Мы знаем, что минимально возможная температура составляет -273.15 °C. При такой температуре движение частиц прекращается, и выделяемая ими тепловая энергия становится равна нулю. Вероятно, должна существовать и такая точка, выше которой частицы уже не смогут выделять больше тепловой энергии, достигнув своего максимума.

Современная физика считает, что эта точка находится на уровне 1.41679 × 1032 K (Кельвинов) и называется Планковской температурой. Именно такой была температура Вселенной в первые доли секунд после Большого взрыва.

Как Кельвины перевести в Цельсии?

В физике удобно измерять температуру в Кельвинах, которые не подразумевают наличие шкалы отрицательной температуры, то есть абсолютный ноль здесь равен нулю. Чтобы представить температуру в более привычных нам градусах Цельсия, достаточно знать формулу, по которой вычисляется температура в Кельвинах. TK (темп. В Кельвинах)= TC (температура в Цельсиях) + T0 (константа, равная 273.15). Иными словами, чтобы перевести кельвины в Цельсии, достаточно вычесть из Кельвинов число 273.15. например, 1000 К = 1000 — 273.15 = 726.85 °C.


Учитывая формулу по переводу Кельвинов в градусы Цельсия, мы можем представить планковскую температуру в градусах Цельсия как 1.41679 * 10(32)-273.15 °C. Конечно, данная оценка вычислена теоретически и основана на том, что если материи, разогретой до Планковской температуры, придать ещё энергии, то это не приведет к увеличению скорости частиц и, как следствие, повышению температуры. Зато вызовет появление новых частиц во время хаотических столкновений уже существующих, что приведет к росту массы материи. Но представим, что материи, разогретой до планковской температуры, всё-таки придать ещё энергии, чтобы попытаться нагреть её ещё больше. В таком случае, всю Вселенную ждет… а что ждет Вселенную после прохождения точки планковской температуры, не знает никто. Вероятно, гравитационное взаимодействие между частицыми разогретой материи станет настолько сильным, что сравняется с тремя другими взаимодействиями: электромагнитным, сильным и слабым. Описать физику нашего мира а таких не может ни одна существующая на сегодняшний день физическая теория.

Но вернемся от дел космических к делам земным. В своих попытках достичь максимально возможной температуры в пределах лабораторий человек установил температурный рекорд на уровне около 5.5 триллионов Кельвинов, что можно записать как 5*1012 К. Конечно, ученые не разогревали кусок железа до этой немыслимой температуры — на это просто не хватило бы энергии. Данная температура была зафиксирована во время эксперимента в Большом адронном коллайдере во время столкновения ионов свинца при околосветовых скоростях.

comments powered by HyperComments

Источник: mydiscoveries.ru

Какая температура самая низкая во Вселенной?


Самая высокая температура во Вселенной в 10 триллионов градусов по Цельсию была получена искусственным путем на Земле. Абсолютный рекорд был установлен в Швейцарии при эксперименте на Большом адронном коллайдере. А теперь угадайте — где во Вселенной была зафиксирована самая низкая температура? Правильно! Тоже на Земле.

В 2000 году группе финских ученых (из лаборатории низких температур в Технологическом университете Хельсинки) при изучении магнетизма и сверхпроводимости в редком металле Родий, удалось получить температуру всего на 0.0000000001 градуса выше абсолютного нуля (см. пресс-релиз). В настоящее время это самая низкая температура, полученная на Земле и Самая низкая температура во Вселенной.

Отметим, что абсолютный ноль — это предел всех температур или -273.15… градусов по Цельсию. Такую низкую температуру (-273.15 °C), просто невозможно достичь. Второй рекорд по снижению температуры был установлен в Массачусетском Технологическом Институте. В 2003 году там удалось получить сверх-холодный газ Натрия.


Получение сверхнизких температур, искусственным путем — выдающееся достижение. Исследования в этой области чрезвычайно важны для изучения эффекта сверхпроводимости, использование которого (в свою очередь) может вызвать настоящую индустриальную революцию.

Щелкните мышкой по любой синей панели ниже для получения дополнительной информации.

