а) Гетерохроматин. Во время интерфазы определённые участки хромосом и целые хромосомы остаются компактными. Они образуют «глыбки» интенсивно окрашенные и, как правило, прилежащие к мембране ядра. Гетерохроматин неактивен в отношении транскрипции. Существует две формы гетерохроматина: факультативный и конститутивный

  • факультативный гетерохроматин бывает гетерохроматичным только временами. Он информативен, содержит гены с которых считывается наследственная информация, когда гетерохроматин переходит в эухроматическое состояние. Образуется при спирализации одной из двух гомологичных хромосом. Типичным примером служит тельце полового хроматина, образуемого одной из двух Х-хромосом соматических клеток женских особей человека и млекопитающих. Функциональная роль факультативного гетерохроматина заключается в компенсации снижении дозы определенного гена (например, появление промежуточного признака при явлении неполного доминирования у гетерозигот Аа, влияет на экспрессивность проявления наследственных признаков в фенотип), определяет тканеспецифичность.


  • структурный гетерохроматин – отличается высокоспирализованным состоянием, которое сохраняется на протяжении всего мит. цикла. Он занимает постоянные участки в гомологичных хромосомах – это фрагменты околоцентромерных, теломерных участков хромосом, Не содержит структурных генов (нетранскрибируемый); Его роль не ясна, но по видимому он выполняет опорную функцию.

б) Эухроматин (разрыхленный) — имеет менее компактную организацию, деспирализуется в конце митоза, образует слабоокрашенные нитчатые структуры содержит структурные транскрибируемые гены;

В КАЖДОЙ ХРОМОСОМЕ СВОЙ ПОРЯДОК РАСПОЛОЖЕНИЯ ЭУ- И ГЕТЕРОХРОМАТИНА, ЧТО ИСПОЛЬЗУЕТСЯ ДЛЯ ИДЕНТИФИКАЦИИ ОТДЕЛЬНЫХ ХРОМОСОМ В ЦИТОГЕНЕТИКЕ.

Уровни структурной организации хроматина:

Данные микроскопического и электронно-микроскопического изучения хроматина и митотических хромосом дают следующую картину структурной организации хромосом:

  • двойная спираль ДНК — 1,5 нм (толщина биспирали)

  • нуклеосомная нить (ДНК присоединяет белки и скручивается в нуклеогистоновый комплекс) — 8 молекул гистонов: Н2а, Н2в, Н3, Н4 они служат основой – образуя белковые тела — коры, на которые «накручены» фрагменты ДНК длиной примерно в 200 пар нуклеотидов. Гистон Н1 «сшивает» витки ДНК. Участки ДНК не связанные с белками, расположенные между гистоновыми корами, называются связующими или линкёрными. Результат скручивания ДНК и присоединение белка преобразуется в нуклеогистоновый комплекс с нуклеосомной структурой – 10 – 13 нм


  • хроматиновая фибрилла 20 – 25 нм, дальнейшее скручивание ДНК и присоединение белков

  • серии петельных доменов (хромонема) 100 – 200 нм. Домен – область с поперечным размером, возвышение

  • конденсированный участок хромосомы – 700 нм (образуют глыбки хроматина)

  • метафазная хромосома — 1400 нм

Гетеро и эухроматинГетеро и эухроматин

Линкёрная ДНК Гистоновый кор

нуклеосомы

Гетеро и эухроматин

нуклеосомная организация хроматиновая фибрилла

Гетеро и эухроматин

Серии петельных доменов Гетеро и эухроматин


Гетеро и эухроматин

конденсированный участок

хромосомы (конденсация

хроматиновых метафазная хромосома

петель и объединение петель,

имеющих сходную структуру)

МОРФОЛОГИЯ МЕТАФАЗНЫХ МИТОТИЧЕСКИХ ХРОМОСОМ.

Для изучения индивидуального набора хромосом (кариотипа) особое значение имеют митотические метафазные хромосомы т. к. хромосомы на этой стадии максимально спирализованы и видны как отдельные морфологические структуры. Благодаря спирализации достигается плотная упаковка наследственного материала, что важно для перемещения хромосом в процессе митоза

1. Хромосома состоит из двух половинок — хроматид, каждая хроматида состоит из биспирали ДНК. Хромосомы обозначают – «п», ДНК – «с», т.о. хромосома – П 2С

2. На теле хромосомы есть первичная перетяжка – центромера или кинетохор

Центромера делит тело хромосомы на плечи. В зависимости от расположения центромеры различают хромосомы по форме: метацентрические (равноплечие), субметацентрически (неравноплечие имеют длинное плечо –«q» и короткое — «p»), акроцентрические (палочковидные), телоцентрические (выражено неравноплечие);

iv>

4. Некоторые хромосомы имеют вторичную перетяжку, которая отделяет

небольшой участок – спутник хромосомы. Хромосома, имеющая спутник называется спутничной. У человека спутничные хромосомы относятся к аутосомам и имеют номер – 13, 14, 15, 21, 22

5. В области вторичных перетяжек некоторых хромосом располагаются я д р ы ш к о в ы е о р г а н и з а т о р ы. Они содержат гены, кодирующие рРНК и служат местом образования я д р ы ш к а.

