
Размер рибосомы
Отличительные характеристики
Рибосомы обычно состоят из двух субъединиц: большой субъединицы и малой субъединицы. Рибосомные субъединицы синтезируются в ядрышко и пересекают ядерную мембрану в цитоплазме через ядерные поры. Эти две субъединицы объединяются, когда рибосома присоединяется к матричной РНК (мРНК) во время синтеза белка. Рибосомы вместе с другой молекулой РНК, транспортной РНК (тРНК), помогают преобразовать кодирующие белок гены мРНК в белки. Рибосомы связывают аминокислоты вместе для образования полипептидных цепей, которые модифицируются далее, прежде чем станут функциональными белками.
Расположение в клетке
Есть два места, где рибосомы обычно существуют в эукариотической клетке: суспендированы в цитозоле (свободные рибосомы) и связаны с эндоплазматическим ретикулумом (связанные рибосомы). В обоих случаях рибосомы обычно образуют агрегаты, называемые полисомами или полирибосомами во время синтеза белка. Полирибосомы представляют собой кластеры рибосом, которые присоединяются к молекуле мРНК во время биосинтеза белка.
Это позволяет синтезировать сразу несколько копий белка из одной молекулы мРНК. Свободные рибосомы обычно производят белки, функционирующие в цитозоле (жидкий компонент цитоплазмы), тогда как связанные рибосомы обычно синтезируют белки, которые экспортируются из клетки или включаются в мембраны клетки.
Интересно, что свободные рибосомы и связанные рибосомы взаимозаменяемы, и клетка может изменять их число в соответствии с потребностями метаболизма.
Органеллы, такие как митохондрии и хлоропласты в эукариотических организмах, имеют свои собственные рибосомы, которые больше похожи на рибосомы, обнаруженные у бактерий. Субъединицы, содержащие рибосомы в митохондриях и хлоропластах, меньше (30S — 50S), чем субъединицы, обнаруженные во всей остальной части клетки (40S — 60S).
Рибосомы и протеин
Синтез белка протекает под воздействием процессов транскрипции и трансляции. В транскрипции генетический код, содержащийся в ДНК, транскрибируется в версию РНК кода, известного как матричная РНК (мРНК). В трансляции вырабатывается растущая аминокислотная цепь, также называемая полипептидной цепью. Рибосомы помогают трансформировать мРНК и связывать аминокислоты вместе для получения полипептидной цепи, которая в конечном итоге становится полностью функционирующим белком. Белки — очень важные биологические полимеры в наших клетках, поскольку они задействованы практически во всех функциях.
Источник: natworld.info
Характерискика рибосом
Рибосомы
эукариот: 80S, размер — 22×32 нм,
M ~4.5 млн.Да состоит из двух субъединиц.
Большая субъединица М=3.0млн.Да, 60S
[1rRNA 5S (~120н), 1рРНК 5.8S (~160н), 1rRNA 28S (4800н),
45-50 белковых молекул].
Малая субъединица
М=1.5 млн.Да, 40S [1rRNA18S (1900н), 30-35
белковые молекулы].
В цитоплазме эукариотической клетки содержится ~10 млн. рибосом
эукариотического типа.
Рибосомы прокариот:
70S, размер — 21×29 нм, М ~2.8 млн.Да,
состоит из двух субъединиц.
Большая субъединица М=1.8млн.Да 50S
[1rRNA 23S(~2904н), 1rRNA 5S(~120н), 34 белковые молекулы
(L1-L34)].
Малая субъединица М=1.0млн.Да 30S
[1rRNA 16S (~1542н), 21 белковые молекулы (S1-S21)].
В клетке E.coli содержится ~15тыс. рибосом, что составляет
– 1/4 сухой массы клетки. Рибосомы прокариотического типа
присутствуют в митохондриях и пластидах эукариот.
Малые и большие субъединицы могут диссоциировать на составляющие
РНК и белки и самособираются при определенных условиях.
Строение рибосом
Рибосома имеет два участка для связывания тРНК:
Р-центр (пептидил-тРНК-связывающий центр)
— связывание тРНК присоединенной к растущей полипептидной
цепи.
