При исследовании эукариотической клетки с помощью электронного микроскопа в ее цитоплазме обнаруживаются канальцы и уплощенные цистерны, стенки которых образованы мембраной толщиной около 7 нм. В клетках, специализирующихся на синтезе большого количества белков или липидов, канальцы и цистерны особенно многочисленны и формируют сложную трехмерную сеть. Вот почему этот мембранный органоид получил наименование плазматическая сеть (эндоплазматический ретикулум). Мембраны плазматической сети разграничивают цитоплазму на два различных объема — гиалоплазму, которая находится снаружи от цистерн и канальцев, и межмембранное пространство.

Плазматическая сеть (ПС) выполняет ряд важных функций в клетке. Прежде всего, она является местом обновления мембран клетки, поскольку в ней синтезируются и встраиваются в существующие мембраны специфические для них белки и липиды (1). Мембраны ПС разграничивают пространство цитоплазмы, формируя трехмерные поверхности сложной формы (2). Эта функция ПС (компартментализация) обеспечивает пространственную организацию метаболизма в клетке. Внутри канальцев ПС осуществляется транспорт и накопление вновь синтезированных веществ, которые необходимы для клетки, а также детоксикация метаболитов (3). На мембранах ПС происходит также синтез веществ, которые выводятся из клетки для нужд всего организма (4).


Различают две разновидности ПС – гладкую и гранулярную (шероховатую). Несмотря на структурно-функциональные различия, мембраны одной разновидности ПС могут непосредственно переходить в мембраны другой.

Гладкая ПС состоит из переплетающихся канальцев и везикул небольшого диаметра. Она специализируется в основном на синтезе, транспорте и накоплении липидов. Гладкая ПС хорошо развита в клетках коры надпочечников, где участвует в синтезе стероидных гормонов, в клетках печени, обеспечивая детоксикацию метаболитов, в секреторных клетках растений. Особенно сильно гладкая ПС развита в мышечных волокнах скелетной мускулатуры, где она формирует L-систему, которая концентрирует ионы кальция с помощью встроенных в мембраны кальциевых насосов.

Гранулярная ПС отличается от гладкой тем, что на ее внешней поверхности, обращенной к гиалоплазме, находятся рибосомы. Она специализируется на синтезе, транспорте и посттрансляционной модификации белков.

В отличие от свободных рибосом и полисом, синтезирующих водорастворимые белки гиалоплазмы, входящие в состав гранулярной ПС рибосомы синтезируют или мембранные белки, или секреторные белки, выводимые из клетки.
икрепление рибосом к мембране ПС обеспечивается специальными внутримембранными гликопротеидами – рибофоринами. Рибосомы прикрепляются к мембране большой субъединицей. При этом они ориентируются так, что ось, которая соединяет большую и малую субъединицы, проходит почти параллельно поверхности мембраны. Рибосома как бы лежит на боку, под небольшим углом к мембране ПС.

В самом начале синтеза мембранных и секреторных белков рибосомы не связаны с мембраной. В отличие от водорастворимых белков, синтезирующихся в гиалоплазме, мембранные и секреторные белки содержат на N-конце сигнальную последовательность из 15-30 аминокислотных остатков. Сигнальная последовательность захватывается небольшой рибонуклеопротеидной частицей, состоящей из РНК длиной 300 пар нуклеотидов и шести белков (сигнал узнающая частица, или SRP). После захвата N-конца синтез полипептида временно останавливается. Входящий в состав мембраны “причальный белок” связывает SRP, обеспечивая посадку рибосомы и погружение сигнальной последовательности в липидную фазу мембраны. После посадки рибосомы трансляция возобновляется, и полипептид появляется на внутренней стороне мембраны. Специальная пептидаза отщепляет сигнальную последовательность, после чего полипептид приобретает нативную конформацию и встраивается в мембрану или транспортируется по канальцам ПС в платинчатый комплекс.


Гранулярная ПС хорошо развита в тех клетках, которые специализируются на синтезе и выделении большого количества белков. В таких случаях она формирует систему расположенных параллельно друг другу уплощенных цистерн, занимающую значительную часть цитоплазмы клетки. Примерами могут служить клетки печени, где на мембранах гранулярной ПС происходит синтез белков плазмы крови (альбуминов, фибриногена, глобулинов, белковых факторов свертывания крови), плазматические клетки – “фабрики антител”, экзокринные клетки поджелудочной железы, синтезирующие ферменты для полостного пищеварения. Наибольшей сложности гранулярная плазматическая сеть достигает в полиплоидных клетках беспозвоночных и простейших.