Гетеро и эухроматин

6. На концах плеч хромосом расположены т е л о м е р ы. Они препятствуют склеиванию хромосом, возможно содержат гены, отвечающие запродолжительность жизни.

Метафазная хромосома

Гетеро и эухроматин

Формы хромосом

/—телоцентрическая, //—акроцентрическая, ///—субметацентрическая, IV—метацентрическая;

1-—центромера, 2 —спутник, 3—короткое плечо «p», 4—длинное плечо–«q», 5 — хроматиды


1. В соматических клетках диплоидный (двойной) набор хромосом – 2п4с.

2. В диплоидном наборе хромосомы парные.

3. Парные хромосомы имеют одинаковое строение и называются – г о м о л о г и ч н ы е.

4. Хромосомы из разных пар – н е г о м о л о г и ч н ы е.

5. Хромосомы, имеющие одинаковое строение в клетках особей разного пола, называются,

а у т о с о м а м и. Их обозначают арабскими цифрами (1,2,3,…). Они представлены парами гомологичный хромосом, но индивидуально различных (отцовских и материнских). Их располагают в порядке уменьшения размеров, поэтому самая большая хромосома имеет первый номер. У человека самая маленькая аутосома имеет 22 номер.

У человека в соматических клетках 22 пары — 44 аутосомы, а в половых клетках — 22 аутосомы

6. Хромосомы участвующие в определении пола, называются п о л о в ы м и или

г е т е р о х р о м о с о м а м и (гетеросомы), их обозначают латинскими буквами «Х» и «У». В соматических клетках человека две половые хромосомы, у женского пола две ХХ, у мужского ХУ.

Т.о. в соматических клетках человека 46 хромосом = 44 аутосомы две половые ХХ, или 44 аутосомы + две половые ХУ, а в половых клетках 23 хромосомы = 22 аутосомы + одна половая Х или 22 аутосомы + одна половая У.

7. В половых клетках (гаметах – сперматозоидах и яйцеклетках) содержится половинный — г а п л о и д н ы й –п набор хромосом.

ПОНЯТИЕ О КАРИОТИПЕ.

КАРИОТИП – это хромосомный комплекс ядер эукариотических клеток, характеризующийся:

>
  • Строением хромосом

  • Размерами – большие, средние, маленькие хромосомы

  • Числом хромосом (у человека 46, дрозофилы 8)

Гетеро и эухроматинДиплоидный набор хромосом (кариотип)

Геном – это комплекс генов гаплоидного набора хромосом. У человека геном содержит 23 хромосомы.

Правила хромосом:

  • правило постоянства числа хромосом – каждый вид имеет определенное и постоянное число хромосом. Число хромосом видовой признак

  • правило парности хромосом число хромосом четное, они составляют пары.

  • правило индивидуальности – каждая пара хромосом имеет свои особенности строения. Негомологичные хромосомы всегда имеют отличия.

  • правило непрерывности хромосом – «каждая хромосома от хромосомы», т. е. хромосома в митотическом цикле непрерывна, она переходит из одного функционального состояния в другое (компактизация — декомпактизация). В митотическом цикле происходит ауторепродукция хромосом:


— во время анафазы расходятся идентичные хроматиды (дочерние или сестринские однохроматидные хромосомы),

— в синтетический период на основе принципа комплементарности и антипараллельности происходит удвоение ДНК (образование материнских двухроматидных хромосом)

Источник: StudFiles.net

Термин хромосома был предложен в 1888 г. немецким морфологом В. Вальдейером, который применил его для обозначения внутриядерных структур эукариотической клетки, хорошо окрашивающихся основными красителями (от греч.хрома — цвет, краска, и сома — тело). К началу XX в. углубленное изучение поведения этих структур в ходе самовоспроизведения клеток, при созревании половых клеток, при оплодотворении и раннем развитии зародыша обнаружило строго закономерные динамические изменения их организации. Это привело немецкого цитолога и эмбриолога Т. Бовери (1902—1907) и американского цитолога У. Сеттона (1902—1903) к утверждению тесной связи наследственного материала с хромосомами, что легло в основу хромосомной теории наследственности. Детальная разработка этой теории была осуществлена в началеXX в. школой американских генетиков, возглавляемой Т. Морганом.

Представление о хромосомах как носителях комплексов генов было высказано на основе наблюдения сцепленного наследования ряда родительских признаков друг с другом при передаче их в ряду поколений.

 

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями.


Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.

Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.

Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» списывания информации с молекулы ДНК.

Хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец — хромосом. Хромосомымогут находиться в двух структурно-функциональных состоя­ниях: в конденсированном (спирализованном) и деконденсированном (деспирализованном). В неделящейся клет­ке хромосомы не видны, обнаружива­ются лишь глыбки и гранулы хромати­на, так как хромосомы частично или полностью деконденсируются. Это их рабочее состояние. Чем более диффузен хроматин, тем интенсивнее в нем синтетические процессы. Ко времени деления клетки происходит конденса­ция (спирализация) хроматина и при митозе хромосомы хорошо видны.


Мельчайшими структурными ком­понентами хромосом являются нуклеопротеидные фибриллы, они видимы лишь в электронный микроскоп. Хро­мосомные нуклеопротеиды — ДНП — состоят из ДНК и белков, преимущественно гистонов. Молекулы гистонов образуют группы — нуклеосомы. Каж­дая нуклеосома состоит из 8 белковых молекул. Размер нуклеосомы около 8 нм. С каждой нуклеосомой связан участок ДНК, спирально оплетающий ее снаружи.

В хроматине не вся ДНК связана с нуклеосомами, около 10—13 % ее дли­ны свободно от них.

Существует представление, что хро­мосома состоит из одной гигантской фибриллы ДНП, образующей мелкие петли, спирали и разнообразные из­гибы. По другим представлениям фиб­риллы ДНК попарно скручиваются, образуя хромонемы (гр. пета — стру­на), которые входят в комплексы более высокого порядка — также спирально закрученные полухроматиды. Пара полухроматид составляет хроматиду, а пара хроматид — хромосому.

Каким бы ни было тонкое строение хромосомы, от степени скручивания нитчатых структур зависит ее длина. На различных участках одной и той же хромосомы спирализация, компактность ее основных элементов неоди­накова, с этим связана различная ин­тенсивность окраски отдельных участ­ков хромосомы.


Участки хромосомы, интенсивно вос­принимающие красители, получили название гетерохроматических(состоящих из гетерохроматина), они даже в период между делениями клетки остаются компактными, видимыми в световой микроскоп. Слабо окрашиваю­щиеся участки, деконденсирующиеся в периоды между делениями клетки и становящиеся невидимыми, получили название эухроматических(состоящих из эухроматина).

Предполагается, что эухроматин содержит в себе гены, а гетерохроматин выполняет по преимуществу струк­турную функцию. Он находится в ин­тенсивно спирализованном состоянии и занимает одни и те же участки в го­мологичных хромосомах, в частности составляет участки, прилегающие к центромере и находящиеся на концах хромосом. Потеря участков гетеро­хроматина может не отражаться на жизнедеятельности клетки. Выделяют факультативный гетерохроматин. Он возникает при спирализации и инак­тивации двух гомологичных хромосом, так образуется тельце Бара (х — поло­вой хроматин). Его образует одна из двух Х-хромосом у женских особей млекопитающих и человека.

Хромосомы во время деления клет­ки, в период метафазы имеют форму нитей, палочек и т. д. Строение одной и той же хромосомы на различных участках неоднородно. В хромосомах различают первичную перетяжку, делящую хромосому на два плеча. Первичная перетяжка (центромера) — наименее спирализованная часть хромосомы. На ней располагает­ся кинетохор (гр. kinesis — движение, phoros — несущий), к которому при делении клетки прикрепляются нити веретена деления. Место расположения пер­вичной перетяжки у каждой пары хро­мосом постоянно, оно обусловливает и форму. В зависимости от места рас­положения центромеры различают три типа хромосом: метацентрические, субметацентрические и акроцентрические. Метацентрические хромосомы имеют равной или почти равной ве­личины плечи, у субметацентрических плечи неравной величины, акроцентрические имеют палочковидную форму с очень коротким, почти неза­метным вторым плечом. Могут возник­нуть и телоцентрические хромосомы в результате отрыва одного плеча, у них остается только одно плечо и центромера находится на конце хромо­сомы. В нормальном кариотипе такие хромосомы не встречаются.

Концы плеч хромосом получили на­звание теломеров, это специализиро­ванные участки, которые препятству­ют соединению хромосом между собой или с их фрагментами. Лишенный теломеры конец хромосомы оказывается «ненасыщенным», «липким» и легко присоединяет фрагменты хромосом или соединяется с такими же участками. В норме теломеры препятствуют та­ким процессам и сохраняют хромосому как дискретную индивидуальную еди­ницу, т. е. обеспечивают ее индивиду­альность. Некоторые хромосомы имеют глубокие вторичные перетяжки, отде­ляющие участки хромосом, называе­мые спутниками. Такие хромосомы в ядрах клеток человека могут сбли­жаться друг с другом, вступать в ассо­циации, а тонкие нити, соединяющие спутники с плечами хромосом, при этом способствуют формированию ядрышек. Именно эти участки в хромосомах человека являются ядрышковыми орга­низаторами. У человека вторичные перетяжки имеются на длинном плече 1, 9 и 16 хромосом и на концевых участ­ках коротких плеч 13—15 и 21—22 хромосом.

В плечах хромосом видны более тол­стые и интенсивнее окрашенные участ­ки — хромомеры, чередующиеся с межхромомернымн нитями. Вследствие это­го хромосома может напоминать нитку неравномерно нанизанных бус.

