдельного вида. Обязательными элементами для них являются центромера, теломеры и точки репликации.

Изменения хромосом в процессе деления клетки

Ген, геном, хромосома – это последовательные звенья цепи передачи информации, где каждое следующее включает предыдущее. Но и они претерпевают определенные изменения в процессе жизни клетки. Так, например, в интерфазе (период между делениями) хромосомы в ядре расположены рыхло, занимают много места.

Когда клетка готовится к митозу (т. е. к процессу разделения надвое), хроматин уплотняется и скручивается в хромосомы, и теперь его становится видно в световой микроскоп. В метафазе хромосомы напоминают палочки, близко расположенные друг к другу и соединенные первичной перетяжкой, или центромерой. Именно она отвечает за формирование веретена деления, когда группы хромосом выстраиваются в линию. В зависимости от размещения центромеры существует такая классификация хромосом:

  1. Акроцентрические – в этом случае центромера расположена полярно по отношению к центру хромосомы.
  2. Субметацентрические, когда плечи (то есть участки, находящиеся до и после центромеры) неравной длины.
  3. Метацентрические, если центромера разделяет хромосому ровно посередине.

Данная классификация хромосом была предложена в 1912 году и используется биологами вплоть до сегодняшнего дня.

Аномалии хромосом

Как и с другими морфологическими элементами живого организма, с хромосомами тоже могут происходить структурные изменения, которые влияют на их функции:

  1. Анеуплоидия. Это изменение общего числа хромосом в кариотипе за счет добавления или удаления одной из них. Последствия такой мутации могут быть летальными для еще не родившегося плода, а также приводить к врожденным дефектам.
  2. Полиплоидия. Проявляется в виде увеличения количества хромосом, кратного половине их числа. Чаще всего встречается у растений, например водорослей, и грибов.
  3. Хромосомные аберрации, или перестройки, — это изменения в строении хромосом под воздействием факторов внешней среды.

Генетика

Генетика — это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы. В отличие от многих других биологических наук она с момента своего возникновения стремилась быть точной наукой. Вся история генетики — это история создания и использования все более и более точных методов и подходов. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, генетической инженерии, микробиологической промышленности.

Наследственность — способность организма обеспечивать в ряду поколений преемственность морфологических, биохимических и физиологических признаков и особенностей. В процессе наследования воспроизводятся основные видоспецифические, групповые (этнические, популяционные) и семейные черты строения и функционирования организмов, их онтогенеза (индивидуального развития). Наследуются не только определенные структурно-функциональные характеристики организма (черты лица, некоторые особенности обменных процессов, темперамента и др.), но и физико-химические особенности строения и функционирования основных биополимеров клетки. Изменчивость — разнообразие признаков среди представителей определенного вида, а также свойство потомков приобретать отличия от родительских форм. Изменчивость вместе с наследственностью представляют собой два неразделимых свойства живых организмов.

Синдром Дауна

Синдром Дауна – генетическое заболевание, при котором кариотип состоит из 47 хромосом у человека вместо обычных 46. Это одна из форм анеуплоидии, о которой говорилось выше. В двадцать первой паре хромосом появляется добавочная, которая привносит лишнюю генетическую информацию в геном человека.

Название свое синдром получил в честь врача, Дона Дауна, который открыл и описал его в литературе как форму психического расстройства в 1866 году. Но генетическая подоплека была обнаружена почти на сто лет позже.

Эпидемиология

На данный момент кариотип в 47 хромосом у человека встречается один раз на тысячу новорожденных (ранее статистика была иной). Это стало возможным благодаря ранней диагностике данной патологии. Заболевание не зависит от расы, этнической принадлежности матери или ее социального положения. Оказывает влияние возраст. Шансы родить ребенка с синдромом Дауна возрастают после тридцати пяти лет, а после сорока соотношение здоровых детей к больным равняется уже 20 к 1. Возраст отца старше сорока лет также увеличивает шансы на рождение ребенка с анеуплоидией.

Формы синдрома Дауна

Наиболее частый вариант – появление дополнительной хромосомы в двадцать первой паре по ненаследственному пути. Он обусловлен тем, что во время мейоза эта пара не расходится по веретену деления. У пяти процентов заболевших наблюдается мозаицизм (дополнительная хромосома содержится не во всех клетках организма). Вместе они составляют девяносто пять процентов от общего количества человек с этой врожденной патологией. В остальных пяти процентах случаев синдром вызван наследственной трисомией двадцать первой хромосомы. Однако рождение двух детей с этим заболеванием в одной семье незначительно.

Клиника

Человека с синдромом Дауна можно узнать по характерным внешним признакам, вот некоторые из них:

— уплощенное лицо;
— укороченный череп (поперечный размер больше продольного);
— кожная складка на шее;
— складка кожи, которая прикрывает внутренний угол глаза;
— чрезмерная подвижность суставов;
— сниженный тонус мышц;
— уплощение затылка;
— короткие конечности и пальцы;
— развитие катаракты у детей старше восьми лет;
— аномалии развития зубов и твердого неба;
— врожденные пороки сердца;
— возможно наличие эпилептического синдрома;
— лейкозы.

