Гомеостаз – это постоянство внутренней среды организма. Это важнейшее свойство всех живых организмов. Именно это динамическое равновесие определяет здоровье человеческого организма. Любая болезнь – это, прежде всего, нарушение внутреннего равновесия, которое организм человека пытается вернуть доступными ему способами.

Независимая лаборатория CMD располагает целым арсеналом средств, позволяющих диагностировать нарушение указанного равновесия на ранних этапах. Посетив

официальный сайт www.cmd-online.ru, каждый может лично убедиться в том, что все современные диагностические методы и методики здесь представлены в полном объеме.

Определение основных показателей гомеостаза

К важнейшим показателям гомеостаза следует отнести:

  • осмотическое давление крови;
  • кислотно-щелочной баланс;
  • концентрацию протеинов;
  • концентрацию глюкозы;
  • концентрацию микро- и макроэлементов, прежде всего, натрия, калия, кальция, хлора.

Своевременно выявленное отклонение указанных параметров от нормы позволяет предотвратить серьёзные нарушения в работе организма, создать оптимальные условия для скорейшего восстановления утраченного равновесия.

Тревожные сигналы

Уже при оценке основных показателей гомеостаза можно получить определенное представление о состоянии всего организма.

Так, например, повышение концентрации в сыворотке крови ионов калия может свидетельствовать о нарушении функциональной активности почек вследствие вовлечения их паренхимы в патологический процесс.

Повышение концентрации альбуминов чаще всего наблюдается при выраженном обезвоживании организма, а снижение указанного показателя сигнализирует о нарушении функциональной активности печени или неэффективности процесса всасывания в кишечнике.

Превышение нормальных показателей глюкозы крови при соответствующей клинической картине требует исключения сахарного диабета, а снижение концентрации этого углевода в крови может расцениваться как признак эндокринных нарушений.

Отдельного внимания заслуживают показатели кислотно-щелочного баланса. Речь идет о концентрации ионов водорода в крови. При нормальной функциональной активности почек, печени и легких этот показатель находится в динамическом равновесии, указывая на слабощелочную реакцию крови (рН=7,4). Накопление щелочных соединений становится причиной развития алкалоза, а увеличение кислотности крови носит название ацидоз.


Источник: newrussianmarkets.com

Кровь – это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт веществ и обеспечивающая питание и обмен веществ всех клеток организма. Красный цвет ей придает гемоглобин, содержащийся в эритроцитах. Учение о крови и ее болезнях — гематология. Для внутренней среды организма характерно относительно динамическое постоянство внутренней среды – гомеостаз. Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями являются гистогематические барьеры, состоящие из эндотелия капилляров, базальной мембраны, соединительной ткани и клеточных мембран. Система крови включает в себя жидкую кровь, органы кроветворения (красный костный мозг, лимфатические узлы), органы кроворазрушения (печень) и механизмы регуляции.

Гомеостаз крови

 

Физиологические функции крови:

1.        дыхательная (перенос кислорода от легких к тканям и углекислого газа от тканей к легким)

2.        трофическая (доставка питательных веществ, минеральных солей, витаминов от органов пищеварения к тканям)

3.        экскреторная (удаление из тканей конечных продуктов метаболизма)


4.        терморегуляторная (регуляция температуры тела путем охлаждения энергоемких органов и наоборот)

5.        гомеостатическая (поддержание постоянства среды организма)

6.        регуляция вводно-солевого обмена между кровью и тканями

7.        защитная (участие в клеточном и гуморальном иммунитете, в свертывании)

8.        гуморальная регуляция (перенос гормонов и медиаторов)

9.        креаторная (перенос макромолекул, которые осуществляют межклеточную передачу информации)

Общее количество крови в организме взрослого человека в норме составляет 4-6 литров. В покое в сосудистой системе находится 60-70% крови – циркулирующая кровь, оставшаяся кровь – в кровяных депо – запасная, депонированная. В крови важнее плазма, т. к. она поддерживает давление крови. Кровь контактирует с клетками через межтканевую жидкость (искл – косный мозг и селезенка). Кровь состоит из жидкой части – плазмы и клеток – форменных элементов: эритроциты, тромбоциты, лейкоциты. Плазма крови на 90% состоит из воды и на 10% из белков и минеральных солей.

iv>

Основные группы белков плазмы:

1.        альбумины (связывают лекарственные вещества, витамины, гормоны, пигменты)

2.        глобулины (транспортируют жиры, глюкозу, медь, железо, вырабатывают антитела – иммуноглобулины, a и b агглютинины крови)

3.        фибриноген (участвует в свертываемости крови)

Отсутствие этого белка в крови приводит к развитию гемофилии – несвертываемости крови. К небелковым соединениям плазмы относят аминокислоты, полипептиды, мочевину. В плазме содержится более 50 различных видов гормонов и пигментов. Белок плазмы, обладающий бактерицидными свойствами – пропердин. Белок плазмы составляет 7-8%, остаточный азот – 30-40 млг%, неорганические вещества – 1%. Давление, которое оказывают растворенные в плазме минеральные соли – осмотическое )определяется поваренной солью). В норме составляет 7,6 атм. Растворы, у которых осмотическое давление равно осмотическому давлению плазмы – изотонические, если больше – гипертонические, меньше – гипотонические. Изотонический (физиологический) раствор – 0,9% поваренной соли.