Установлено, что каждый вид расте­ний и животных имеет определенное и постоянное число хромосом. Другими словами, число хромосом и характер­ные особенности их строения — видо­вой признак. Эта особенность известна как правило постоянства числа хромо­сом. Так, в ядрах всех клеток лошади­ной аскариды (Paraascarismegalocephalaunivalenus) находятся по 2 хро­мосомы, у мухи дрозофилы (Drosophilamelanogaster) — по 8, у человека — по 46. Примеры: малярийный плазмодий (2), гидра (32), речной рак (116) и т.д.

Число хромо­сом не зависит от высоты организации и не всегда указывает на филогенети­ческое родство: одно и то же число может встречаться у очень далеких друг от друга форм и сильно разнить­ся у близких видов. Однако очень важно, что у всех организмов, отно­сящихся к одному виду, число хромо­сом в ядрах всех клеток, как правило, постоянна.

Следует обратить внимание на то, что во всех приведенных выше приме­рах число хромосом четное. Это связа­но с тем, что хромосомы составляют пары (правило парности хромосом).

У лошадиной аскариды одна пара хромосом, у дрозофилы — 4, у человека — 23. Хромосомы, которые отно­сятся к одной паре, называются гомологичными. Гомологичные хромосомы одинаковы по величине и форме, у них совпадают расположение центромер, порядок расположения хромомер и межхромомерных нитей, а также дру­гие детали строения, в частности, расположение гетерохроматиновых уча­стков. Негомологичные хромосомы всегда имеют отличия. Каждая пара хромосом характеризуется своими осо­бенностями. В этом выражается пра­вило индивидуальности хромосом.

В последовательных генерациях кле­ток сохраняется постоянное число хро­мосом и их индивидуальность вслед­ствие того, что хромосомы обладают способностью к авторепродукции при делении клетки.

Таким образом, не только «каждая клетка от клетки», но и «каждая хромо­сома от хромосомы». В этом выража­ется правило непрерывности хромосом.

В ядрах клеток тела (т. е. соматиче­ских клетках) содержится полный двой­ной набор хромосом. В нем каж­дая хромосома имеет партнера. Такой набор называется диплоидным и обо­значается 2n. В ядрах половых клеток в отличие от соматических из каждой пары гомологичных хромосом присут­ствует лишь одна хромосома. Так, в ядрах половых клеток лошадиной ас­кариды всего одна хромосома, дрозо­филы — 4, человека — 23. Все они раз­личны, негомологичны. Такой оди­нарный набор хромосом называется гаплоидным и обозначается п. При оп­лодотворении происходит слияние по­ловых клеток, каждая из которых вно­сит в зиготу гаплоидный набор хромо­сом, и восстанавливается диплоидный набор: п + п= 2n.

При сравнении хромосомных набо­ров из соматических клеток мужских и женских особей, принадлежащих од­ному виду, обнаруживалось отличие в одной паре хромосом. Эта пара полу­чила название половых хромосом, или гетерохромосом. Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название аутосом. Так, у дрозофилы 3 пары аутосом и одна пара гетерохромосом.

Источник: studopedia.ru

Интерфазная хромосома — это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То есть функция интерфазной ХР — передача информации с генома, последовательности нуклеотидов в молекуле ДНК, для синтеза необходимых белков, ферментов и т. д.

В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска) .

Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нук-леосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекру-ченными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромо-сом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом.

Классификация хроматина. Различают два вида хроматина:

1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.

2) гетерохроматин — плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.

Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохромати-на) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При её повышении это соотношение изменяется в пользу эухроматина, при снижении – нарастает содержание гетеро-хроматина. При полном подавлении функций ядра (например, в поврежденных и гибнущих клетках, при орогове-нии эпителиальных клеток эпидермиса – кератиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основными красителями интенсивно и равномерно. Такое явление называется кариопикнозом (от греч. karyon – ядро и pyknosis – уплотнение) .

Хроматин и хромосомы представляют собой дезоксирибонуклеопротеиды (ДНП) , но хроматин – это рас-крученное, а хромосомы – скрученное состояние. Хромосом в интерфазном ядре нет, они хромосомы появляются при разрушении ядерной оболочки (во время деления) .

Распределение гетерохроматина (топография его частиц в ядре) и соотношение содержания эу- и гетеро-хроматина характерны для клеток каждого типа, что позволяет осуществить их идентификацию как визуально, так и с помощью автоматических анализаторов изображения. Вместе с тем, имеются определенные общие закономер-ности распределения гетерохроматина в ядре: его скопления располагаются под кариолеммой, прерываясь в об-ласти пор (что обусловлено его связью с ламиной) и вокруг ядрышка (перинуклеолярный гетерохроматин) , более мелкие глыбки разбросаны по всему ядру.

