Цитоплазму называют внутренней средой организма, потому что она постоянно перемещается и приводит в движение все клеточные компоненты. В цитоплазме постоянно идут обменные процессы, содержатся все органические и не органические вещества.

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Строение и функции цитоплазмы

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы: рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы: митохондрии, пластиды, ядро.
  3. Одномембранные органеллы: аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.

Микротрубочки и микрофиламенты
Микротрубочки и микрофиламенты

Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь) и вязком (гель). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка. Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Источник: animals-world.ru

Мембранные органеллы

Митохондрии

Митохондрии — микроскопические мембранные органеллы общего назначения.

¨Размеры — толщина 0,5мкм, длина от 1 до 10мкм.

¨Форма — овальная, вытянутая, неправильная.

¨Строение — митохондрия ограничена двумя мембранами толщиной около 7нм:

1) Наружной гладкой митохондриальной мембраной (membrana mitochondrialis externa), которая отграничивает митохондрию от гиалоплазмы. Она имеет равные контуры, замкнута таким образом, что представляет мешок.

  1. Внутренней митохондриальной мембраной (memrana mitochondrialis interna), которая образует выросты, складки (кристы) внутрь митохондрии и ограничивает внутреннее содержание митохондрии — матрикс. Внутренняя часть митохондрии заполнена электронно-плотным веществом, которое носит название матрикс.

Матрикс имеет тонкозернистое строение и содержит тонкие нити толщиной 2-3 нм и гранулы размером около 15-20 нм. Нити представляют собой молекулы ДНК, а мелкие гранулы — митохондриальные рибосомы.

¨Функции митохондрий

1. Синтез и накопление энергии в виде АТФ, происходит в результате процессов окисления органических субстратов и фосфорилирования АТФ. Эти реакции протекают при участии ферментов цикла трикарбоновых кислот, локализованных в матриксе. Мембраны крист имеют системы дальнейшего транспорта электронов и сопряженного с ним окислительного фосфорилирования (фосфорилирование АДФ в АТФ).

2. Синтез белка. Митохондрии в своем матриксе имеют автономную систему синтеза белка. Это единственные органеллы, которые имеют молекулы собственной ДНК, свободной от гистоновых белков. В матриксе митохондрий также происходит образование рибосом, которые синтезируют ряд белков, некодируемых ядром и используемых для по строения собственных ферментных систем.

3. Регуляция водного обмена .

Лизосомы

Лизосомы (lisosomae) — субмикроскопические мембранные органеллы общего назначения.

¨Размеры — 0,2-0,4 мкм

¨Форма — овальная, мелкая, шаровидная.

¨Строение — лизосомы имеют в своем составе протеолитические ферменты (известно более 60), которые способны расщеплять различные биополимеры. Ферменты располагаются замкнутом мембранном мешочке, который предупреждает их попадание в гиалоплазму.

Среди лизосом различают четыре типа:

  1. Первичные лизосомы;

  2. Вторичные (гетерофагосомы, фаголизосомы);

  3. Аутофагосомы

  4. Остаточные тельца.

Первичные лизосомы — это мелкие мембранные пузырьки размером 0,2-0,5 мкм, заполненные неструктурированным веществом, содержащим гидролитические ферменты в неактивном состоянии (маркерный — кислая фосфотаза).

Вторичные лизосомы (гетерофагосомы) или внутриклеточные пищеварительные вакуоли, которые формируются при слиянии первичных лизосом с фагоцитарными вакуолями. Ферменты первичной лизосомы начинают контактировать с биополимерами, и расщепляют их до мономеров. Последние транспортируются через мембрану в гиалоплазму, где происходит их реутилизация, то есть включение в различные обменные процессы.

Аутофагосомы (аутолизосомы) – постоянно встречаются в клетках простейших, растений и животных. По совей морфологии их относят к вторичным лизосомам, но с тем различием, что в составе этих вакуолей встречаются фрагменты или даже целые цитоплазматические структуры, такие, как митохондрии, пластиды, рибосомы, гранулы гликогена.

Остаточные тельца (телолизосома, corpusculum residuale) — представляют собой окруженные биологической мембраной нерасщепленные остатки, содержат небольшое количество гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах происходит вторичная структуризация не переваренных липидов и последние образуют слоистые структуры. Там же наблюдается отложение пигментных веществ — пигмент старения, содержащий липофусцин.

¨Функция — переваривание биогенных макромолекул, модификация продуктов синтезируемых клеткой с помощью гидролаз.

