Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

  • 1 Общие сведения
  • 2 Положения клеточной теории Шлейдена-Шванна
  • 3 Основные положения современной клеточной теории
  • 4 Дополнительные положения клеточной теории
  • 5 История
    • 5.1 XVII век
    • 5.2 XVIII век
    • 5.3 XIX век
      • 5.3.1 Школа Пуркинье
      • 5.3.2 Школа Мюллера и работа Шванна
    • 5.4 Развитие клеточной теории во второй половине XIX века
    • 5.5 XX век
    • 5.6 Современная клеточная теория
  • 6 См. также
  • 7 Ссылки

Общие сведения

Клеточная теория — основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна

  1. Все животные и растения состоят из клеток.
  2. Растут и развиваются растения и животные путём возникновения новых клеток.
  3. Клетка является самой маленькой единицей живого, а целый организм — это совокупность клеток.

Основные положения современной клеточной теории

  1. Клетка — элементарная единица живого, вне клетки жизни нет.
  2. Клетка — единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц — органоидов.

  3. Клетки всех организмов гомологичны.
  4. Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.
  5. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.
  6. Клетки многоклеточных организмов тотипотентны.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

  1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см. ниже).
  2. В основе деления клетки и размножения организмов лежит копирование наследственной информации — молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.
  3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
  4. Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию — к дифференцировке.

История

XVII век

1665 год — английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

1670-е годы — итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов — описал бактерий и протистов (инфузорий).

Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.


XVIII век

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К. Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

XIX век

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.


В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

  • во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;
  • во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории — соответствие клеток растений и элементарных структур животных — была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:


  • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры — клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма — это тоже клетки, вполне сравнимые с клетками хряща и хорды.
  • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
  • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.


Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:


В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
  • Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
  • Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки — с гражданами. Подобная теория противоречила принципу целостности организма.


Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

  • Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.
  • Выяснилось, что существует два типа клеток — прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды — потомки бактериальных клеток. Таким образом, эукариотическая клетка — система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом — наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.
  • Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.
  • Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений — это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур — элементы цитоскелета, рибосомы эукариотического типа и др.
  • Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных — продукт слияния исходных клеток, а внеклеточное вещество — продукт их секреции, то есть образуется оно в результате метаболизма клеток.
  • Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма — клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

См. также

  • Клетка
  • Строение клетки
  • Сравнение строения клеток бактерий, растений и животных
  • Теория наследственности

Источник: dal.academic.ru

История клеточной теории

Открытие клеточной теории берет свое начало в далеком 1655 году, когда английский ученый Р. Гук на основе своих многочисленных наблюдений за живой материей впервые предложил термин «клетка». Сделал он это в своем знаменитом научном труде «Микрография», который впоследствии вдохновил другого талантливого ученого из Голландии Левенгука на изобретение первого микроскопа.

Появление микроскопа и практическое наблюдение через него подтвердило идеи Гука, и клеточная теория получила дальнейшее развитие. И вот уже в 1670-е годы итальянский врач Мальпиги и английский натуралист Дрю описывают различные формы клеток у растений. В то же время сам изобретатель микроскопа Левенгук наблюдает мир одноклеточных организмов – бактерий, инфузорий, амеб. Будучи человеком творческим Левенгук первым изображает их на своих рисунках.

рисунки бактерий Левенгука

Так выглядели его рисунки.

Тем не менее, ученые XVII века представляли клетки в качестве пустот в непрерывной массе растительных тканей, о внутреннем строении клетки еще ничего не было известно. Не было значительного прогресса в этом направлении и в следующем XVIII веке. Хотя в это время стоит отметить труды немецкого ученого Фридриха Вольфа, который пытался сравнивать развитие клеток у растений и животных.

Первые попытки проникнуть во внутренний мир клетки были предприняты уже в XIХ веке, чему способствовало появление улучшенных микроскопов, в том числе наличие у последних ахроматических линз. Так ученые Линк и Молднхоуэр обнаруживают в клетках наличие самостоятельных стенок, то, что позже станет известно как мембрана. А в 1830 году английский ботаник Роберт Броун впервые описывает ядро клетки, как важную ее составную часть.

Во второй половине XVII века учение о клеточной теории и строении клетки оказывается в центре внимания всех ученых-биологов, и даже выделяется в отдельную под науку – цитологию.

Основные положения клеточной теории Шванна и Шлейдена

Большой вклад в развитие клеточной теории на этом этапе был сделан немецкими учеными Т. Шванном и М. Шлейденом, которые в частности сформулировали основные постулаты клеточной теории, вот они:

  • Все без исключения организмы состоят из маленьких одинаковых частей – клеток, которые растут и развиваются по одним и тем же законам.
  • Общий принцип развития элементарных частей организма – клеткообразование.
  • Каждая клетка представляет собой сложный биологический механизм и является своего рода отдельным индивидом. Совокупность же клеток образует ткани.
  • В клетках происходят разные процессы, такие как возникновение новых клеток, увеличение клеток в размерах, утолщение их стенок и так далее.

