фагоцитозФагоцитоз — механизм действия клеток, необходимый для здоровья человека, который появился раньше.

Стоит задуматься, куда деваются вирусы и микробы, проникшие в организм, куда исчезает оставленная в пальце занозка, и откуда берётся нагноение.

 

Тело человека составляет много клеток, выполняющих собственные функции. Макромолекулы и вещества проникают внутрь клеток через оболочку, но эти каналы слишком узкие для бактерий и частиц. Поэтому некоторые клетки способны к эндоцитозу – фагоцитозу.

 

Определение. В чем сущность

 

Фагоцитами называют лейкоциты (белые кровяные тельца) –и другие клетки многоклеточного животного организма. Фагоцитозом владеют клетки простейших. Когда фагоцит приближается вплотную к чужеродному телу, обтекает содержимым, поглощая и затем, переваривает, такой процесс называется фагоцитозом.


 

С греческого языка это обозначает «пожирание клеткой». В международной медицине, с окончанием «осис» — это уже называется процессом или явлением. Дословный перевод: при распознавании фагоцитами чужеродных тел, они целенаправленно движутся к объекту, захватывают, поглощают и расщепляют.

 

Внутри фагоцита содержится пищеварительная вакуоль с ферментами, которыми снабжают многочисленные лизосомы. Различают фагоциты по набору ферментов. Процесс фагоцитоза не получится, если фагоцит не контактирует с «опасным телом», которое требуется уничтожить.

 

Открытие

 

В 1881 г., находясь в Италии, Мечниковым, русским бактериологом и иммунологом, изучался механизм внутриклеточного пищеварения в опытах с личинками морских звёзд. Учёный выяснял, способны ли обособленные клетки многоклеточного организма обволакивать частицы пищи и разлагать, как делает амёба.

 

Вводя в просвечивающее тело личинки кристаллы красного порошка, Мечников отметил, как перед чужеродными телами образовалась преграда из клеток. Клетка обтекала и втягивала в себя кристалл краски. Так появилось предположение о существовании защитных клеток внутри организма. Чтобы подтвердить гипотезу, Мечников провёл другой опыт – с введением окрашенных шипов. Действия клеток повторились: они снова встали на защиту, прогоняя вредителей.


Результатом фагоцитоза является 

В конце 1882 г. учёный сформировал теорию фагоцитоза: маленькие чужеродные тела, попавшие в организм, поглощаются блуждающими клетками. Это фагоциты, которые играют главную защитную роль в иммунитете, отчего и возникает воспаление. Механизм действия фагоцитов Мечников назвал фагоцитозом.

 

О результатах опытов иммунолог доложил на VII съезде (1883 г.), где собрались врачи и естествоиспытатели. За полезное для науки открытие, Мечникову и Паулю Эрлиху, выявившему антитела, присуждена в 1908 г. Нобелевская премия в области физиологии и медицины.

 

Функции

 

Фагоцитоз относится к древнейшему механизму защиты у многоклеточных организмов против посторонних твёрдых частиц. Но это не единственная функция блуждающих «охранников». 

Эту работу выполняют ретикуло-эндотелиальные клетки: 

Если уничтожение собственной микроструктуры перестанет контролироваться, ткань саморазрушается и развивается заболевание.

 

Фагоцитоз и пиноцитоз

 

Отличие фагоцитоза и пиноцитоза в том, что в первом случае клетка захватывает твёрдые частицы, а во втором — вбирание жидкой капли, где содержится вещество (с греческого языка переводится, как пить или впитывание с помощью вместилища, клетки). Таким образом, содержимое клетки пополняется высокомолекулярными соединениями — белками и углеводно-белковыми комплексами.

 


Фагоцитоз и пиноцитоз

Пиноцитоз открыт американским учёным У. Льюисом в 1931 г. Жидкая частица окружается и вбирается внутрь с помощью коротких тонких выростов плазматической клеточной мембраны. Плавающие пузырьки перемещаются в клеточном содержимом, сливаются вместе. Так же они присоединяются к внутриклеточным мембранным структурам.

 

Почему фагоцитоз невозможен в растительной клетке

 

Фагоцитоз выполняется подвижной плазматической мембраной. У амёбы и других простейших животных это способ питания. В теле человека фагоцитами – лейкоцитами обезвреживаются вредные бактерии и микробы, опасные для здоровья частицы. Наружная мембрана выпячивается и захватывает объект, затем впячивается внутрь.