© Копировать пост можно лишь при наличии прямой индексируемой ссылки на youinf.ru

Источник: youinf.ru

Если вы изымете всю энергию из чего-нибудь, вы достигнете абсолютного ноля, самой низкой температуры во Вселенной (ну или почти абсолютного ноля, чем больше, тем лучше). Но какова самая высокая температура? «Ничто не пропадает. Все трансформируется», — говорил Майкл Энде. Думаю, очень многие задавались вопросом касательно самой высокой возможной температуры и не находили ответа. Если есть абсолютный ноль, должен быть и абсолютный… что?

» />

Возьмем классический эксперимент: капнем пищевым красителем в воду с разной температурой. Что мы увидим? Чем выше температура воды, тем быстрее пищевой краситель распределяется по всему объему воды.

iv>
Максимальная и минимальная температура«>

Почему так происходит? Потому что температура молекул непосредственно связана с кинетическим движением — и скоростью — участвующих частиц. Это значит, что в воде погорячее отдельные молекулы воды движутся с большей скоростью, и это значит, что частицы пищевого красителя быстрее будут транспортироваться в горячей воде, нежели в холодной.

Если бы вы остановили все это движение — довели все до идеального состояния отдыха (даже преодолели законы квантовой физики ради этого) — тогда вы достигли бы абсолютного ноля: самой холодной возможной термодинамической температуры.

» />

Но как насчет движения в другую сторону? Если вы будете нагреваться систему частиц, очевидно, они будут двигаться все быстрее и быстрее. Но есть ли предел тому, как сильно вы сможете их нагреть, нет ли какой-нибудь катастрофы, которая помешает вам нагревать их после определенного предела?


При температуре в тысячи градусов тепло, которое вы передаете молекулам, начнет разрушать сами связи, которые удерживают молекулы вместе, и если вы будете продолжать увеличивать температуру, электроны начнут отделяться от самих атомов. Вы получите ионизированную плазму, состоящую из электронов и атомных ядер, в которой не будет нейтральных атомов вовсе.

Это еще в рамках разумного: у нас имеются отдельные частицы — электроны и положительные ионы — которые будут прыгать при высоких температурах, подчиняясь привычным законам физики. Вы можете повышать температуру и ждать продолжения.

» />

При дальнейшем повышении температуры отдельные сущности, которые известны вам под «частицами», начинают разбиваться. Примерно при 8 миллиардах градусов (8 x 10^9), вы начнете спонтанно производить пары материи-антиматерии — электроны и позитроны — из сырой энергии столкновений частиц.

При 20 миллиардах градусов атомные ядра начнут спонтанно разрываться на отдельные протоны и нейтроны.

При 2 триллионах градусов протоны и нейтроны перестанут существовать, и появятся фундаментальные частицы, их составляющие — кварки и глюоны, их связи при таких высоких энергиях уже не выдерживают.

>
» />

Примерно при 2 квадриллионах градусов вы начнете производить все известные частицы и античастицы в огромных количествах. Но и это не является верхним пределом. В этих пределах происходит много интересного. Видите ли, это та энергия, при которой вы можете произвести бозон Хиггса, а значит и та энергия, при которой вы можете восстановить одну из фундаментальных симметрий во Вселенной: симметрию, которая дает частице массу покоя.

Другими словами, как только вы нагреете систему до этого энергетического предела, вы обнаружите, что все ваши частицы теперь безмассовые и летают со скоростью света. То, что было для вас смесью материи, антиматерии и радиации, станет чистой радиацией (будет вести себя как она), оставаясь при этом материей, антиматерией или ни тем ни другим.

И это еще не конец. Вы можете нагревать систему до еще более высоких температур, и хотя быстрее двигаться в ней все не будет, оно будет преисполняться энергией, подобно тому как являются формой света радиоволны, микроволны, видимый свет и рентгеновские лучи (и все движутся со скоростью света), даже если обладают совершенно разной энергией.

Возможно, рождаются пока неизвестные нам частицы или проявляются новые законы (или симметрии) природы. Вы могли бы подумать, что достаточно просто нагревать и нагревать все до бесконечных энергией, чтобы это узнать, но не тут-то было. Есть три причины, почему это невозможно.