Пожалуй, тут заключена основная суть клеточной теории.

Вклад Вирхова в развитие клеточной теории

Правда, Шванн и Шлейден ошибочно полагали, что клетки образуются из некого «неклеточного вещества». Эта идея впоследствии была опровергнута другим известным немецким биологом Р. Вирховым, который доказал, что «всякая клетка может происходить исключительно из другой клетки», подобно тому как растение может происходить только от другого растения, и животное только от другого животного. Это положение стало также одним из важных частей клеточной теории.

Современная клеточная теория

Идеи Шванна, Шлейдена, Вирхова и других создателей и авторов этой теории, хотя и были передовыми и революционными как для своего времени, тем не менее, сейчас им уже почти два века, и с тех пор развитие науки в этом направлении продвинулось еще дальше. О чем же нам говорят основные положения современной клеточной теории? Вот о чем:

  • Клеточная структура является, хотя и главной, но не единственной формой существования жизни. Так как помимо клеток есть еще и вирусы (открытые русским ученым Дмитрием Ивановским в 1892 году), которые, по сути, клетками не являются, но только свои свойства могут проявлять внутри клеток, проникая в них аки паразит.
  • Существует два типа клеток: прокариотические, не имеющие ограниченного мембранами ядра и эукариотические, имеющие ядро, мембрану, все как положено порядочной клетке. К эукариотическим клеткам относятся клетки растений и животных, к клетками прокариотическим – клетки бактерий и архебактерий. Таким образом, клетки растений и животных представляют собой условно биологические системы более высокого уровня организации, чем клетки бактерий.
  • Клеточная теория прошлого рассматривала живой организм как некую суму клеток, чем игнорировалась целостность организма. Современная клеточная теория рассматривает эту сумму через призму целостности организма.
  • Также догматическая клеточная теория прошлого игнорировала особенности неклеточных структур в организме, и даже порой признавала их неживыми. На самом же деле в организме помимо собственно клеток есть многоядерные надклеточные структуры (синцитин, симпласты), безядерное межклеточное вещество, обладающее к тому же способностями к метаболизму. Современная клеточная теория занимается активным изучением этих элементов, так удалось выяснить, что синцитин и симпласты являются продуктом слияния клеток, а внеклеточное вещество образовалось в результате секреции клеток.

И вполне возможно, что в будущем клеточная теория получит еще большее развитие, учеными биологами будут найдены новые не известные ранее складовые части клетки, будут открыты новые механизмы ее работы, ведь клетка хранит в себе еще немало тайн и загадок. А наиболее интересная загадка, которую хранит в себе клетка – это проблема ее старения (и впоследствии умирания), и если ученым удастся ее решить, хотя бы частично, как знать, насколько смогла бы увеличиться продолжительность человеческой жизни, но это уже тема для другой статьи.

Источник: www.poznavayka.org

Авторы

У теории было несколько основоположников, работающих в области цитологии и изучающие различные клетки под микроскопом. Шванн объединил открытия коллег и накопившиеся научные знания и сформулировал тезисы, характеризующие клетку.

Теодор Шванн

Рис. 1. Теодор Шванн.

Изучение клетки началось ещё с середины XVII века. Впервые клетку наблюдал натуралист Роберт Гук. Позднее различные клетки изучал и зарисовывал Антони ван Левенгук. Именно он впервые изобразил эритроциты, сперматозоиды, бактерии, некоторые простейшие.

Детальное изучение клетки и её состава началось с XIX века благодаря развитию оптики и созданию более совершенных микроскопов:

  • В 1830 году возникла школа чешского биолога Яна Пуркинье. Он вместе со своими учениками разработал методы микроскопического изучения (окраска, просвет срезов) и описал клетки разных тканей животных.
  • В 1831 году английский ботаник Роберт Броун рассмотрел и описал ядро клетки орхидеи.
  • В 1839 году Шванн положил начало клеточной теории. Соавторами Шванна считаются ботаник Маттиас Шлейден и врач Рудольф Вирхов. Несмотря на то, что Шлейден ошибался насчёт размножения клетки (считал, что новые клетки появляются внутри клетки) и не признавал схожесть клеток животных и растений, он установил, что все растения имеют клеточное строение. Работа Шлейдена значительно повлияла на работу Шванна.
  • В 1848 году простейшие признаны свободноживущими одноклеточными организмами.
  • В 1858 году Вирхов выявил, что причина патологий кроется в клетках. Также он провозгласил принцип «клетка от клетки», что стало одним из положений клеточной теории.

