Общее понятие

Прежде чем говорить на эту тему, следует дать понятие цитоплазмы. Это внутренняя полужидкая среда клетки, которая ограничена цитоплазматической мембраной. В эту внутреннюю среду не входят ядро и вакуоли клетки.

строение и функции цитоскелета

А цитоскелет — это каркас клетки, который находится в цитоплазме клетки. Он есть в клетках эукариот (живые организмы, содержащие в клетках ядро). Является динамичной структурой, которая способна изменяться.

В некоторых источниках, рассматриваемых строение и функции цитоскелета, дается несколько иное, сформулированное другими словами определение. Он является опорно-двигательной системой клеток, которая образована белковыми нитчатыми структурами. Участвует в движении клетки.

Строение

Рассмотрим строение данной структуры, далее узнаем, какие функции выполняет цитоскелет.

Цитоскелет образовался за счет белков. В его структуре выделяется несколько систем, название которых происходит от основных структурных элементов, либо от основных белков, которые входят в состав данных систем.

Поскольку цитоскелет — это структура, то в ней выделяют три основные составляющие. Они играют важную роль в жизни и движении клеток.


цитоскелет это

Цитоскелет состоит из микротрубочек, промежуточных филаментов и микрофиламентов. Последние иначе называют актиновыми филаментами. Все они по своей природе нестабильны: постоянно собираются и разбираются. Таким образом, все компоненты имеют динамическое равновесие с белками, им соответствующими.

Микротрубочки цитоскелета, представляющие собой жесткую структуру, присутствуют в цитоплазме эукариотов, а также в ее выростах, которые называются жгутиками и ресничками. Их длина может варьироваться, некоторые достигают несколько микрометров в длину. Иногда микротрубочки объединяются с помощью ручек или мостиков.

Микрофиламенты состоят из актина — белка, похожего на тот, что входит в состав мышц. В их строении в малом количестве есть и другие белки. Главное отличие актиновых филаментов от микротрубочек состоит в том, что некоторых из них нельзя увидеть в световом микроскопе. В животных клетках они объединяются в сплетение под мембраной и, таким образом, связаны с ее белками.


Микрофиламенты животных и растительных клеток также взаимодействуют с белком миозином. При этом их система имеет способность к сокращению.

Промежуточные филаменты состоят из различных белков. Данный структурный компонент достаточно не изучен. Есть вероятность, что у растений он вообще отсутствует. Также некоторые ученые считают, что промежуточные филаменты являются дополнением к микротрубочкам. Точно доказано то, что при рзрушении системы микротрубочек филаменты перестраиваются, а при обратной процедуре влияние филаментов практически не сказывается на микротрубочках.

Функции

Говоря о строении и функциях цитоскелета, перечислим, каким именно образом он влияет на клетку.

Благодаря микрофиламентам, происходит движение белков вдоль мембраны цитоплазмы. Актин, содержащийся в них, принимает участие в мышечных сокращениях, фагоцитозе, движениях клетки, а также в процессе слияния сперматозоидов и яйцеклеток.

Микротрубочки активно участвуют в поддержании клеточной формы. Еще одна их функция — транспортная. Они переносят органеллы. Они могут выполнять механическую работу, куда входит перемещение митохондрий и ресничек. Особо важная роль принадлежит микротрубочкам в процессе клеточного деления.

какие функции выполняет цитоскелет

Они направлены на создание или сохранение определенной клеточной асимметрии. Под определенным воздействием микротрубочки разрушаются. Это может привести к утрате данной асимметрии.

К функциям цитоскелета также относятся адаптация клетки ко внешнему воздействию, процессы эндо- и экзоцитоза.

Таким образом, мы рассмотрели, какие функции выполняет цитоскелет в живом организме.

Эукариоты


Между эукариотами и прокариотами существует определенная разница. Поэтому важно рассмотреть цитоскелет данных животных. Эукариоты (животные, имеющие в клетке ядро) имеют три типа филаментов.

микротрубочки цитоскелета

Актиновые филаменты (иначе говоря, микрофиламенты) размещаются у мембраны клетки. Они принимают участие в межклеточном взаимодействии, а также передают сигналы.

Промежуточные филаменты — это наименее динамичная часть цитоскелета.

Микротрубочки являются полыми цилиндрами, они — очень динамичная структура.