 

Растительная клетка сверху покрыта прочными твёрдыми волокнами целлюлозы. Это превращает поверхность в плотную и непластичную оболочку, невозможную к выпячиванию и захвату частиц. По этой причине растительная клетка не сокращается, не двигается и не изменяется.

 

Клетки, участвующие в фагоцитозе

iv>

 

В организме человека фагоцитоз выполняется дифференцированными мононуклеарно-фагоцитарными клетками и гранулоцитами. Это микрофаги, которые борются с условно – патогенными микроорганизмами и макрофаги. Усиливается фагоцитоз веществами, которые входят в нормальную сыворотку крови позвоночных животных — опсонинами. Эти вещества ослабляют бактерии и микроорганизмы, после чего фагоциты их легко поглощают.

 

Клетки фагоциты — главные клетки иммунитета, они связываются с «врагами» рецепторами, затем поглощают за 9 мин.

К моноцитам, «дворникам», относят белые кровяные тельца — лейкоциты. Нейтрофилами поглощаются даже превышающие в размерах частицы, не помеха и кислая среда.

 

Макрофагами, «большими пожирателями» называют фагоциты, способные к захвату и уничтожению частями чужеродных, мёртвых или повреждённых клеток. Причём если это инфицированная или злокачественная клетка, макрофаг оставляет нетронутым некоторые чужеродные компоненты для дальнейшего использования. При этом образуются антигены, помогающие образовывать специфичные антитела. Макрофаги способны разрушать опухоли, образуя некроз.


 

Нейтрофилы относятся к лейкоцитам и составляют 50-60 % этой группы крови. Маленькие клетки, первыми (за 30 мин.) реагируют на воспаление в организме. Гной состоит из мёртвых нейтрофилов.

 

Дендритными, антиген-презентующими клетками, с длинными отростками (дендритами), поглощаются патогены. Расположение этих клеток: в кожных тканях и внутренних слизистых оболочках.

 

Тучными клетками наносится урон грамотрицательным бактериям с антигенами. Кроме того, тучными клетками образуются сигнальные молекулы — цитокины.

«Непрофессиональные» фагоциты – фибропласты, клетки без специальных рецептов. Действия таких клеток ограничено.

 

Роль в иммунитете

 

Иммунная защита действует с участием нейтрофилов, макрофагов, дендритных клеток и В-лимфоцитов. Эти клетки умеют распознавать патогенные или посторонние частицы и специально нацеливаются на их уничтожение. Таким образом, сдерживается распространение и размножение инфицирующих клеток. Патогены уничтожаются иммунными клетками с помощью:

 

Интересные факты

 

Фагоцит «гоняется» за порученным ему врагом со специфичным антигеном, вызывающим болезнь. Лимфоциты-хелперы, с антителами гамма — глобулинами, помечают вирус. Лейкоциты – супрессоры сообщают о местонахождении бактерии лейкоцитам – убийцам, которые гонятся за обозначенной целью и захватывают.

>

 

Прививка – введение вакцины (живые, но ослабленные вирусы или мёртвые), чтобы выявить, как реагирует организм на антигены. Измерение красного пятна – определение скорости действия фагоцитов. После прививки организм способен противостоять инфекционной болезни, запоминая врага. Излишки в организме быстроусвояемых углеводов (глюкоза, фруктоза, сахароза и мёд) снижают действие фагоцитов-макрофагов при гнойно — воcпалительных процессах.

 

Оболочка туберкулезной палочки устойчива к действию ферментов пищеварительной вакуоли фагоцита и, кроме того, вырабатывает вещество, снижающее действие иммунных клеток. В этом случае возникает образование из «объевшихся» макрофагов — многоклеточная структура, играющая роль саркофага, клетка Пирогова-Лангханса.

 

Итоги

 

Механизм фагоцитоза относится к древнему способу, который включает защиту, восстановление и очищение организма, когда появляются чужеродные тела. Таким образом, создавая постоянную внутреннюю среду, обеспечивается выживание организма. Но человеку, кроме этого, требуется помогать собственной иммунной системе: ведением здорового образа жизни, приобретением полезных привычек, избегать стрессов и перегрузки. Так же полезно пить витамины.

скачать dle 10.6фильмы бесплатно


Источник: animals-wild.ru

Фагоцитоз (phagocytosis, греческий phagos пожирающий + kytos вместилище, здесь — клетка + -osis) — процесс узнавания, активного захвата и поглощения микроорганизмов, разрушенных клеток и инородных частиц специализированными клетками иммунной системы.