Давление, создаваемое белками плазмы (альбумины), способными притягивать и удерживать воду —  онкотическое (20-30 мм.рт. ст). Постоянство этих давлений является жестким параметром гомеостаза.


Реакция крови – pH обусловлена соотношением положительных водородных и отрицательных гидроксильных ионов (7,36 – 7,42). Сдвиг ее в кислую сторону – ацидоз, в щелочную – алкалоз. Поддержание на этом уровне достигается за счет буферных систем крови:

1.        гемоглобина

2.        карбонатов

3.        фосфатов

4.        белков плазмы

Эритроцит (eritros – красный, cutos – клетка) – безъядерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска. Они гибкие, эластичные, легко деформируются, образуются в красном костном мозге, разрушаются в печени и селезенке. Живут 120 дней. Молодые имеют ядро – ретикулоциты. По мере роста ядро заменяется молекулой гемоглобина (дыхательный пигмент). Эритроциты придают крови вязкость (у мужчин она больше). Норма у женщин – 3,7 – 4,7 млн., у мужчин –4 — 5 млн., у новорожденных – 6 млн. При движении в капиллярах эритроциты приобретают обтекаемую форму пули и движутся согласованно друг за другом. В обычных кровеносных сосудах движение эритроцитов опережает движение крови в целом. Это происходит вследствие того, что эритроциты при движении крови концентрируются в центральной, наиболее быстрой части канала.

>

 При нормальном движении крови скорость максимальна в центре и практически нулевая у стенок. Разные части диска эритроцита оказываются под действием слоев, движущимися  с разными скоростями, и эритроцит начинает катиться. Он начинает катиться как гусеница трактора. Кровяные тельца несут на своей поверхности отрицательный заряд, на внутренней поверхности сосуда заряд тот же, поэтому элементы крови не соприкасаются со стенками кровеносного сосуда. Кровь движется в сосуде не прямым потоком, а ее частицы в процессе движения имеют спиральные траектории, т. е. поток крови закручивается. Это не позволяет частицам крови слипаться и предотвращает образование тромбов. Установлено, что потоки в малом и большом  кругах кровообращения вращаются в разные стороны (В. Захаров, В. Шумаков).

Функции эритроцитов:

1.дыхательная (транспортная)

2.питательная (на их поверхности оседают аминокислоты)

3.защитная (связь токсинов, участие в свертывании крови)

4.ферментативная (перенос ферментов)


5.буферная (поддержание pH с помощью гемоглобина)

6.креаторная (перенос макромолекул, осуществляющих межклеточные взаимодействия)

Увеличение количества эритроцитов – эритроцитоз, уменьшение – эритроцитопения.

Гемоглобин – белок — хромопротеид, имеющий в своем составе атом железа. У мужчин – 13 – 16 гр%, у женщин – 12 – 14 гр%. Общее его количество в крови – 700гр. Гемоглобин включает в себя до 600 аминокислот, белок – глобин, 4 молекулы гема, которые содержат атом железа. В мышцах содержится миоглобин, образующийся в красном костном мозге.

Физиологические соединения гемоглобина:

1.        оксигемоглобин (в артериальной крови – HbO2)

2.        восстановленный (в венозной крови – Hb)

3.        карбгемоглобин (в венозной крови – HbCO2)

К патологическим соединениям относят:

1.        карбоксигемоглобин (HbCO) – очень прочное вещество, связь с угарным газом. При этом молекулы О2 не присоединяются, что приводит к гипоксии и отравлению.


2.        метилгемоглобин

Количество гемоглобина измеряется гемометром.

Гемолиз – процесс внутрисосудистого распада эритроцитов и выход из них гемоглобина в плазму, которая окрашивается в красный цвет и становится прозрачной (лаковая кровь).

Виды гемолиза:

1.      Осмотический – при понижении осмотического давления крови происходит набухание эритроцитов с последующим их разрушением.

2.      Химический – оболочка эритроцитов разрушается под действием химических веществ (алкоголь, эфир, бензол, хлороформ)

3.      Механический – разрушение оболочки эритроцитов при интенсивном встряхивании ампульной крови.

4.      Термический – результат замораживания и размораживания ампульной крови.

5.      Биологический – разрушение эритроцитов при укусах змей, насекомых, скорпионов, при переливании несовместимой крови.

Скорость (реакция) оседания эритроцитов (СОЕ или РОЕ) – изменение физико-химических свойств крови, измеряемое величиной столба плазмы при оседании эритроцитов. Величина СОЕ зависит от содержания в крови белков глобулинов и фибриногена. При любых воспалительных процессах их концентрация в крови увеличивается, а также увеличение СОЕ происходит перед родами.


Лейкоцит (leukos – белый, cutos – клетка) – белое или бесцветное кровяное тельце, не содержит гемоглобина. Образуется в красном костном мозге, лимфатических узлах, фолликулах и селезенке, живут 20 дней. Клетки имеют ядро. Норма: 4,5 – 9,5 тыс. Увеличение их количества – лейкоцитоз, уменьшение – лейкоцитопения.