Прокариоты

К прокариотам относятся одноклеточные организмы — бактерии и археи, которые не имеют сформированного ядра. Считалось, что прокариоты не имеют цитоскелета. Но с 2001-го года начались активные исследования их клеток. Были найдены гомологи (схожие, подобные) всех элементов эукариотного цитоскелета.

Ученые установили, что одна из белковых групп бактериального клеточного скелета не имеет аналогов среди эукариотов.

цитоскелет состоит из

Заключение


Таким образом, мы рассмотрели строение и функции цитоскелета. Он играет исключительно важную роль в жизнедеятельности клетки, обеспечивая важнейшие ее процессы.

Все цитоскелетные компоненты взаимодействуют. Это подтверждается существованием прямых контактов микрофиламентов, промежуточных филаментов и микротрубочек.

Согласно современным представлениям, важнейшим звеном, которое объединяет различные клеточные части и осуществляет передачу данных, является именно цитоскелет.

Источник: fb.ru

39. Дайте определения понятий.
Цитология — наука об устройстве клетки.
Клетка — элементарная единица жизни на Земле.

40. Закончите предложения.
Из организмов, живущих на Земле, клеточное строение имеют все, кроме вирусов,
а неклеточное — вирусы.
Для клетки характерны следующие жизненные свойства: рост, питание, размножение, дыхание и так далее.

41.

42. Открытие клетки связано с именами великих учёных, изучавших объекты живой природы с помощью микроскопа (микроскопистов).
пишите об их научном вкладе, сделанном в области изучения клеток.

1) Р. Гук (1635—1703) — впервые увидел клетку под микроскопом.
2) А. Левенгук (1632—1723) — изобрел микроскоп, впервые наблюдал животные клетки.
3) М. Шлейден (1804—1881) — выдвинул теорию об идентичности растительных клеток с точки зрения их развития.
4)Т. Шванн (1810—1882) — окончательно сформулировал клеточную теорию.
5) Р. Вирхов (1821 — 1902) — дополнил теорию клеток тем, что все живое происходит из клеток.
6) С. Г. Навашин (1857—1930) — открыл двойное оплодотворение у растений.

43. Сформулируйте основные положения современной клеточной теории.

Все живые существа состоят из клеток.

Все клетки сходны по строению, химическому составу и жизненным циклам.

Клетки способны к самостоятельной жизнедеятельности, т.е. могут питаться, расти, размножаться.

44. Как вы думаете, какое значение имело открытие клеточной теории для развития современной биологии?

Клеточная теория была дополнена Вирховом. Его утверждение, что всякое болезненное изменение связано с каким-то патологическим процессом в клетках, составляющих организм, внесло большой вклад в медицину. 

45. Рассмотрите клетки организмов, представленные на рисунке.
Установите, каким организмам принадлежат изображённые клетки. Впишите их номера в соответствующие строки.
Клетки бактерий: 2, 3.
Клетки грибов: 6, 11.
Клетки растений: 7, 1, 5, 4.
Клетки животных: 10, 8.
46. Как вы думаете, от чего зависит форма клеток?


От выполняемых ими функций, от их специализации и происхождения.

47. Объясните, в чём заключается значение цитоплазмы.

Она выполняет функцию объединения всех органоидов клетки, является средой для прохождения всех химико-биологических процессов в клетке, обеспечивает ее механические свойства. 

48. Как вы думаете, к каким последствиям может привести удаление или нарушение целостности клеточной мембраны?

Нарушение целостности мембраны, а тем более ее удаление, приведет к вытеканию внутреннего содержимого клетки и ее гибели. 

49. На рисунке подпишите основные структурные компоненты кле-точной мембраны.
1 — молекулы липидов.
2 — периферические белки.
3 — углеводные цепочки.
4 — полуинтегральный белок.

50. Закончите предложения.
Рассмотреть строение клеточной мембраны возможно с помощью электронного микроскопа.
Основу клеточной мембраны составляет билипидный слой, в котором расположены белки.
Белки, входящие в состав мембран, обеспечивают трансмембранный транспорт, являются также рецепторами и ферментами.
Питательные вещества попадают в клетку путём пассивного и активного транспорта.
Попавшие в клетку питательные вещества подвергаются в расщеплению под действием ферментов.