Объектом фагоцитоза являются микробы, чужеродные и измененные собственные клетки или их фрагменты, комплексы антиген — антитело и др. Неотъемлемую часть фагоцитоза составляет направленное движение — хемотаксис (см. Таксисы) — фагоцитов к месту локализации чужеродной частицы.

Определение эффективности фагоцитоза проводится для оценки состояния иммунобиологической реактивности организма, а также при различных медико-биологических исследованиях.

Явление фагоцитоза как биологической универсальной реакции одноклеточных, многоклеточных и высших организмов было открыто И. И. Мечниковым, который в 1883 году сформулировал теорию фагоцитоза. И. И. Мечников рассматривал фагоцитоз как одну из форм питания клеток (начиная с простейших). У высокоорганизованных организмов эта форма питания свойственна особым мезенхимальным клеткам-фагоцитам поглощающим и убивающим патогенные микробы и таким образом выполняющим защитную функцию. Именно с функцией этих клеток И. И. Мечников связывал иммунитет к возбудителям инфекционных болезней. Им были описаны фазы фагоцитарного процесса и состояние активации фагоцитов, характеризующееся их новыми свойствами и усиленной способностью поглощать и уничтожать бактерии. Ключевая роль фагоцитов была доказана им в иммунитете, при воспалении, удалении поврежденных клеток, регенерации, атрофии, старении.


К фагоцитам относятся гранулоциты, в основном нейтрофильные лейкоциты (см.), и мононуклеарные фагоцитирующие клетки (см. Система мононуклеарных фагоцитов), например, моноциты, макрофаги и др. В процессе узнавания фагоцитами микробов, веществ и частиц большую роль играют особые компоненты сыворотки крови, которые являются молекулярными посредниками при взаимодействии микробов с фагоцитами и обусловливают усиление фагоцитоза. Эти компоненты называются опсонинами (см.), к ним относятся антитела IgG1, IgG3, IgM, агрегированные IgAl и IgA2 (см. Иммуноглобулины), и термолабильные субкомпоненты комплемента, в основном C3b (см. Комплемент), а также альфа-1 и бета-глобулины, сывороточный альфа-2— HS-гликопротеид. Указывают на опсонизирующие свойства С-реактивного белка (см.) и др. Антитела IgG и IgM специфически связываются с антигенами соответствующих бактерий и через Fc-рецепторы фиксируют их к рецепторам фагоцитов. Фагоциты могут соединяться с объектом фагоцитоза и неспецифически — через гидрофобные связи Ван-дер-Ваальса. Субкомпоненты комплемента, возникающие при классическом или альтернативном пути его активации, сорбируются на объектах фагоцитоза , прикрепление которых к поверхности фагоцита осуществляется через C3b- и C4b-рецепторы.


Опсонизированные и неопсонизированные частицы прикрепляются к фагоцитам также с помощью специфических Fc-рецепторов для IgE, гликопротеидов и полисахаридов и неспецифических рецепторов для чужеродных веществ. Большинство нейтрофилов человека содержат Fc-рецепторы для агрегированного IgGl и IgG3, а возможно и для агрегированного I g А; моноциты — рецепторы для IgGl и IgG3. Рецепторы для комплемента высокоаффинны (обладают высокой прочностью соединения), они обеспечивают прилипание опсонизированных частиц к неактивированным макрофагам, поглощают же такие частицы только активированные клетки. На нейтрофилах найдены рецепторы для C3b-, C4b- и C5a-субкомпонентов комплемента, на макрофагах — один рецептор для C3b- и C4b-, другой — для C3b- и C3c1-субкомпонентов комплемента. Если частица опсонизирована иммуноглобулином и комплементом, связывание с фагоцитом осуществляется кооперативно через специфические к ним рецепторы, что значительно активирует ее поглощение. Имеются различия между классами рецепторов и опосредуемыми ими реакциями фагоцитоза. Посредством неспецифических и специфических для гликопротеидов и полисахаридов рецепторов осуществляется фагоцитоз бактерий без опсонинов. Известен фагоцитоз инертных частиц — кремнезема, угля и др.

Опсонины не только прикрепляют объект фагоцитоза к поверхности фагоцитов, но и активируют их, индуцируя сигналы, идущие от плазматической мембраны, опосредованно вызывают активацию разных гуморальных систем организма, усиливая фагоцитоз.