» />

  1. Во всей наблюдаемой Вселенной имеется только конечное количество энергии. Возьмите все, что существует в нашем пространстве-времени: всю материю, антиматерию, радиацию, нейтрино, темную материю, даже энергию, присущую самому космосу. Существует порядка 10^80 частиц обычной материи, порядка 10^89 нейтрино и антинейтрино, чуть больше фотонов, плюс вся энергия темной материи и темной энергии, распространенные в радиусе 46 миллиардов световых лет наблюдаемой Вселенной, центр которой находится в нашей позиции.

Но даже если бы вы превратили все это в чистую энергию (с помощью E = mc^2), и даже если бы вы использовали всю эту энергию для нагрева своей системы, вы не получили бы бесконечное количество энергии. Если заключить все это в единую систему, вы получите гигантское количество энергии, равное примерно температуре в 10^103 градуса, но и это еще не бесконечность. Получается, верхний предел остается. Но прежде чем вы до него доберетесь, у вас будет еще одно препятствие.

» />


  1. Если вы заключите слишком большое количество энергии в любом ограниченном регионе пространства, вы создадите черную дыру. Обычно вы думаете о черных дырах как об огромных, массивных, плотных объектах, способных проглотить орды планет: не заморачиваясь, небрежно, легко.

Дело в том, что если вы придадите отдельной квантовой частице достаточно энергии — даже если она будет безмассовой частицей, движущейся со скоростью света — она превратится в черную дыру. Есть масштаб, на котором просто иметь что-то с определенным количеством энергии, будет означать, что частицы не будут взаимодействовать как обычно, и если вы получите частицы с такой энергией, эквивалентной 22 микрограммам по формуле E = mc^2, вы сможете набрать энергию в 10^19 ГэВ, прежде чем ваша система откажется становиться горячее. У вас начнут появляться черные дыры, которые будут моментально распадаться до состояния низкоэнергетической термальной радиации. Получается, этот энергетический предел — планковский предел — является верхним для Вселенной и соответствует температуре в 10^32 кельвина.

Это намного ниже предыдущего предела, поскольку не только сама Вселенная конечна, но и черные дыры выступают сдерживающим фактором. Впрочем, это не все: есть ограничение и пуще.


» />

  1. При определенной высокой температуре вы высвободите потенциал, который привел нашу Вселенную к космической инфляции, расширению. Еще во времена Большого Взрыва Вселенная пребывала в состоянии экспоненциального расширения, когда пространство раскладывалось, как космический воздушный шар, только в геометрической прогрессии. Все частицы, античастицы и излучение быстро разделялись с другими квантовыми частицами материи и энергии, и когда инфляция завершилась, настал Большой Взрыв.

Если вам удастся достичь температур, необходимых для возвращения состояния инфляции, вы нажмете кнопку перезапуска Вселенной и вызовете инфляцию, затем Большой Взрыв и так далее, все по новой. Если до вас пока не дошло, учтите: если вы доберетесь до этой температуры и вызовете нужный эффект, вы никак не выживете. Теоретически это может возникнуть при температурах порядка 10^28 – 10^29 кельвинов, это пока только теория.

Получается, вы можете легко набрать очень высокие температуры. Хотя физические явления, к которым вы привыкли, будут отличаться в деталях, вы по-прежнему сможете набирать температуры выше и выше, но только до точки, после которой все, что вам дорого, будет уничтожено. Но не бойтесь Большого адронного коллайдера. Даже на самом мощном ускорителе частиц на Земле мы достигаем энергий, которые в 100 миллиардов раз ниже, чем необходимые для вселенского апокалипсиса.


Источник: Hi-News.ru

Максимальная и минимальная температура

Ожидали такую картинку под таким заголовком? А мне она сразу пришла в голову. Кстати, надо погуглить из какого это фильма.

«Самая низкая температура, которая где-либо наблюдалась на поверхности земли до недавнего времени, заключается в следующих цифрах: 15-го января 1885 года в Верхоянске, в Восточной Сибири, стояло 68 градусов мороза. Такая температура никогда еще не наблюдалась в полярных областях ни одной полярной экспедицией», — такой информацией со своими читателями делился ежемесячный журнал «Новое слово» в номере за июнь 1910 года, в свою очередь ссылаясь на английское метеорологическое издание.