Положения

Говоря, кратко про основные положения современной клеточной теории, следует учитывать, что, несмотря на высокоразвитые современные технологии науки (электронные микроскопы, компьютерное моделирование и т.д.), суть теории Шванна не изменилась. Современные учёные до сих пор придерживаются пяти положений теории:

  • клетка – единица всего живого, вне клетки жизнь существовать не может (вирусы являются исключением);
  • клетки растений, животных, грибов, бактерий схожи морфологически и физиологически;
  • клетки осуществляют метаболизм и поддерживают гомеостаз организма;
  • размножение клеток происходит исключительно делением – амитоз или бинарное деление свойственно прокариотам, митоз и мейоз – эукариотам;
  • в многоклеточных организмах клетки специализированы и составляют ткани.

Способы размножения клеток

Рис. 2. Способы размножения клеток.

Развитие технологий и цитологии позволяет проникнуть в клеточные процессы, рассмотреть функции и состав органелл. Благодаря методам изучения известно, что каждая клетка включает четыре группы веществ:

  • нуклеотиды;
  • жирные кислоты;
  • сахара;
  • аминокислоты.

Вещества внутри клетки взаимодействуют, участвуют в метаболизме и поддерживают жизнь во всём организме.

Схожесть разных клеток

Рис. 3. Схожесть разных клеток.

Источник: obrazovaka.ru

Меры длины, применяемые в цитологии

1 мкм (микрометр) – 10–3 мм (10–6 м)

1 нм (нанометр) – 10–3 η (10–9 м)

1 A (амстрем) – 0,1 нм (10–10 м)

Общая организация животных клеток

Все клетки организма человека и животных имеют общий план строения. Они состоят из цитоплазмы и ядра и отделены от окружающей среды клеточной оболочкой.

Организм человека состоит примерно из 1013 клеток, подразделяющихся более чем на 200 типов. В зависимости от своей функциональной специализации, различные клетки организма могут значительно отличаться по своей форме, величине и внутреннему устройству. В организме человека встречаются круглые (клетки крови), плоские, кубические, призматические (эпителиальные), веретеновидные (мышечные), отростчатые (нервные) клетки. Их размеры колеблются от 4-5 мкм (клетки-зёрна мозжечка и малые лимфоциты) до 250 мкм (яйцеклетка). Отростки некоторых нервных клеток имеют длину более 1 метра (у нейронов спинного мозга, отростки которых идут до кончиков пальцев конечностей). При этом форма, величина и внутреннее строение клеток всегда наилучшим образом соответствуют выполняемым ими функциям.

Структурные компоненты клетки

Цитоплазма – часть клетки, отделённая от окружающей среды клеточной оболочкой и включающая в себя гиалоплазму, органеллы и включения.

Все мембраны в клетках имеют общий план строения, который обобщён в понятии универсальная биологическая мембрана (рис. 2- 1А).

УОсновные положения клеточной теории сформулировалиниверсальная биологическая мембрана образована двойным слоем молекул фосфолипидов общей толщиной 6 мкм. При этом гидрофобные хвосты молекул фосфолипидов обращены внутрь, навстречу друг другу, а полярные гидрофильные головки обращены наружу мембраны, навстречу воде. Липиды обеспечивают основные физико-химические свойства мембран, в частности, их текучесть при температуре тела. В этот двойной слой липидов встроены белки. Их подразделяют на интегральные (пронизывают весь бислой липидов), полуинтегральные (проникают до половины ли­пидного бислоя), или поверностные (располагаются на внутренней или наружной поверхности липидного бислоя).

Рис. 2-1. Строение биологической мембраны (А) и клеточ­ной оболочки (Б).

1. Молекула липида.

2. Бислой липидов.

3. Интегральные белки.

4. Полуинтегральные белки.

5. Периферические белки.

6. Гликокаликс.

7. Подмембранный слой.

8. Микрофиламенты.

9. Микротрубочки.

10. Микрофибриллы.

11. Молекулы гликопротеинов и гликолипидов.

(По О. В. Волковой, Ю. К. Елецкому).

При этом белковые молекулы располагаются в липидном бислое мозаично и могут «плавать» в «липидном море» наподобие айсбергов, благодаря текучести мембран. По своей функции эти белки могут быть структурными (поддерживать определённую структуру мембраны), рецепторными (образовывать рецепторы биологически активных веществ), транспортными (осуществляют транспорт веществ через мембрану) и ферментными (катализируют определённые химические реакции). Эта наиболее признанная в настоящее время жидкостно-мозаичная модель биологической мембраны была предложена в 1972 г. Singer и Nikolson.

Мембраны выполняют в клетке разграничительную функцию. Они разделяют клетку на отсеки, компартменты, в которых процессы и химические реакции могут идти независимо друг от друга. Например, агрессивные гидролитические ферменты лизосом, способные расщеплять большинство органических молекул, отделены от остальной цитоплазмы с помощью мемраны. В случае её разрушения происходит самопереваривание и гибель клетки.

Имея общий план строения, разные биологические мембраны клетки различаются по своему химическому составу, организации и свойствам, в зависимости от функций структур, которые они образуют.

Источник: StudFiles.net