51. Рассмотрите в учебнике схематическое изображение процессов фагоцитоза и пиноцитоза. Вспомните из курса «Человек и его здоровье», что такое фагоциты и каково их значение в организме человека. Укажите, на каком из рисунков показан механизм действия данных клеток.
Приведите ещё примеры клеток, для которых характерны данные процессы.

Кроме фагоцитов, путем фагоцитоза питаются некоторые простейшие (например, амеба обыкновенная).

52. Как вы думаете, возможен ли обратный транспорт веществ через мембрану клетки? Если да, приведите примеры, если нет, объясните почему.

Обратный транспорт из клетки через мембрану происходит, когда клетка выделяет из себя ненужные продукты обмена, так же происходит синтез и выделение гормонов, ферментов.

53. Заполните таблицу.

53-tablica

54. Дайте определения понятий.
Прокариоты — организмы, в клетках которых отсутствует оформленное ядро и органеллы (вместо органелл – мезосомы).
Эукариоты — организмы, клетки которых имеют ядро с ядерной мембраной и все мембранные органоиды.

55. На рисунке подпишите основные структурные компоненты ядра.
55-risunok

56. Продолжите заполнение таблицы. Строение и функции клеточных структур.

Таблица. Строение и функции клеточных структур.57. Заполните таблицу. Строение и функции ядерных структур.

57
58. Известно, что эритроциты человека, являющегося эукариотическим организмом, не содержат ядра. Как можно объяснить это явление?

Это объясняется законами эволюции. В процессе развития животного мира человек стоит на высшей ступени, поэтому и кровеносная система у него наиболее развитая. Место ядра в эритроцитах человека заполнено гемоглобином. Поэтому они захватывают больше кислорода, чем, например, лягушки.

59. Закончите предложения.
Несколько ядер может содержаться в клетках волокон поперечно-полосатых мышц.
Внутреннее содержание ядра называют кариоплазма или ядерный сок, в нём расположены хроматин и ядрышки.
В ядре содержатся молекулы ДНК, обеспечивающие хранение и передачу наследственной информации о клетке. 
Содержащиеся в ядрах клеток ядрышки обеспечивают синтез РНК и белков.


60. Дайте определения понятий.
Хромосомы — нити ДНК хроматина, плотно накрученные спиралью на белки.
Хроматин — нити ДНК в ядре.
Хроматиды — половина удвоенной хромосомы.
Кариотип — набор хромосом, содержащийся в клетках того или иного вида.
Соматические клетки — клетки, составляющие органы и ткани любого многоклеточного организма.
Половые клетки (гаметы) — клетки, характерные для мужского и женского пола.
Гаплоидный набор хромосом — набор различных по размерам и форме хромосом клеток данного вида, но каждая хромосома представлена в единственном числе.
Диплоидный набор хромосом — набор различных по размерам и форме хромосом клеток данного вида, где каждой хромосомы по две.
Гомологичные хромосомы — парные хромосомы.

61. В таблице дано число хромосом, содержащихся в гаплоидном и диплоидном наборах различных организмов. Заполните пропуски.
Наборы хромосом у различных организмов.

62. Продолжите заполнение таблицы.
62

63. Рассмотрите рисунок. Назовите органоиды, изображённые на нём, и подпишите их основные части.

63

64. Продолжите заполнение таблицы. Строение и функции клеточных структур.

64

65. Закончите предложения.
Клеточный центр выполняет функции: построение веретена деления, образование микротрубочек, ресничек и жгутиков.
Основой цитоскелета являются микротрубочки и микрофиламенты.
У животных и низших растений клеточный центр образован центриолями, состоящими из микротрубочек, и центросферы.
У высших растений клеточный центр
Микротрубочки образуют такие органоиды движения клеток, как реснички и жгутики.

66. Продолжите заполнение таблицы.
Строение и функции клеточных структур.

66

67. На рисунке представлена схема строения прокариотической клетки (цианобактерия). Подпишите ее основные части.

123 

68. На рисунке изображены прокариотические и эукариотические клетки.
Установите, к какой группе принадлежит каждая из них.
Прокариоты: 1, 2
Эукариоты: 3, 4.

69. Заполните таблицу, поставив знаки + и – в соответствующие графы.

666

 70. Дайте определения понятий.

Ассимиляция – весь набор реакций биологического синтеза веществ в клетке, сопровождающийся тратой энергии.
Диссимиляция – совокупность реакций распада веществ в клетке, сопровождающийся выделением энергии.
Метаболизм – процесс обмена веществ, объединяющий ассимиляцию и диссимиляцию.