С тех пор рекорд низкой температуры, зарегистрированный на поверхности Земли, был увеличен более, чем на 20 градусов Цельсия. 21 июля 1983 года на советской антарктической станции «Восток», расположенной в Восточной Антарктиде, была зарегистрирована температура 89,2 °C. На данный момент это абсолютный планетарный минимум температуры воздуха за всю историю инструментальных метеонаблюдений.

Но и это еще оказывается не предел…

Максимальная и минимальная температура

Станцию «Восток», которая расположена в самом центре антарктического континента, сейчас считают Южным полюсом холода нашей планеты. То есть районом земного шара с наиболее низкими зарегистрированными температурами в данном полушарии.

На звание же Северного полюса холода главными претендентами сейчас являются два населенных пункта Якутии — Верхоянск и Оймякон.

В Верхоянске в 1885 году была зафиксирована температура 67,8 °C, о чем мы уже упоминали в начале этой заметки. А в феврале 1933 года этот рекорд был повторен. В тоже время в Оймяконе в феврале 1933 года была зарегистрирована температура 67,7 °C — то есть там было на 0,1 °C теплее. Однако есть документально неподтвержденная информация о том, что в районе Оймякона была зарегистрирована более низкая температура — 71,2 °C (в 1924 году) и -77,8 °C (в 1938 году). Но официальный статус Северного полюса холода по-прежнему принадлежал Верхоянску.

До недавнего времени…

Максимальная и минимальная температура

Исследователи из Колорадского университета в Боулдере зафиксировали, что при специфических условиях в одном из районов Антарктиды температура может опускаться практически до -100 градусов по Цельсию.

Речь идет о Восточном Антарктическом Плато — огромной пустой территории, начинающейся недалеко от Южного полюса. Данный регион располагается примерно в 3 500 метров над уровнем моря; воздух над Плато крайне разреженный и сухой.

В 1983 году в этом регионе Антарктиды советские специалисты смогли зафиксировать рекордно низкую температуру в -89 градусов по Цельсию, а затем, в 2013 году, спутниковые данные обнаружили, что в некоторых местах температура может падать еще ниже — вплоть до -93° C. В новом исследовании ученые решили посмотреть, может ли в этом районе Антарктиды становиться еще холоднее.

Максимальная и минимальная температура

Исследователи проанализировали данные, полученные со спутников NASA Terra и Aqua, а также со спутников POES (Polar Operational Environmental Satellites) Национального управления океанических и атмосферных исследований США; данные были собраны аппаратами в течение антарктических зим между 2004 и 2016 годами. Специалисты обнаружили, что температуры снежной поверхности ниже -90° C на Восточном Антарктическом Плато — обычное явление в зимнее время. При этом в практически 100 точках, разбросанных на сотнях километров, температура падала до -98 градусов Цельсия. По словам исследователей, все эти точки располагались в неглубоких провалах в ледяном покрове, куда в спокойную погоду может опускаться холодный разреженный воздух и находиться там в течение долгого времени (чем дольше он там находится, тем холоднее становится снежная поверхность).

Важно отметить, что спутниковые данные позволяют оценить температуры снежной поверхности, однако чтобы измерить температуру воздуха, требуется наземная метеорологическая станция. При этом, по расчетам исследователей, температура воздуха — над самыми холодными точками, обнаруженными специалистами, — может быть в районе -94 градусов Цельсия. Чтобы получить более точные данные, ученые планируют посетить регион в ближайшие годы — разумеется, в летнее время — и разместить необходимые инструменты.

Исследование было опубликовано в журнале Geophysical Review Letters, кратко о нем сообщает портал New Atlas.

[источники]
источники
http://www.nat-geo.ru/fact/38899-samaya-nizkaya-temperatura-na-poverkhnosti-zemli/
https://www.popmech.ru/science/news-429802-zafiksirovana-samaya-nizkaya-temperatura-na-zemle

Это копия статьи, находящейся по адресу http://masterokblog.ru/?p=1948.

Источник: masterok.livejournal.com