Источник: helpiks.org

При исследовании эукариотической клетки с помощью электронного микроскопа в ее цитоплазме обнаруживаются канальцы и уплощенные цистерны, стенки которых образованы мембраной толщиной около 7 нм. В клетках, специализирующихся на синтезе большого количества белков или липидов, канальцы и цистерны особенно многочисленны и формируют сложную трехмерную сеть. Вот почему этот мембранный органоид получил наименование плазматическая сеть (эндоплазматический ретикулум). Мембраны плазматической сети разграничивают цитоплазму на два различных объема — гиалоплазму, которая находится снаружи от цистерн и канальцев, и межмембранное пространство.


Плазматическая сеть (ПС) выполняет ряд важных функций в клетке. Прежде всего, она является местом обновления мембран клетки, поскольку в ней синтезируются и встраиваются в существующие мембраны специфические для них белки и липиды (1). Мембраны ПС разграничивают пространство цитоплазмы, формируя трехмерные поверхности сложной формы (2). Эта функция ПС (компартментализация) обеспечивает пространственную организацию метаболизма в клетке. Внутри канальцев ПС осуществляется транспорт и накопление вновь синтезированных веществ, которые необходимы для клетки, а также детоксикация метаболитов (3). На мембранах ПС происходит также синтез веществ, которые выводятся из клетки для нужд всего организма (4).

Различают две разновидности ПС – гладкую и гранулярную (шероховатую). Несмотря на структурно-функциональные различия, мембраны одной разновидности ПС могут непосредственно переходить в мембраны другой.

Гладкая ПС состоит из переплетающихся канальцев и везикул небольшого диаметра. Она специализируется в основном на синтезе, транспорте и накоплении липидов. Гладкая ПС хорошо развита в клетках коры надпочечников, где участвует в синтезе стероидных гормонов, в клетках печени, обеспечивая детоксикацию метаболитов, в секреторных клетках растений. Особенно сильно гладкая ПС развита в мышечных волокнах скелетной мускулатуры, где она формирует L-систему, которая концентрирует ионы кальция с помощью встроенных в мембраны кальциевых насосов.


Гранулярная ПС отличается от гладкой тем, что на ее внешней поверхности, обращенной к гиалоплазме, находятся рибосомы. Она специализируется на синтезе, транспорте и посттрансляционной модификации белков.

Источник: otvet.mail.ru

Эндоплазматическая сеть (эндоплазматический ретикулум) была открыта К. Р. Портером в 1945 г.

Эта структура представляет собой систему взаимосвязанных вакуолей, плоских мембранных мешков или трубчатых образований, создающих мембранную трехмерную сеть внутри цитоплазмы. Эндоплазматическая сеть (ЭПС) встречается практически у всех эукариотов. Она связывает органеллы между собой и транспортирует питательные вещества. Различают две самостоятельные органеллы: гранулярную (зернистую) и гладкую незернистую (агранулярную) эндоплазматическую сеть.

Гранулярная (шероховатая, или зернистая) эндоплазматическая сеть. Представляет собой систему плоских, иногда расширенных цистерн, канальцев, транспортных пузырьков. Размер цистерн зависит от функциональной активности клеток, а ширина просвета может составлять от 20 нм до нескольких мкм. Если цистерна резко расширяется, то она становится заметной при световой микроскопии и ее идентифицируют как вакуоль.

Цистерны образованы двухслойной мембраной, на поверхности которой содержатся специфические рецепторные комплексы, обеспечивающие прикрепление к мембране рибосом, транслирующие полипептидные цепочки секреторных и лизосомальных белков, белков цитолеммы и др., то есть белков, не сливающихся с содержимым кариоплазмы и гиалоплазмы.


Пространство между мембранами заполнено однородным матриксом низкой электронной плотности. Снаружи мембраны покрыты рибосомами. Рибосомы при электронной микроскопии видны как мелкие (диаметром около 20 нм), темные, почти округлые частицы. Если их много, то это придает зернистый вид наружной поверхности мембраны, что и послужило основой для названия органеллы.