Виды лейкоцитов:

1.        гранулоциты (зернистые): нейтрофилы, эозинофилы, базофилы

2.        агранулоциты (незернистые): лимфоциты, моноциты.

Ядра всех гранулоцитов разделены  на 2 – 5 частей, которые соединяются нитями (перетяжками). Самые мелкие – лимфоциты, имеют крупное округлое ядро, самые крупные из зернистых – моноциты, имеют бобовидное ядро. Основная масса в крови — сегментоядерные нейтрофилы. Процентное соотношение отдельных форм лейкоцитов в крови — лейкоцитарная формула:

Источник: uclg.ru

Биофизические механизмы гомеостаза

С точки зрения хим. биофизики гомеостаз — это состояние, при к-ром все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии.


о состояние обладает наибольшей устойчивостью и соответствует физиол, оптимуму. В соответствии с представлениями термодинамики (см.) организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биол, системе возможно установление стационарного течения физ.-хим. процессов, т. е. гомеостаза. Основная роль в установлении Г. принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками (см. Мембраны биологические).

С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования (см. Радикалы, Цепные реакции). К факторам, являющимся причиной нарушения Г., относятся также агенты, вызывающие радикалообразование,— ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т. д.

Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций (см. Антиокислители).

Возрастные особенности гомеостаза у детей

Постоянство внутренней среды организма и относительная устойчивость физ.-хим. показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста (см.) и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция Г. детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов Г. и их регуляции. Поэтому у детей значительно чаще, чем у взрослых встречаются тяжелые нарушения Г., нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций жел.-киш. тракта или дыхательной функции легких (см. Дыхание).

Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме (см. Водно-солевой обмен). Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки — главные исполнительные органы в системе волюморегуляции — не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля Г. у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона (см.), что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.

Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмомолярность внутренней среды колеблется в более широком диапазоне (+ 50 мосм/л), чем у взрослых ( + 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения Г., проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный гл. обр. с жел.-киш. заболеванием или болезнями почек. Менее изучена ионная регуляция Г., тесно связанная с деятельностью почек и характером питания.

Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых р-ров требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмомолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патол, состояниях могут резко возрастать. Поэтому при любых нарушениях Г. необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер- или гипоосмоса, гиперазотемии (Э. Керпель-Фрониуш, 1964).

Важным показателем, характеризующим Г. у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной к-ты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития «физиологического» ацидоза (см.). В связи с особенностями Г. у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.

Перестройка нейроэндокринной системы в пубертатном периоде также сопряжена с изменениями Г. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни Г. встречаются редко, чаще же речь идет

о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохим, исследовании крови. В клинике для характеристики Г. у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также pH крови, pO2 и pCO2.

Особенности гомеостаза в пожилом и старческом возрасте

Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Напр., постоянство уровня АД в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиол, функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиол, изменений Г. Сохранение относительного Г. при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, pH крови, осмотического давления, мембранного потенциала клеток и т. д.

Существенное значение в сохранении Г. в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции (см.), увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.

При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиол. функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биол, возраста.

В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения Г. увеличиваются. Такое уменьшение надежности механизмов Г. является одной из важнейших предпосылок развития патол, нарушений в старости.

См. также Внутренняя среда организма.

Библиография: Адольф Э. Развитие физиологических регуляций, пер. с англ., М., 1971, библиогр.; Анохин П. К. Очерки по физиологии функциональных систем, М., 1975, библиогр.; В e л ь т и-щ e в Ю. Е., СамсыгинаГ, А. и Ермакова И. А. К характеристике осморегулирующей функции почек у детей периода новорожденности, Педиатрия, № 5, с. 46, 1975; Гелльгорн Э. Регуляторные функции автономной нервной системы, пер. с англ., М., 1948, библиогр.; ГленсдорфП. и ПригожинИ. Термодинамическая теория структуры» устойчивости и флуктуаций, пер. с англ., М., 1973, библиогр.; Гомеостаз, под ред. П. Д. Горизонтова, М., 1976; Дыхательная функция крови плода в акушерской клинике, под ред. Л. С. Персианинова и др., М., 1971; Кассиль Г. Н. Проблема гомеостаза в физиологии и клинике, Вестн. АМН СССР, № 7, с. 64, 1966, библиогр.; Розанова В. Д. Очерки по экспериментальной возрастной фармакологии, Л., 1968, библиогр.; Ф р о л ь-к и с В. В. Регулирование, приспособление и старение, JI., 1970, библиогр.; Штерн Л. С. Непосредственная питательная среда органов и тканей, М., 1960; CannonW. В. Organization for physiological homeostasis, Physiol. Rev., v. 9, p. 399, 1929; Homeostatic regulators, ed. by G, E. W. Wolstenholme a. J. Knight, L., 1969; Langley L. L. Homeostasis, Stroudsburg, 1973.

Источник: xn--90aw5c.xn--c1avg