Функции нуклеиновых кислот в процессе реализации наследственной информации. Кодирование наследственной информации в клетке. Генетический код и его свойства. Внутриклекточный поток генетической информации, его направление и роль молекул ДНК и РНК

Генетический код — свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав:

— А (A) аденин;

— Г (G) гуанин;

— Ц (C) цитозин;

— Т (T) тимин (в ДНК) или У (U) урацил (в мРНК).

Реализация генетического кода в клетке происходит в два этапа: транскрипцию и трансляцию.

Нуклеотидная последовательность гена определяет последовательность аминокислот в белке.Это соответствие обеспечивает генетический код. Три соседних нуклеотида в молекуле ДНК составляют триплет, а последовательность нуклеотидов в триплете — код определенной аминокислоты, или кодон. Кодоны есть для каждой из 20 аминокислот, входящих в состав белка. Правила соответствия кодонов определенным аминокислотам или функциям называется генетическим кодом. За небольшими исключениями генетический код универсален для всех живых организмов. Так как четыре нуклеотида объединенные по три дают 64 варианта, а аминокислот всего 20, то большинство аминокислот кодируется более чем одним кодоном или другими словами: генетический код является вырожденным.

Генетический код имеет следующие особенности:

1. Код — триплетный, т.е. одна аминокислота задается последовательностью из трех нуклеотидов, называемой кодоном.

2. Код не перекрывается, т.е. в последовательности оснований первые три основания кодируют одну аминокислоту, следующие три — другую и т.д.

3. Из таблицы генетического кода видно, что код — вырожденный : 20 аминокислот представлены 61 кодоном. Почти каждой аминокислоте соответствует несколько кодонов-синонимов.

4. Генетический код специфичен — это означает, что каждый кодон кодирует только одну аминокислоту.

5. Генетический код — универсален, т.е. все живые организмы (эукариоты, прокариоты и вирусы) используют один и тот же код.

Биосинтез белка в организме эукариот происходит в несколько этапов.

1. Транскрипция – это процесс синтеза и-РНК на матрице ДНК. Цепи ДНК в области активного гена освобождаются от гистонов. Водородные связи между комплементарными азотистыми основаниями разрываются. Основной фермент транскрипции РНК-полимераза присоединяется к промотору – специальному участку ДНК. Транскрипция проходит только с одной цепи ДНК. По мере продвижения РНК-полимеразы по кодогенной цепи ДНК рибонуклеотиды по принципу комплементарности присоединяются к цепочке ДНК, в результате образуется незрелая про-и-РНК, содержащая как кодирующие, так и некодирующие нуклеотидные последовательности.

2. Затем происходит процессинг – созревание молекулы РНК. На 5-конце и-РНК формируется участок (КЭП), через который она соединяется с рибосомой. Ген, т. е. участок ДНК, кодирующий один белок, содержит как кодирующие последовательности нуклеотидов – экзоны, так и некодирующие – интроны. При процессинге интроны вырезаются, а экзоны сшиваются. В результате на 5-конце зрелой и-РНК находится кодон-инициатор, который первым войдет в рибосому, затем следуют кодоны, кодирующие аминокислоты полипептида, а на 3-конце – кодоны-терминаторы, определяющие конец трансляции. Цифрами 3 и 5 обозначаются соответствующие углеродные атомы рибозы. Кодоном называется последовательность из трех нуклеотидов, кодирующая какую-либо аминокислоту – триплет. Рамка считывания нуклеиновых кислот предполагает «слова»-триплеты (кодоны), состоящие из трех «букв»-нуклеотидов.

Транскрипция и процессинг происходят в ядре клетки. Затем зрелая и-РНК через поры в мембране ядра выходит в цитоплазму, и начинается трансляция.

3. Трансляция – это процесс синтеза белка на матрице и РНК. Вначале и-РНК 3-концом присоединяется к рибосоме. Т-РНК доставляют к акцепторному участку рибосомы аминокислоты, которые соединяются в полипептидную цепь в соответствии с шифрующими их кодонами. Растущая полипептидная цепь перемещается в донорный участок рибосомы, а на акцепторный участок приходит новая т-РНК с аминокислотой. Трансляция прекращается на кодонах-терминаторах.

Это система кодирования последовательности аминокислот белка в виде определенной последовательности нуклеотидов в ДНК и РНК.

Единица генетического кода (кодон) – это триплет нуклеотидов в ДНК или РНК, кодирующий одну аминокислоту.

Источник: studopedia.org

Наиболее подходящей фазой для исследования хромосом является мета-фаза митоза. Для изучения хромосом чаще используют препараты кратко­временной культуры крови, полученные через 48-72 ч после взятия крови, но могут быть использованы клетки костного мозга и культуры фибробластов.

При приготовлении препаратов хромосом к культуре клеток добавляют колхицин, который разрушает веретено деления и останавливает деление клетки в метафазе. Затем клетки обрабатывают гипотоническим раствором, после чего их фиксируют и окрашивают. Для окраски хромосом чаще используют краситель Романовского-Гимзы, 2 % ацеткармин или 2 % ацетарсеин. Они окрашивают хромосомы целиком, равномерно (рутинный метод) и могут быть использованы для выявления численных аномалий хромосом человека (45, 47 и т. д.).