На мембранах рибосомы располагаются в виде скоплений — полисом, которые образуют разнообразные по форме розетки, гроздья или спирали. Такая особенность распределения рибосом объясняется тем, что они связаны с одной из иРНК, с которой считывают информацию, синтезируют полипептидные цепочки. Такие рибосомы прикрепляются к мембране ЭПС с помощью одного из участков большой субъединицы.

В некоторых клетках гранулярная эндоплазматическая сеть (гр. ЭПС) состоит из редких разрозненных цистерн, но может образовывать крупные локальные (очаговые) скопления. Слабо развита гр. ЭПС в малодифференцированных клетках или в клетках с низкой секрецией белков. Скопления гр. ЭПС находятся в клетках, активно синтезирующих секреторные белки. При повышении функциональной активности цистерны органеллы становятся множественными и нередко расширяются.

Гр. ЭПС хорошо развита в секреторных клетках поджелудочной железы, главных клетках желудка, в нейронах и др.
зависимости от типа клеток гр. ЭПС может распределяться диффузно или локализоваться в одном из полюсов клетки, при этом многочисленные рибосомы окрашивают данную зону базофильно. Например, в плазматических клетках (плазмоцитах) хорошо развитая гр. ЭПС обусловливает яркую базофильную окраску цитоплазмы и соответствует участкам концентрации рибонуклеиновых кислот. В нейронах органелла располагается в виде компактно лежащих параллельных цистерн, что при световой микроскопии проявляется в виде базофильной зернистости в цитоплазме (хроматофильное вещество цитоплазмы, или тигроид).

В большинстве случаев на гр. ЭПС синтезируются белки, которые не используются самой клеткой, а выделяются во внешнюю среду: белки экзокринных желез организма, гормоны, медиаторы (белковые вещества эндокринных желез и нейронов), белки межклеточного вещества (белки коллагеновых и эластических волокон, основного компонента межклеточного вещества). Белки, образуемые гр. ЭПС, входят также в состав лизосомальных гидролитических ферментных комплексов, располагающихся на внешней поверхности мембраны клетки. Синтезированный полипептид не толькко накапливается в полости ЭПС, но и перемещается, транспортируется по каналам и вакуолям от места синтеза в другие участки клетки. В первую очередь такой транспорт осуществляется в направлении комплекса Гольджи. При электронной микроскопии хорошее развитие ЭПС сопровождается параллельным увеличением (гипертрофией) комплекса Гольджи. Параллельно с ним усиливается развитие ядрышек, увеличивается число ядерных пор. Нередко в таких клетках имеются многочисленные секреторные включения (гранулы), содержащие секреторные белки, увеличивается число митохондрий.


Белки, накапливающиеся в полостях ЭПС, минуя гиалоплазму, чаще всего транспортируются в комплекс Гольджи, где они модифицируются и входят в состав либо лизосом, либо секреторных гранул, содержимое которых остается изолированным от гиалоплазмы мембраной. Внутри канальцев или вакуолей гр. ЭПС происходит модификация белков, связывание их с сахарами (первичное гликозилирование); конденсация синтезированных белков с образованием крупных агрегатов — секреторных гранул.

На рибосомах гр. ЭПС синтезируются мембранные интегральные белки, встраивающиеся в толщу мембраны. Здесь же со стороны гиалоплазмы идет синтез липидов и их встраивание в мембрану. В результате этих двух процессов наращиваются сами мембраны ЭПС и другие компоненты вакуолярной системы.

Основная функция гр. ЭПС — это синтез на рибосомах экспортируемых белков, изоляция от содержимого гиалоплазмы внутри мембранных полостей и транспорт этих белков в другие участки клетки, химическая модификация или локальная конденсация, а также синтез структурных компонентов клеточных мембран.