Источник: StudFiles.net

Немембранные органеллы

С цитоскелетом связан клеточный центр (центросома), трехмерная модель которого показана на иллюстрации выше. Основными составляющими его являются две центриоли (короткие цилиндры из микротрубочек), расположенные под прямым углом друг к другу. Центросома размещается вблизи ядра, является центром организации микротрубочек цитоскелета и играет важную роль в делении клеток.

К немембранным органеллам относятся структуры, обеспечивающие движение клеток. Кроме упоминавшегося выше амебоидного типа, другие типы движения обеспечиваются специализированными структурами — жгутиками и ресничками, встроенными в плазмолемму и клеточную стенку (если она есть). Эти органеллы построены из микротрубочек, которые, изменяя свою структуру, осуществляют круговые движения. Они сходны по строению, но по сравнению с ресничками жгутики длиннее, а количество их — меньше.

Органеллы движения свойственны многим одноклеточным организмам, а также бывают в некоторых клетках многоклеточного организма (вспомните, какие организмы или клетки организма человека имеют жгутики или реснички). К немембранным органеллам также относятся рибосомы. Это небольшие тельца, состоящие из двух субъединиц. В состав этих органелл входят специальные рибосомные белки и рибосомальная РНК (рРНК). Рибосомы участвуют в синтезе белков.

Одномембранные органеллы

К одномембранным органеллам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы и вакуоли.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум — это совокупность мембранных трубочек и канальцев, пронизывающих цитоплазму. Различают гладкую (агранулярного типа) и шероховатую (гранулярную) ЭПС.

Гладкая и шероховатая эндоплазматическая сеть
Гладкая и шероховатая эндоплазматическая сеть

К мембранам шероховатой ЭПС с цитоплазматического стороны могут прикрепляться рибосомы, синтезирующие в полость трубочек белковые молекулы. Основной функцией этого типа ЭПС является участие в синтезе белков и транспортировки синтезированных веществ в мембранных пузырьках в комплекс Гольджи. Гладкая ЭПС обеспечивает синтез липидов, в частности стероидных веществ, обезвреживание некоторых токсичных веществ и депонирование ионов кальция. Последнее является важным для функционирования мышечных клеток.

Комплекс Гольджи (или аппарат Гольджи) — это сетчатое образование, является совокупностью плоских мембранных цистерн (мешочков), расположенных вблизи клеточного ядра. Комплекс Гольджи функционально соединен с ЭПС: мембранные пузырьки, отсоединяясь от цистерн ЭПС, транспортируют синтезированные белки в комплекс Гольджи. Последний осуществляет преобразование белковых молекул (образование гликопротеинов, липопротеинов и т.д.) и пакует их в мембранные пузырьки соответствии с функциональным назначением. Белки, экспортируемые из клетки (например, ферменты или гормоны) или же перемещаемые внутрь плазматической мембраны, размещаются в секреторных пузырьках. Ферменты, осуществляющие внутриклеточное пищеварение, пакуются в лизосомы, которые здесь образуются. В этой органелле также синтезируются полисахариды.

Комплекс Гольджи
Комплекс Гольджи

Лизосомы — мембранные органеллы в виде пузырьков, внутри которых содержатся ферменты, расщепляющие полимерные органические соединения в мономерные. Лизосомы разрушают компоненты чужеродных клеток, поглощенных в процессе фагоцитоза, а также отработанные «старые» клеточные компоненты. Последний процесс называется автофагией («самопоеданием»), и нарушение его приводит к развитию ряда заболеваний. Формируются лизосомы комплексом Гольджи.

Пероксисомы — мембранные органеллы в виде пузырьков, содержащих ферменты, в частности те, которые обеспечивают преобразование жиров или расщепления токсичного для клетки пероксида водорода до кислорода и воды.

Вакуоли — это большие мембранные полости, заполненные жидким содержимым. В зависимости от их строения и функций выделяют несколько типов таких органелл. Растительные клетки содержат большие клеточные вакуоли, внутреннее содержимое которых называется клеточным соком. Они участвуют в регуляции тургора, могут содержать пигменты, предоставляя частям растений окраску, хранить продукты обмена веществ. Пресноводные одноклеточные организмы содержат сократительные вакуоли, функция которых — выведение из клеток избыточной воды. Расщепление питательных веществ внутри некоторых клеток происходит в пищеварительных вакуолях, которые формируются с участием лизосом.

Двумембранные органеллы

Митохондрии — это органеллы овальной формы, содержащие две мембраны — внешнюю и внутреннюю. Внутренняя мембрана имеет многочисленные складки — кристы. Они необходимы для увеличения ее поверхности. Пространство, ограниченное внутренней мембраной, называется митохондриальным матриксом. В митохондриях происходят основные процессы, которые обеспечивают клетку энергией и синтезируют молекулы АТФ. Клетки, в которых процессы жизнедеятельности происходят интенсивно (например, в скелетных мышцах), имеют большее количество митохондрий.