А-центр (аминоацил-тРНК-связывающий участок)
— связвает тРНК несущую следующую добавляемую аминокислоту,
располагается на большой субъединице рибосомы.
Аcn
центр
пептидилтрансфераза –
образует пептидные связи между актами, прочно связывается
с рибосомой.
рибосома
р эукариот 22×32 нм, M~4.5 млн.Да 80S. Большая субъед М=3.0млн.Да, 60S [1rRNA 5S (~120н), 1рРНК 5.8S (~160н), 1rRNA 28S (~5 тыс.н), ~45 белков]; малая субъед М=1.5 млн.Да, 40S.
1rRNA18S (~2 тыс.н),~33 белка] | в цитоплазме Eu ~10 млн.р эукариотич типа |
р прокариот: 21×29 нм, М ~2.8 млн.Да, 70S | большая субъед М=1.8млн.Да 50S[1RNA 23S(~3200н), 1rRNA 5S(~120н), 34белка]; малая субъед М=1.0млн.Да 30S[1rRNA 16S (~1600н), 21 белок] | E.coli ~15тыс р – 1.4 сухой m кл | р прокариотич типа присут в митох и пластидах Eu |
| P-центр пептидил-тРНК-связывающий центр, А-центр большой субъед. р – аминоацил-тРНК-связывающий участок, Аcn центр | пептидилтрансфераза – образ. пептидные связи м-у актами, прочно связан с р | р прокариот мельче и сод меньше компонентов
мРНК [кэп | 5’-НТО | AUG | транслируемая область | стоп 3’-НТО | поли(А)]
инициация сканирование РНК малой субъединицой рибосомы | связывание со стартовым (инициирующим) кодоном AUG-5’ конца – сборка рибосомы | инициаторный комплекс, факторы инициации | Первой к мРНК присоед малая субъед.
связанная с инициаторной-тРНК узнающей AUG и несущей метионин. Процесс катализируется фактором инициации 2 IF2 – фосфорилирование одной из трех его субъед. снижает активность ф-та – контроль белкогого синтеза (незрелые эритроциты) | элонгация 5’?3’ | транслокация – возвращение пустой тРНК в цитоплазму | транслокация рибосомы вдоль мРНК сопровожд. конформационными изменениями с затратой энергии GTP (4GTP вцелом на 1 пепт. связь) | кодон мРНК спаривается с антикодоном тРНК | карбоксильный конец растущего полипептида связан ковалентно с тРНК – пептидил-тРНК | образ. полисомы | терминирующий кодон (стоп-кодон) UAA, UAG, UGA – диссоциация рибосомы – терминация | фактор освобождения-белок связ с стоп-кодоном и меняет активность пептидилтрансферазы кот присоед к пептидил-тРНК Н2О и полипептид отделяется от тРНК и выходит из р | Цикл элонгации составляет 1/20 сек – белок в 300 акт синтезируется за 20 сек Ecoli
Источник: www.cellbiol.ru
Рибосомы — это мельчайшие внутриклеточные частицы, осуществляющие биосинтез белка (см. Трансляция).
Белки, составляющие важнейшую часть любого организма, непрерывно обновляются в процессе его жизнедеятельности.
пример, белки печени у человека обновляются наполовину за 10 суток, у ребенка ежедневно синтезируется около 100 г белков. Самое поразительное, что при образовании каждого белка с абсолютной точностью воспроизводится его первичная структура, каждая аминокислота находит отведенное ей место в полипептидной цепи. Как же достигается такая необыкновенная точность сборки огромных белковых молекул, состоящих из десятков и сотен аминокислотных остатков? Это происходит благодаря рибосомам, которые обнаружены в клетках всех без исключения организмов.
Эти субклеточные частицы имеют размер всего 20 нм. После того как было установлено, что они состоят приблизительно наполовину из рибонуклеиновой кислоты — РНК (см. Нуклеиновые кислоты) и наполовину из белка, их и назвали рибосомами, т. е. тельцами, содержащими РНК.
