Мейоз — деление эукариотической клетки с уменьшением числа хромосом в два раза и образованием гамет. Происходит в два этапа (редукционный и эквационный этапы мейоза).

Значение.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Фазы мейоза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

Лептотена или лептонема — упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).


Зиготена или зигонема — происходит конъюгация — соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

Пахитена или пахинема — (самая длительная стадия) — в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер — обмен участками между гомологичными хромосомами.

Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой. К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки, наступает пауза.

Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.


Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца.


Динамика хромосом (n) и ДНК (с).

Профаза 1:

Лептотена Появление тонких нитей хромосом (хромосомы удвоены)

Зиготена Конъюгация хромосом

Пахитена Видны конъюгированные хромосомы

Диплотена Начало отталкивания гомологов – различима фигура, похожая на греческ. Х

Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку.

Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид.

Телофаза 1 может отсутствовать, или ядро может восстанавливаться

Профаза 2, Метафаза 2: по митотическому типу.

Анафаза 2: Расхождение хроматид удвоенных хромосом.

Телофаза 2: 4 гаплоидных ядра.

Схема: 2n2c – 2n4c – 1n2c – 1n1c.

Схема нарушения расхождения

хромосом и формирование патологических кариотипов.

Нормальные кариотипы человека — 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

iv>

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности.

Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом(химеризм).

Болезни, обусловленные нарушением числа аутосом — синдром Дауна, синдром Патау, синдром Эдвардса.

Болезни, связанные с нарушением числа половых хромосом — синдром Шерешевского — Тёрнера, полисомия по Х-хромосоме, полисомия по Y-хромосоме, синдром Клайнфельтера .

Болезни, причиной которых является полиплоидия вызывают смерть еще до рождения.

Нарушения структуры хромосом:

Транслокации — обменные перестройки между негомологичными хромосомами.

Делеции — потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).


Инверсии — повороты участка хромосомы на 180 градусов.

Дупликации — удвоения участка хромосомы.

Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

Источник: StudFiles.net

Первое мейотическое деление

В результате первого мейотического (редукционного) деления из диплоидных клеток (2n) образуются гаплоидные (n). Он начинается из профазы І, в которой, также как и в митозе, происходит упаковка наследственного материала (спирализация хромосом). Одновременно гомологические (парные) хромосомы сближаются одинаковыми участками – происходит коньюгация. В результате коньюгации образуются пары хромосом – биваленты. Каждая хромосома, вошедшая в мейоз, состоит из двух хроматид иимеет удвоенный наследственный материал, потому бивалент состоит из 4 нитей. Когда хромосомы находятся в коньюгированном состоянии, их дальнейшая спирализация продолжается.

>
дельные хроматиды гомологических хромосом переплетаются и перекрещиваются. В дальнейшем гомологические хромосомы отталкиваются и немного расходятся, потому в местах переплетения хроматид может произойти их разрыв. Как результат в процессе возобновления разрывов у хроматиды гомологических хромосом происходит обмен соответствующими участками. В итоге перешедшая от родителя к данному организму хромосома, содержит часть материнской хромосомы, и наоборот.

После кроссинговера уже изменённые хромосомы, то есть с другими объединениями генов, расходятся.

Поскольку кроссинговер является процессом закономерным, он каждый раз приводит к обмену разными по размеру участками и, таким образом, обеспечивается эффективная рекомбинация материала хромосом гамет.

  1. В метафазе І завершает формироваться веретено деления. Его нити крепятся к центромерам хромосом, которые соединены в биваленты так, что от каждой центромеры отходит лишь одна нить к одному из полюсов клетки. В результате с помощью связанных с центромерами гомологических хромосом нитей биваленты располагаются по экватору веретена деления.
  2. В анафазе І гомологические хромосомы рассоединяются и расходятся к полюсам клетки.

В телофазе І возле полюсов веретена собирается одинарный (гаплоидный) набор хромосом, в котором каждый их вид представлен уже не парой, а одной хромосомой, состоящей из двух хроматид.


короткой по длительности телофазе возобновляется оболочка ядра, а материнская клетка делится на две дочерние. Таким образом, благодаря образованию бивалентов при коньюгации гомолологических хромосом в профазе І мейоза создаёт условия для дальнейшей редукции количества хромосом. Формируется гаплоидный набор в гаметах, который обеспечивается расхождением в анафазе І не хроматид, как в митозе, а гомологических хромосом, которые ранее были соединены в биваленты.

Второе мейотическое деление

Второе мейотическое деление происходит сразу же после первого и подобно обычному митозу (потому его ещё называют митозом мейоза), но клетки, которые делятся, содержат гаплоидный набор хромосом.

  1. Профаза ІІ недлительна.
  2. В метафазе ІІ снова образуется веретено деления, хромосомы располагаются в экваториальной плоскости, а центромеры соединяются с микротрубочками веретена деления.
  3. В анафазе ІІ их центромеры рассоединяются и каждая хроматида превращается в самостоятельную хромосому. Дочерние хромосомы, которые отделяются друг от друга, направляются к полюсам клетки.
  4. В телофазе ІІ завершается расхождение хромосом и клетки делятся: из двух гаплоидных клеток образуются четыре гаплоидные дочерние клетки.

Значение мейоза

Благодаря редукционному делению регулируется непрерывное увеличение числа хромосом в процессе слиянии гамет. Если бы не было этого механизма, то во время полового размножения число хромосом удваивалось бы из поколения в поколение.

Ещё одно важное значение мейоза: обеспечение большого разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного объединения отцовских и материнских хромосом при их расхождении в анафазе І мейоза. Это обеспечивает разнообразие и разнокачественность потомства во время полового размножения.

Источник: spravochnick.ru


Мейоз I

Стадии мейоза I: профаза, метафаза, анафаза, телофаза

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).

Схема кроссинговера

Конъюгация — процесс сцепления гомологичных хромосом. Кроссинговер — обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма.


Спаренные гомологичные хромосомы называются бивалентами, или тетрадами. Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие — к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II


Интерфаза между двумя мейотическими делениями называется интеркинезом, он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.

Последовательность этапов второго мейотического деления

Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизма полового размножения, при котором сохраняется постоянство числа хромосом у вида.

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов, благодаря которой возможна эволюция живых организмов.

Источник: biology.su

Мейоз — это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) —эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Профаза мейоза 1 стадии

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса — конъ­югация и кроссинговер. Конъюгация — это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер — взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

Профаза мейоза 1 стадии

Вметафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Профаза мейоза 1 стадии

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток — 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.

Источник: studopedia.org