Для получения детальной картины структуры хромосом, идентификации (определения) отдельных хромосом или их сегментов используют различные способы дифференциального окрашивания. Один из них -G-метод: по длине хромосомы выявляется ряд окрашенных и неокрашенных полос. Че­редование этих полос и их размеры строго индивидуальны и постоянны для каждой пары гомологичных хромосом, поэтому при дифференциальной окраске можно легко определить, к какой паре относится хромосома, если даже пары сходны между собой по размерам и форме. Например, хромосомы 13, 14, 15-й пар трудно отличить при равномерной окраске, а при диффе­ренциальной — рисунок исчерченности (чередование и размер темных и светлых полос) неодинаков (см. рис. 7).

Хроматин клеточного ядра подразделяется на два основных типа: на эу- и гетерохроматин. Это наследственный материал различной степени спирализации и упаковки белками различной степени конденсации.

Эухроматин (от греч. eu — полностью и chroma — цвет) в метафазных хромосомах виден в виде светлых полос. В интерфазе (между делением

 

Гетеро и эухроматин

 

Рис.7.Схематические карты хромосом человека при их дифференциальной oкраске

клетки, когда ядро оформленное) находится в деспирализованном состоянии, то есть образует невидимые в световой микроскоп фибриллы (от новолат. Fibrilla- волоконце, ниточка). Как правило, в эухроматине находятся струк­турные активные уникальные гены, которые контролируют развитие приз­наков организма. Эухроматин менее плотно упакован и доступен для фер­ментов РНК-полимераз, обеспечивающих синтез и-РНК, а затем синтез белков.

Гетерохроматин определяется в метафазных хромосомах при дифферен­циальном окрашивании в виде темных полос различных размеров, состоящих ич конденсированной (спирализованной) плотно упакованной молекулы ДНК. Даже в интерфазном ядре гетерохроматин в виде глыбок хорошо виден в снеговой микроскоп. Чаще всего он расположен вокруг ядрышка и около ядерной оболочки. Переписывания информации и-РНК с данных участков не происходит. Эти гены неактивны.

Различают также структурный и факультативный гетерохроматин. Струк­турный гетерохроматин в интерфазном ядре спирализован, плотно упакован и в метафазных хромосомах постоянно обнаруживается вокруг центромеры во всех 46 хромосомах (составляет около 13 % от генома). Расположение темных полос для каждой пары хромосом строго индивидуально. Функция структурного гетерохроматина в целом пока неясна.

Факультативный гетерохроматин появляется в интерфазном ядре не всегда. Он представляет собой спирализованный эухроматин. В метафазных хромо­сомах факультативный гетерохроматин не обнаруживают. Например, в ядрах клеток женщин в диплоидном наборе имеется две Х-хромосомы, одна из которых полностью инактивирована (спирализована, плотно упакована) уже па ранних этапах эмбрионального развития и видна в виде глыбки гетеро­хроматина, прикрепленного к оболочке ядра. Благодаря этому женские и муж­ские организмы уравновешиваются по количеству функционирующих генов, сцепленных с полом, так как у мужчин одна Х-хромосома и одна доза генов Х-хромосомы. Инактивированная Х-хромосома называется половым хрома­тином или тельцем Барра. Половой хроматин обычно определяют путем ана­лиза эпителиальных клеток в соскобе слизистой оболочки щеки. Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании — син­дроме Шерешевского-Тернера (кариотип 45, ХО). Присутствие у мужчин тель­ца Барра свидетельствует о наследственном заболевании — синдроме Клайнфельтера (кариотип 47, XXV).

Ученые считают, что в клетках по мере специализации все большее число генов инактивируется (выключается), эухроматин переходит в гетерохрома­тин.

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ

Основные понятия и термины в современной генетике

Для изучения медицинской генетики необходимо знать основные термины и понятия, которые используются и в общей генетике.

Наследственность — это свойство живых организмов сохранять генетическую информацию и признаки предков и передавать их в ряду поколений.

Наследование — это процесс воспроизведения признаков предков в последовательных поколениях.

Гомологичные хромосомы — одинаковые по размерам, по форме, по составу генов, но разные по происхождению: одна — от отца другая — от матери.

Ген — это участок молекулы ДНК, кодирующий первичную структуру полипептида.

Аллельные гены — гены, которые локализованы в гомологичных хромосомах в одинаковых локусах и кодируют один и тот же признак или его вариации.

Гомозигота — организм, в котором данная пара аллельных генов одинакова: АА или аа.

Гетерозигота — организм, в котором пара аллелей неодинакова: Аа.

Гемизигота (от греч. hemi — полу- и зигота) — когда в диплоидном организме присутствует один ген из пары аллелей и он всегда проявляется. Например, в Х-хромосоме у мужчин в локусе, которого нет в У-хромосоме, находится один ген гемофилии, а в У-хромосоме такой ген отсутствует.