В каждой клетке содержится от десятков тысяч до миллионов рибосом. Часть их находится в свободном состоянии, но в клетках эукариот большинство рибосом прикреплено к мембранам эндоплазматической сети клетки. Здесь они часто образуют полирибосомы, содержащие от нескольких рибосом до десятков их. Полирибосомы возникают в результате того, что несколько рибосом присоединяются к одной молекуле информационной РНК (иРНК), несущей информацию о первичной структуре белка. Таким образом в каждой полирибосоме сразу синтезируется несколько молекул белка.
Сборка полипептидных цепей белков осуществляется непосредственно в рибосомах, настоящих фабриках белка в клетке. Рибосомы, как машины молекулярных размеров, штампуют различные белки с огромной скоростью — одна белковая молекула средних размеров в минуту.
Лучше всего изучены рибосомы одной из бактерий — кишечной палочки. Ее рибосомы получают в чистом виде при помощи ультрацентрифугирования тонко измельченных бактериальных клеток. Сначала оседают крупные частицы, которые удаляют. Затем при очень больших скоростях вращения осаждаются рибосомы. Скорость их оседания 70 S (S — единица Сведберга, характеризующая скорость оседания).
Рибосомы 70 S можно разделить на субчастицы, размер которых характеризуют скоростью их оседания: 30 S и 50 S. Их форма и способы упаковки в полной рибосоме 70 S показаны на рис. 1. В каждой субчастице, как и в полной рибосоме, равное весовое количество РНК и белка. В 30 S субчастице одна молекула РНК с молекулярной массой 0,5 млн. (~1500 нуклеотидных остатков), а 50 S одна молекула РНК с молекулярной массой около 1 млн. (~3 тыс. нуклеотидных остатков) и еще маленькая молекула РНК (5 S), состоящая всего из 120 нуклеотидных остатков.
Рибосомы 70 S свойственны клеткам прокариот и есть в некоторых субклеточных частицах, например в хлоропластах и митохондриях. В цитоплазме клеток эукариот присутствуют преимущественно рибосомы 80 S, состоящие из субчастиц 40 S и 60 S. В отличие от рибосом 70 S в рибосомах 80 S есть еще одна низкомолекулярная РНК (5,8 S), локализованная в 60 S субчастице.
В клетках эукариот синтез рибосомных РНК (кроме 5 S) и присоединение к ним рибосомных белков происходят в специальной структуре ядра — ядрышке. После этого готовые субчастицы выходят из ядра в цитоплазму, где и осуществляют свои функции.
Первичная структура как низкомолекулярных, так и высокомолекулярных рибосомных РНК, т. е. чередование в них нуклеотидных остатков, выяснена. Более того, известна и пространственная конфигурация полинуклео-тидных цепей всех видов рибосомных РНК (рис. 2). РНК составляет остов субчастицы, к которому прикрепляется в 30 S субчастице 21 молекула белка, а в 50 S субчастице — 34 молекулы белка. Все эти белки оказались различными. Каждый белок выделен, выяснена его первичная структура, а у многих и третичная (рис. 3).
Такие подробные сведения о РНК и белках рибосом позволили построить модели субчастиц (рис. 4). Модель субчастицы 30 S рибосомы кишечной палочки создана в Институте белка АН СССР под руководством А. С. Спирина.
Структура и функция рибосомы тесно связаны. В процессе трансляции иРНК располагается на границе субчастиц 30 S и 50 S. Как полагают, перемещение субчастиц по отношению друг к другу обеспечивает осуществление многоэтапного процесса синтеза полипептидной цепи. РНК и белки в рибосоме скомпонованы так, что образуют ряд центров, каждый из которых предназначен для выполнения своей конкретной операции в процессе биосинтеза белковой молекулы.
Кроме рибосомы и иРНК в синтезе белка участвуют молекулы транспортной РНК, несущие на себе аминокислоту (аминоацил-тРНК), молекулы гуанозинтрифосфорной кислоты (ГТФ), доставляющие энергию для работы рибосомы, а также несколько видов белков, которые присоединяются к рибосоме временно и обеспечивают начало синтеза белка, удлинение полипептидной цепи и ее завершение. Тем не менее механизм работы рибосомы во многом еще непонятен и интенсивно исследуется.
Можно полагать, что если удастся полностью понять механизм работы рибосомы, то в руках человечества окажется способ производства белков, позволяющий решить многие народнохозяйственные проблемы.
Источник: yunc.org