71. Ниже перечислены процессы, протекающие в клетках организмов:

1. Испарение воды, 2. Гликолиз, 3. Расщепление жиров, 4. Биосинтез белков, 5. Фотосинтез, 6. Расщепление полисахаридов, 7. Брожение, 8. Дыхание, 9. Биосинтез жиров.

Впишите номера, которыми они обозначены, в соответствии с принадлежностью их к ассимиляции и диссимиляции.
Процессы ассимиляции: 4, 5, 9.
Процессы диссимиляции: 1, 2, 3, 6, 7, 8.

72. Прочитайте материал учебника и заполните таблицу.

790

73. Закончите предложения. 

Основной функцией митохондрий, называемых «силовыми станциями клетки», является синтез АТФ. 

Наиболее эффективно процессы синтеза АТФ идут у организмов, называемых аэробами, в отличие от анаэробов, которые больше всего среди прокариот.

74. Как вы думаете, клетки каких тканей животных и человека должны содержать большое количество митохондрий? Почему?

Наибольшее количество митохондрий содержится в мышечной ткани, печени. В этих тканях и органах требуются большие затраты энергии.

75. Закончите схему.
Классификация организмов по типу питания
Организмы (по типу питания):
1. Автотрофы :
1.а – фототрофы
1.б – хемотрофы.
2. Гетеротрофы:
2.а – сапротрофы
2.б – паразиты
2.в. – голозои.

76. Закончите предложения.
Способ питания организма зависит от того, способен ли он самостоятельно создавать необходимые для построения клеток и процессов жизнедеятельности органические вещества из неорганических, или получает их из внешней среды.
По способу питания зеленые растения являются автотрофами (фототрофами).
Основной источник энергии на нашей планете – солнечный свет.

77. Как вы думаете, можно ли считать, что все клетки зеленого растения питаются автотрофно? Ответ обоснуйте.
Нельзя. Некоторые клетки зеленого растения питаются гетеротрофно: клетки камбия, корня. Клетки этих частей растения не способны к фотосинтезу и питаются за счет органических веществ, синтезированных зелеными частями растения.

78. Заполните таблицу.

1234

 79. Заполните таблицу.

Классификация гетеротрофных организмов по способу получения органических веществ.

12345

80. Дайте определение понятия.
Фотосинтез – процесс синтеза органических соединений из воды и углекислого газа при помощи энергии света.

81. Запишите суммарное уравнение фотосинтеза.
6СО2 + 6Н2О + энергия света = С6Н12О6 + 6О2.

82. Закончите предложения.
Фотосинтез происходит в клетках зеленых растений, в хлоропластах.
Кислород, выделяющийся в процессе фотосинтеза, образуется в результате фотолиза воды.

83. Заполните таблицу.
Сравнительная характеристика фаз фотосинтеза.

123456

84. Закончите схему, подписав названия веществ.
1. – вода
2. – кислород
3. – воды
4. – ионы водорода
5. – углекислый газ
6. – глюкоза.

85. Дайте определение понятия.
Хемотрофы – организмы, способные синтезировать органические вещества из неорганических за счет энергии химических реакций окисления, происходящих в клетке.

86. Закончите предложения.
Хемотрофами являются автотрофами.
Хемосинтез открыл в 1887 году С. Н. Виноградский.
Хемотрофы отличаются от фототрофов тем, что они синтезируют органические вещества из неорганических за счет энергии химических реакций окисления, происходящих в клетке. Фототрофы же синтезируют необходимые вещества за счет энергии солнечного света.

87. Заполните таблицу.
Сравнение фотосинтеза и хемосинтеза.

1212

88. Как вы думаете, можно ли, рассмотрев единственную клетку многоклеточного организма, определить его тип питания? Ответ обоснуйте.
Да можно, так как многоклеточные организмы являются либо фототрофами, либо гетеротрофами. Растения являются автотрофами, кроме некоторых их частей. Но в подобных клетках не будет хлоропластов. Распознав, какому царству живых организмов принадлежит организм, легко можно определить его тип питания.