В процессе трансляции рибосомы прикрепляются к мембране гр. ЭПС в виде цепочки (полисомы). Возможность связаться с мембраной обеспечивают сигнальные участки, которые прикрепил ются к специальным рецепторам ЭПС — причальный белок.
сле этого рибосома связывается с белком, фиксирующим ее к мембране, а образующаяся полипептидная цепочка транспортируется через поры мембран, которые открываются при помощи рецепторов. В результате субъединицы белков оказываются в межмембранном пространстве гр. ЭПС. К образующимся полипептидам может присоединиться олигосахарид (гликозилирование), который отщепляется от долихол-фосфата, прикрепленного к внутренней поверхности мембраны. В последующем содержимое просвета канальцев и цистерн гр. ЭПС с помощью транспортных пузырьков переносится в цис-компартмент комплекса Гольджи, где подвергается дальнейшей трансформации.

Гладкая (агранулярная) ЭПС. Она может быть связана с гр. ЭПС переходной зоной, но, тем не менее, является самостоятельной органеллой с собственной системой рецепторных и ферментативных комплексов. Она состоит из сложной сети канальцев, плоских и расширенных цистерн и транспортных пузырьков, но если в гр. ЭПС преобладают цистерны, то в гладкой эндоплазматической сети (глад. ЭПС) больше канальцев диаметром около 50…100 нм.

К мембранам глад. ЭПС не прикрепляются рибосомы, что обусловлено отсутствием рецепторов к этим органеллам. Таким образом, глад. ЭПС хотя и является морфологическим продолжением гранулярной, не просто эндоплазматическая сеть, на которой в данный момент нет рибосом, а представляет собой самостоятельную органеллу, на которую рибосомы не могут прикрепиться.

Глад. ЭПС участвует в синтезе жиров, метаболизме гликогена, полисахаридов, стероидных гормонов и некоторых лекарственных веществ (в частности, барбитуратов). В глад. ЭПС проходят заключительные этапы синтеза всех липидов клеточных мембран. На мембранах глад. ЭПС находятся липидтрансформирующие ферменты — флиппазы, перемещающиеся молекулы жиров и поддерживающие асимметрию липидных слоев.


Глад. ЭПС хорошо развита в мышечных тканях, особенно поперечнополосатых. В скелетных и сердечных мышцах она формирует крупную специализированную структуру — саркоплазматический ретикулум, или L-систему.

Саркоплазматический ретикулум состоит из взаимно переходящих друг в друга сетей L-трубочек и краевых цистерн. Они оплетают специальные сократительные органеллы мышц — миофибриллы. В поперечнополосатых мышечных тканях органелла содержит белок — кальсеквестрин, связывающий до 50 ионов Са2+. В гладких мышечных клетках и немышечных клетках в межмембранном пространстве имеется белок кальретикулин, также связывающий Са2+.

Таким образом, глад. ЭПС является резервуаром ионов Са2+. В момент возбуждения клетки при деполяризации ее мембраны ионы кальция выводятся из ЭПС в гиалоплазму ведущий механизм, запускающий сокращение мышц. Это сопровождается сокращением клеток и мышечных волокон за счет взаимодействия актомиозиновых или актоминимиозиновых комплексов миофибрилл. В покое происходит обратное всасывание Са2+ в просвет канальцев глад. ЭПС, что ведет к снижению содержания кальция в матриксе цитоплазмы и сопровождается расслаблением миофибрилл. Белки кальциевого насоса регулируют трансмембранный перенос ионов.

Повышение концентрации ионов Са2+ в матриксе цитоплазмы также ускоряет секреторную активность немышечных клеток, стимулирует движение ресничек и жгутиков.

Глад. ЭПС дезактивирует различные вредные для организма вещества за счет их окисления с помощью ряда специальных ферментов, особенно в клетках печени. Так, при некоторых отравлениях в клетках печени появляются ацидофильные зоны (не содержащие РНК), сплошь заполненные гладким эндоплазматическим ретикулумом.

В коре надпочечников, в эндокринных клетках половых желез глад. ЭПС участвует в синтезе стероидных гормонов, и на ее мембранах находятся ключевые ферменты стероидогенеза. В таких эндокриноцитах глад. ЭПС имеет вид обильных канальцев, которые в поперечном сечении видны как многочисленные пузырьки.

Глад. ЭПС образуется из гр. ЭПС. В отдельных участках глад. ЭПС образуются новые липопротеидные мембранные участки, лишенные рибосом. Эти участки могут разрастаться, отщепляться от гранулярных мембран и функционировать как самостоятельная вакуолярная система.

Источник: www.activestudy.info