Доминантный ген (от лат. dominans — господствующий) -преобладающий, который подавляет проявление других аллелей; обозначают прописной буквой латинского алфавита.

Рецессивный ген (лат. recessus — отступление) — он проявляется только в гомозиготном состоянии; обозначают строчной буквой латинского алфавита.

Закон чистоты гамет: в процессе образования гамет в каждую из них попадает только один ген из аллельной пары. Цитологически это объясняется мейозом: в анафазе мейоза гомологичные хромосомы рас­ходятся и вместе с ними расходятся аллельные гены.

Генотип — совокупность генов данного организма. Однако часто под генотипом понимают одну или две пары аллелей (гомозиготы и гетерозиготы).

Фенотип — совокупность признаков данного организма (внешних и внутренних). Он развивается в результате взаимодействия генотипа с внеш­ней средой. В фенотипе реализуются не все генотипические возможности, а лишь часть их, для которых были конкретные оптимальные условия. Фе­нотип — это частный случай реализации генотипа в конкретных условиях.

Медицинская генетика (и генетика человека) опирается на общие прин­ципы, полученные первоначально в исследованиях на растениях и животных. Разобраться в простых случаях наследования у человека было невозможно без учета опытов Г. Менделя над горохом.

Источник: megaobuchalka.ru

Различие между эухроматином и гетерохроматином

Существуют множественные формы хроматинов обоих классов — эухроматина и гетерохроматина.

Эухроматин, или "активный" хроматин, состоит в основном из кодирующих последовательностей, составляющих лишь небольшую долю (менее 4%) генома млекопитающих. Какие же молекулярные сигналы маркируют тогда кодирующие последовательности, обладающие потенциалом для продуктивной транскрипции, и каким образом структура хроматина вносит свой вклад в этот процесс? Обширная литература позволяет предполагать, что эухроматин существует в "открытой" (декомпактизированной), более чувствительной к нуклеазам конфигурации, делающей его "готовым" к экспрессии генов, хотя и не обязательно транскрипционно активным. Некоторые из этих генов экспрессируются повсеместно (гены "домашнего хозяйства"); другие регулируются ходом развития или индуцируются в ответ на внешние стрессорные факторы. Транскрипцию генов включает совместное действие избранных m-действующих нуклеотидных последовательностей ДНК (промоторов, энхансеров и участков контроля локусов), связанных с комбинациями trans-действующих факторов, вместе с РНК-полимеразой и ассоциированными факторами ( Sims et al., 2004 ). В совокупности эти факторы подверглись жесткому отбору в ходе эволюции, чтобы инструментовать сложные ряды биохимических реакций, которые должны происходить в "правильной" пространственной и временной последовательности. Обеспечивает ли хроматин "систему индексирования", гарантирующую, что вышеописанная машинерия сможет получить доступ к своим целевым последовательностям в клетках соответствующего типа?

На уровне ДНК соседние с промоторами области, богатые AT, часто лишены нуклеосом и могут существовать в жесткой, неканонической конфигурации ДНК (В-форма), способствующей размещению транскрипционного фактора (TF) ( Mito et al., 2005 ; Sekinger et al., 2005 ). Однако размещения TF недостаточно для обеспечения транскрипции. Рекрутирование механизмов [machines] ремоделинга нуклеосом посредством индукции активирующих модификаций гистонов (например, ацетилирование и метилирование НЗК4) облегчает взаимодействие с механизмами транскрипции; в настоящее время определяют, каким образом это происходит (см. рис. 3.9 и главу " МОДИФИКАЦИИ ХРОМАТИНА И МЕХАНИЗМ ИХ ДЕЙСТВИЯ "). Замена вытесненных гистонов гистоновыми вариантами, после того как механизм транскрипции распутал и транскрибировал хроматиновую фибриллу, обеспечивает целостность хроматиновой матрицы ( Ahmad and Henikoff, 2002 ). Однако образование полностью созревших иРНК также требует протекания посттранскрипционных процессов, в том числе сплайсинга , полиаденилирования и экспорта из ядра.

Таким образом, собирательный термин "эухроматин" скорее всего обозначает сложное состояние (состояния) хроматина, охватывающее динамичную и сложную смесь механизмов [machines], тесно взаимодействующих друг с другом и с хроматиновой фибриллой и предназначенных для осуществления транскрипции функциональных РНК. Выяснение "правил", определяющих, каким образом, в самом общем смысле, эти "активирующие механизмы" ["activating machinery"] взаимодействуют с аппаратом транскрипции, а также с хроматиновой матрицей — волнующая область современных исследований, хотя в силу динамичной природы матрицы эту область, строго говоря, можно относить не к эпигенетике, а, скорее, к исследованиям динамики транскрипции и хроматина.