89. Дайте определения понятий.
Ген – участок ДНК, в котором содержится информация о первичной структуре одного белка.
Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
Триплет – последовательность из трех расположенных друг за другом нуклеотидов.
Кодон – один из триплетов, кодирующий аминокислоту.
Антикодон – триплет, расположенный на тРНК, который соответствует той аминокислоте, которую предстоит переносить этой тРНК.

90. Закончите предложения.
Информация о структуре белка хранится в ДНК, а его синтез осуществляется в рибосомах.
Роль иРНК в процессе биосинтеза белка – доставка информации о белке к рибосомам.
Роль тРНК в процессе биосинтеза белка – перенос аминокислот к рибосомам.

91. Дайте определения понятий.
Транскрипция – процесс «переписывания» информации о последовательности нуклеотидов какого-либо гена ДНК на иРНК.
Трансляция – этап синтеза белка на рибосомах.

92. Используя таблицу генетического кода, составьте схему реализации наследственной информации в процессе биосинтеза белка, дополнив таблицу.
(ответы — вписать в пустые клетки).
Реализация наследственной информации в процессе биосинтеза белка
иРНК (кодоны) ЦЦУ, ГГГ, АУГ, АГУ, ЦЦА, ГЦА.
тРНК (антикодоны) ГГА, ЦЦЦ, УАЦ, УЦА, ГГУ, ЦГУ.

93. Заполните таблицу.
Механизм синтеза полипептидной цепи на рибосоме.

123124

94. Митоз – важнейшее жизненное свойство. Объясните, каким образом оно проявляется на клеточном уровне.
Митоз – основной способ деления клетки, в результате которого из одной материнской клетки образуется 2 идентичные дочерние клетки.

95. Заполните таблицу.

12121

Источник: biogdz.ru

Функция цитоскелета

Цитоскелет распространяется по всей цитоплазме клетки и выполняет ряд важных функций:

  • Придает клеткам форму и обеспечивает структурную поддержку.
  • Удерживает клеточные органеллы рядом.
  • Помогает в образовании вакуолей.
  • Цитоскелет не является статической структурой, и способен разбирать и собирать свои внутренние части, чтобы обеспечить внутреннюю и общую подвижность клеток. Типы внутриклеточного движения, поддерживаемые цитоскелетом, включают транспортировку везикул в клетку и из нее, манипуляцию хромосомами во время митоза или мейоза и миграцию органелл. Цитоскелет делает возможной миграцию клеток, поскольку мобильность клеток необходима для создания и восстановления тканей, цитокинеза (деление цитоплазмы) при образовании дочерних клеток и в ответах иммунных клеток на микробы.
  • Цитоскелет помогает в транспортировке сигналов связи между клетками.
  • Он образует клеточные придаточные выступы, такие как реснички и жгутики (в некоторых клетках).

Структура цитоскелета

Цитоскелет состоит по меньшей мере из трех различных типов волокон: микротрубочек, микрофиламентов и промежуточных волокон. Эти волокна отличаются своим размером, причем микротрубочки являются самыми толстыми, а микроволокна являются самыми тонкими.

Протеиновые волокна

  • Микротрубочки представляют собой полые стержни, функционирующие прежде всего для поддержки или формирования клетки и выступают в роли «маршрутов», вдоль которых могут перемещаться органеллы. Микротрубочки обычно встречаются во всех эукариотических клетках. Они различаются по длине и составляют около 25 нм (нанометров) в диаметре.
  • Микрофиламенты или актиновые нити представляют собой тонкие твердые стержни, которые активны при мышечном сокращении. Они особенно распространены в мышечных клетках. Подобно микротрубочкам, они обычно встречаются во всех эукариотических клетках. Микрофиламенты состоят в основном из сократительного белкового актина и имеют диаметр до 8 нм.
  • Промежуточные нити могут быть многочисленными во многих клетках и обеспечивать поддержку микрофиламентов и микротрубочек, удерживая их на месте. Эти нити образуют кератины, обнаруженные в эпителиальных клетках и нейрофиламентах в нейронах. Они имеют диаметр около 10 нм.

Источник: natworld.info

Цитоскелет образуется тремя компонентами: микротрубочками, микрофиламентами, и промежуточными филаментами.

Микротрубочкипронизывают всю цитоплазму клетки. Каждая из них представляет собой полый цилиндр диаметром 20 – 30 нм. Стенка микротрубочек образована 13-ю нитями (протофиламентами), скрученными по спирали одна над другой. Каждая нить, в свою очередь, слагается из димеров белка тубулина. Синтез тубулинов происходит на мембранах гранулярной ЭПС, а сборка в спираль – в клеточном центре.