Строение митохондрии
Строение митохондрии

 

Пластиды — это двумембранные органеллы, присущие только растениям и некоторым одноклеточным организмам. Различают несколько типов пластид, имеющих свои особенности строения и функций. Наиболее распространенными являются хлоропласты — органеллы зеленого цвета, которые осуществляют фотосинтез. Внутри хлоропластов расположены плоские мембранные мешочки — тилакоиды. Именно с ними связаны основные реакции фотосинтеза. Бесцветные пластиды — лейкопласты обеспечивают запасания питательных веществ — крахмала, жиров и белков. А пластиды, окрашенные в цвета желто-красной части спектра, — хромопласты, которые определяют окраску лепестков, плодов, листьев и других частей растений.

Строение хлоропласта
Строение хлоропласта

Митохондрии и пластиды имеют общие особенности. Эти органеллы кроме двух-мембранной стенки содержат собственную наследственную информацию — кольцевую молекулу ДНК, а также аппарат синтеза белков (рибосомы, РНК). Однако для работы митохондрий и пластид необходимы некоторые белки, информация о которых содержится в ядерной ДНК. Митохондрии и пластиды не возникают из других мембранных структур клетки, а размножаются делением.

Источник: www.polnaja-jenciklopedija.ru

Органеллы — это постоянные высокодифференцированные участки цитоплазмы.
Включения — это НЕпостоянные участки цитоплазмы.
 

  1. По морфологии органеллы классифицируются на 2 группы:

А) мембранного типа (они содержат 1 или 2 биомембраны);
Б) НЕмембранного типа (не содержат биомембрану)

  1. Органеллы с одной мембраной:

                                      — лизосомы
                                                — гранулярная эндоплазматическая сеть (гр ЭПС)
                                                            — агранулярная эндоплазматическая сеть (а ЭПС)
                                                                       -комплекс Гольджи (пластинчатый комплекс)
                                                                                     — пероксисомы

  1. Двухмембранные органеллы: только митохондрии.
  2. НЕмембранные органеллы:

                                             — рибосомы
                                                          — центриоли
                                                                      — микротрубочки

  1. Если округлое тельце окружено одной мембраной, а под ней — 40 литических ферментов (гидролаз) – это первичная лизосома. Когда она сливается с захваченными путем фагоцитоза веществами, то образуется вторичная лизосома под названием гетерофагосома. Функции: а) внутриклеточное пищеварение; б) самопереваривание (аутолизис) клетки.
  2. Если к одной мембране прикреплены рибосомы – это гр. ЭПС. Функция – биосинтез белка из аминокислот.
  3.  Если одна мембрана формирует расширения (цистерны) – это, а ЭПС. Функции-а) биосинтез полисахарида гликогена, б) биосинтез липидов, в)детоксикация.
  4. Если мембрана образует стопку уплощенных мешочков и секреторные пузырьки – это комплекс Гольджи. Функции – а) секреция (экзоцитоз), б) формирование первичных лизосом.
  5. Если округлое тельце окружено одной мембраной, а внутри есть фермент каталаза – это пероксисома. Функция – расщепление токсичной перекиси водорода.
  6.  Рибосома состоит из 2-ух округлых телец: большой субъединицы и малой субъединицы. Они синтезируются в ядрышке. Функция- биосинтез белка.
  7. Центриоль имеет форму цилиндра. Его стенка состоит из 9-ти триплетов микротрубочек (формула 9х3). Функция — из этих микротрубочек формируются нити веретена деления в профазу.
  8. Микротрубочки имеют форму тонкого цилиндра толщиной 25 нм и состоят из белка тубулина. Они выполняют функцию цитоскелета.
  9. Органеллы, которые есть НЕ во всех тканях называются органеллами специального значения. К ним относятся: а) реснички, б) жгутики, в) миофибриллы.

И ресничка и жгутик – это выросты плазмолеммы, а внутри они имеют аксонему (осевую нить). Аксонема состоит из 9-ти периферических пар микротрубочек, плюс в центре есть еще одна пара (формула 9х2+2). Функция — с помощью сократительного белка динеина реснички и жгутики обладают колебательным движением.

  1. Временное накопление в цитоплазме капель липидов или гликогена относится к трофическим включениям. Временное накопление в цитоплазме гранул ферментов или гормонов, подлежащих выведению из клетки, относится к секреторным включениям. Накопление в цитоплазме окрашенных веществ (т.е. пигментов) относится к пигментным включениям (напр., коричневый пигмент меланин в клетках кожи).

Источник: www.ma.cfuv.ru