Но однозначно поставить диагноз, основываясь только на внешних проявлениях, конечно, нельзя. Необходимо провести кариотипирование.

Заключение

Ген, геном, хромосома — кажется, что это просто слова, значение которых мы понимаем обобщенно и весьма отдаленно. Но на самом деле они сильно влияют на нашу жизнь и, изменяясь, заставляют меняться и нас. Человек умеет подстраиваться под обстоятельства, какими бы они ни оказались, и даже для людей с генетическими аномалиями всегда найдется время и место, где они будут незаменимы.

Источник: fb.ru

В общем смысле ген – это единица наследственности. Однако структурно-функциональная организация гена сложная и разнообразная. Ее изучает молекулярная генетика.

Упрощенно ген представляют как участок молекулы ДНК, который кодирует определенный полипептид (опосредованно через информационную РНК) или функциональную РНК (транспортную, рибосомальную и др.). Однако данное представление усложняется в том числе следующим:

  • Поскольку транскрипция контролируется управляющими последовательностями ДНК, то возникает вопрос: относить ли их к гену? В связи с этим вводится понятие «оперон».

  • Управляющие последовательности могут контролировать несколько генов.

  • Некоторые гены перекрываются, т. е. различающиеся РНК синтезируются почти на одном и том же участке ДНК. Это возможно за счет сдвига рамки считывания.

Ген не является неделимой единицей мутации и рекомбинации. Мутировать и рекомбинировать может даже одна пара нуклеотидов, а ген обычно включает множество нуклеотидов. Размеры генов варьируют в широких пределах: от десятков нуклеотидов до миллионов.

Так как ген как однозначную структурную единицу выделить трудно, то нередко под геном понимают исключительно функциональную единицу наследственности.

В середине XX века был провозглашен принцип классической генетики: один ген — один белок. Однако более поздние исследования отчасти опровергали данный принцип. Во-первых, были гены, кодирующие различные виды РНК (а не только иРНК). Во-вторых, были обнаружены перекрывающиеся гены (впервые у прокариот, позже у эукариот), имеющие общие нуклеотидные участки. При этом бывают варианты, когда один ген полностью содержится в другом.

Учеными выдвигаются гипотезы о пользе и роли перекрывающихся генов. При этом отмечается существенный недостаток подобной организации генома: мутация, возникшая на участке ДНК, относящемся к двум и более генам, сразу «портит» все эти гены.

В кодирующей последовательности гена чередуются участки: интроны и экзоны. Интроны не кодируют полипептид. Экзоны — кодируют. Так на ДНК на самом деле синтезируется пре-информационная РНК (пре-иРНК), которая в ядре подвергается созреванию, в процессе которого вырезаются интроны, а экзоны сшиваются между собой. В результате получается иРНК.

Количество интронов и экзонов в одном гене различно (от единиц до сотен), также сильно варьирует и их длина (количество нуклеотидов). При этом бывают гены вообще без интронов.

Функция интронов предположительно заключается в регуляции экспрессии генов, а также в их участии в рекомбинации.

В ДНК эукариот были обнаружены достаточно длинные регуляторные области. Они могут располагаться в непосредственной близости к обслуживающемуся ими гену, находится на удалении (в другом месте ДНК), обслуживать несколько разных генов.

Регуляторная область генома состоит из промотора, энхансера, сайленсера. Промотор представляет собой небольшой участок ДНК, где происходит связывание факторов транскрипции, и образуется комплекс ДНК-РНК-полимеразы, позволяющий запустить синтез РНК.

Энхансер усиливает транскрипцию, а сайленсер — ее ослабляет. При этом один и тот же участок ДНК в зависимости от типа клеток может выступать как в роли первого, так и второго. В области энхансеров и сайленсеров прикрепляются различные регуляторные белки.

Кроме этого существуют инсуляторы — последовательности ДНК, блокирующие взаимодействие между промоторами и энхансерами.

ДНК состоит не только из генов и регуляторных частей. Также на ней есть спейсеры — межгенные последовательности.

В геноме есть повторяющиеся последовательности. При этом выделяют уникальные последовательности (до нескольких копий), умеренные повторы (до несколько тысяч копий), высокоповторяющаяся ДНК (до миллиона копий на геном). Большинство функционирующих генов представлены уникальными последовательностями.

Повторы нуклеотидов могут располагать как рядом (образуя кластеры), так и быть разбросанными по геному. Кластеры образуют сателлитную ДНК (находится преимущественно в теломерах и центромерах хромосом).

В геномах среди повторов были найдены псевдогены — нефункционирующие участки ДНК, сходные с функционирующими генами.

Таким образом, геном — это сложная система, взаимосвязанных участков ДНК. Дать однозначное определение понятию ген не представляется возможным. Под ним можно понимать как только транскрибируемую область ДНК, так и включить управляющие части. В любом случае ДНК состоит не только из генов, но и межгенных последовательностей нуклеотидов, роль которых еще не изучена в полной мере.

Источник: biology.su