Что же тогда обозначает термин "гетерохроматин"? Хотя в исторической ретроспективе он изучен хуже, чем эухроматин, новые открытия заставляют считать, что гетерохроматин играет критически важную роль в организации и правильном функционировании геномов, начиная с дрожжей и кончая человеком (хотя у S. cerevisiae особая форма гетерохроматина). Его потенциальное значение подчеркивается тем фактом, что 96% генома млекопитающих состоит из некодирующих и повторяющихся последовательностей. Новые открытия, касающиеся механизмов формирования гетерохроматина, выявили неожиданные вещи. Например, транскрипция, неспецифичная по отношению к последовательности и дающая двуспиральную РНК (dsRNA), подвержена сайленсингу по механизму, подобному РНК-интерференции (RNAi) . Образование таких dsRNAs действует как "сигнал тревоги", отражая тот факт, что соответствующая нуклеотидная последовательность ДНК не может генерировать функциональный продукт или инвазирвана РНК-транспозонами или вирусами. Эта dsRNA подвергается затем процессингу с помощью Dicer и нацеливается на хроматин комплексами, предназначенными для инициации каскада событий, ведущих к формированию гетерохроматина. В результате использования ряда модельных систем был достигнут заметный прогресс в анализе того, что, по-видимому, является высококонсервативным метаболическим путем, ведущим к "запертому" ["locked-down"] состоянию гетерохроматина. Хотя точная последовательность и детали событий могут варьировать, этот общий путь включает деацетилирование гистоновых "хвостов", метилирование специфических остатков лизина (например, НЗК9), рекрутирование ассоциированных с гетерохроматином белков (например, НР1) и метилирование ДНК ( рис. 3.9 ). Вполне вероятно, что секвестрирование отдельных участков генома в репрессивных ядерных доменах или территориях может усилить формирование гетерохроматина.

Интересно, что все большее количество данных позволяет предполагать, что гетерохроматин может быть "состоянием по умолчанию", по крайней мере у высших организмов, и что присутствие сильного промотора или энхансера, продуцирующего эффективный транскрипт, может "пересилить" гетерохроматин.

Общие концепции сборки гетерохроматина приложимы, по-видимому, даже к низшим эукариотам. В число основных особенностей входят гипоацетилированные "хвосты" гистонов, что сопровождается связыванием чувствительных к ацетилированию белков гетерохроматина (например, белки SIR ). В зависимости от вида грибов (например, почкующиеся vs. дробянковые дрожжи) наблюдаются различные объемы метилирования гистонов и HP1 -подобных белков. Даже при том, что эти геномы в большей степени настроены на общее, "по умолчанию", состояние готовности к транскрипции, имеются некоторые гетерохроматин-подобные районы генома (локусы спаривания, теломеры, центромеры и т.д.), которые способны супрессировать транскрипцию генов и генетическую рекомбинацию, когда тестируемые гены оказываются в этом новом соседстве.

Какие полезные функции мог бы обслуживать гетерохроматин? Определение центромер , участка конститутивного гетерохроматина , хорошо коррелирует с неким наследуемым эпигенетическим состоянием и, как полагают, эволюционно направляется самым крупным объединением в кластеры повторов и повторяющихся элементов на хромосоме. Это разбиение [partitioning] обеспечивает крупные и относительно стабильные гетерохроматиновые домены, маркированные репрессивными "эпигенетическими сигнатурами", облегчающими сегрегацию хромосом в митозе и мейозе (см. " ЭПИГЕНЕТИЧЕСКАЯ РЕГУЛЯЦИЯ ХРОМОСОМНОГО НАСЛЕДОВАНИЯ "). Здесь стоит заметить, что центромерные повторы и соответствующие эпигенетические метки, ассоциирующиеся с ними, дуплицировались и переместились на другие хромосомные плечи для создания "молчащих доменов" у таких организмов, как дробянковые дрожжи . Конститутивный гетерохроматин в теломерах (защитных концах хромосом) аналогичным образом обеспечивает стабильность генома, выступая в роли хромосомных " кэпов ". Наконец, известно, что формирование гетерохроматина является механизмом защиты от инвазивной ДНК. В совокупности эти открытия подчеркивают тот общий взгляд, что гетерохроматин обслуживает важные функции по поддержанию генома, которые могут соперничать даже с функциями самого эухроматина.

Подводя итог, можно сказать, что широкие функциональные различия между эухроматином и гетерохроматином в настоящее время можно приписать трем известным характеристикам хроматина. Во-первых, это природа нуклеотидной последовательности ДНК — например, содержит ли она обогащенную AT "жесткую" ДНК поблизости от промоторов, повторяющиеся последовательности и (или) последовательности, связывающие репрессоры, которые сигнализируют об ассоциации фактора. Во-вторых, качество РНК, продуцируемой в ходе транскрипции, определяет, будет ли она полностью подвергнута процессингу в иРНК, которая может быть транслирована, или же эта РНК будет деградирована или помечена для использования механизмом RNAi в целях гетерохроматинизации. В-третьих, пространственная организация в ядре может играть существенную секвестрирующую роль в поддержании локальных конфигураций хроматина.

Источник: medbiol.ru