Соответственно, многие микротрубочки имеют радиальное направление по отношению к центриолям. Отсюда они распространяются по всей цитоплазме.

Большинство микротрубочек имеет закрепленный («-») и свободный («+») концы.Свободный конец обеспечивает удлинение и уко­рочение трубочек.В образовании микротрубочек путем самосборки уча­ствуют мелкие сферические тельца – сателлиты (центры организации микротрубочек), содержащиеся в клеточном центре и в базальных тель­цах ресничек, а также центромеры хромосом. Если полностью разру­шить микротрубочки цитоплазмы, то они отрастают от клеточного центра со скоростью 1 мкм/мин. Разрушение микротрубочек приводит к изменению формы клетки (животная клетка обретает обычно сфери­ческую форму). При этом нарушаются структура клетки и распределе­ние органелл.

В клетке микротрубочки могут располагаться:

Ø в виде отдельных элементов;

Ø в пучках, в которых они связаны друг с другом попереч­ными мостиками (отростки нейронов);

Ø в составе пар или дублетов (осевая нить ресничек и жгутиков);

Ø в составе триплетов (центриоли и базальные тельца).

В двух последних вариантах микротрубочки час­тично сливаются друг с другом.

Функции микротрубочек:

а) поддержание формы и полярности клетки;

б) обеспечение упорядоченности располо­жения компонентов клетки;

в) участие в образовании других, более слож­ных органелл (центриоли, реснички и т.д.);

г) участие во внутрикле­точном транспорте;

д) обеспечение движения хромосом при митотическом делении клетки;

е) обеспечение движения ресничек.

Микрофиламенты. Микрофиламентами названы тонкие белковые нити диаметром 5 – 7 нм, встречающиеся практически во всех типах клеток. Они могут располагаться в ци­топлазме пучками, сетевидными слоями или поодиночке.

Основным бел­ком микрофиламентов является актин,на долю которого приходится до 5% от общего количества белков. Кроме него в состав микрофиламентов могут входить миозин, тропомиозин, а также несколько десятков актинсвязывающих белков. Молекула акти­на имеет обычно вид двух спирально скру­ченных нитей. Непосредственно под плазмолеммой располагается кортикальная сеть,в которой микрофиламенты переплетены между собой и соединены друг с другом с помощью особых белков, например филамина. Кортикальная сеть обусловливает плавность изменения формы клеток, постепенно перестраиваясь с участием актин-расщепляющих ферментов.Тем самым она препятствует резкой и внезапной деформации клетки при механи­ческих воздействиях. Отдельные микрофиламенты кортикальной сети прикрепляются к интегральным и трансмембранным белкам плазмолеммы, а также к так называемым адгезионным соединениям (фокальным контактам), которые связывают клетку с компонентами межклеточного вещества или с другими клетками. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.



Основные функции микрофиламентов:

1) обеспече­ние определенной жесткости и упругости клетки за счет кортикальной сети микрофиламентов;

2) изменение консистенции цитозоля, в том числе при переходе золя в гель;

3) участие в эндоцитозе и экзоцитозе;

4) обеспечение подвижности немышечных клеток (например, нейтрофилов и макрофагов), в основе которой лежит изменение формы кле­точной поверхности вследствие регулируемой полимеризации актина;

5) участие в сокращении мышечных клеток и волокон;

6) стабилизация локальных выпячиваний плазматической мембраны, обеспечиваемой пучками поперечно сшитых актиновых филаментов (микроворсинки, стереоцилии);

7) участие в формировании межклеточных соединений (опоясывающие десмосомы и др.).

Промежуточные филаменты представляют собой сплетенные белковыми нитями канаты толщиной около 10 нм. Такой показатель обусловил отведение им промежуточного места между микротрубоч­ками и микрофиламентами. Промежуточные филаменты образуют трехмерные сети в клетках различных тканей животного организма. Они окружают ядро и могут находиться в различных участ­ках цитоплазмы, образуют межклеточные соединения (десмосомы и полудесмосомы), располагаются внутри отростков нервных клеток.

Основные функции промежуточных филаментов:

1) структурная;

2) опорная;

3) функция распределения органелл в определенных уча­стках клетки.

 

Источник: studopedia.su