Процесс поглощения опсонизированной частицы начинается с взаимодействия рецепторов фагоцита с опсонинами, локализованными на поверхности частицы. В дальнейшем происходит взаимодействие соседних свободных рецепторов фагоцита с близлежащими свободными опсонинами частицы до тех пор, пока не будут связаны все опсонины, покрывающие частицу на периферии, и она полностью не погрузится в цитоплазму фагоцита вместе с окружающим участком плазматической мембраны, образуя фагосому. Взаимодействие частицы с плазматической мембраной фагоцита посредством образующихся комплексов опсонин-рецептор запускает сложный механизм фагоцитоза, основная роль в котором принадлежит работе сократительных белков. Процесс поглощения начинается с образования псевдоподии — вытягивания участка цитоплазмы фагоцита в направлении частицы. При формировании псевдоподии находящиеся в ней неориентированные актиновые нити (филаменты) становятся параллельными, что сопровождается преходящим изменением вязкости цитоплазмы. Сформулирована гипотеза жесткости (желатинизации) — сокращения цитоплазмы, изменяющего ее состояние и генерирующего механическую силу движения фагоцита, регулируемого ионами кальция. При желатинизации актиновые нити перекрестно связываются актинсвязывающим белком, превращающим цитоплазму в гель вследствие образования актиновой решетки. Этот процесс подавляется особым кальцийзависимым актин-регуляторным белком — гельсолином, являющимся физиологическим регулятором желатинизации актина. Далее миозин образует перекрестные мостики с актином и гель начинает сокращаться, особенно в присутствии ионов магния, АТФ и кофактора, являющегося киназой, фосфорилирующей тяжелую цепь миозина. В месте контакта плазматической мембраны и частицы возрастает жесткость цитоплазматических структур (желатинизация участка цитоплазмы). Процесс идет непрерывно; постоянно из плазматической мембраны выделяется растворимый актинсвязывающий белок и мембрана движется по направлению к частице. В области прилипания частицы к плазматической мембране возрастает концентрация ионов кальция, которые «растворяют» актиновую решетку, снижают в этом участке жесткость цитоплазмы, и она движется в сторону повышенной жесткости на конце псевдоподии, т. к. нити миозина натягивают актиновые нити в направлении области наибольшей жесткости решетки.

В процессе фагоцитоза у нейтрофилов потребляется энергия, запасенная в виде АТФ, образованной в результате реакции гликолиза (см.). У альвеолярных макрофагов энергия для фагоцитоза в большей степени (возможно, в основном) извлекается из АТФ, образованной в процессе окислительного фосфорилирования (см. Окисление биологическое). Установлено, что метаболическим показателем в макрофагах является не абсолютное содержание АТФ, а скорость обновления. Количество АТФ в фагоцитирующих макрофагах частично поддерживается путем фосфорилирования АДФ за счет креатинфосфата (см. Креатин), которого в макрофагах в 3—5 раз больше, чем АТФ, и потребление существенно возрастает при фагоцитозе. Креатинфосфат в макрофагах служит, таким образом, важнейшим резервом и поставщиком химической энергии для фагоцитоза.

Фагоцитоз сопровождается метаболическим, или дыхательным, взрывом, проявляющимся повышением потребления кислорода и окисления глюкозы через гексозомонофосфатный шунт (см. Углеводный обмен). При этом образуются основные продукты восстановления кислорода — супероксидный анион и перекись водорода за счет окисления никотин-амидаденин-динуклеотидов и никотинамидаденин-динуклеотидфосфатов с помощью соответствующих НАДН- и НАДФН-оксидаз; накапливающиеся окисленные коферменты вызывают усиление гексозомонофосфатного шунта за счет их восстановления с помощью глюкозо-6-фосфат-II 6-фосфоглюконат-дегидрогеназ. Фагоциты имеют сложную систему для разрушения перекиси водорода. Эта система защищает компоненты клетки от разрушения и представлена каталазой, миелопероксидазой, глутатион-пероксидазой, восстановленным глутатионом. Дыхательный взрыв сопровождается усилением метаболизма углеводов, липидов, синтеза РНК, повышением уровня циклического гуанозинмонофосфата, снижением синтеза белка и транспорта аминокислот.

После завершения поглощения частицы возникшая фагосома и первичные лизосомы (см.), первичные азурофильные и вторичные специфические гранулы фагоцитов взаимно сближаются и сливаются, образуя фаголизосому. Этот процесс сопровождается исчезновением в фагоцитах изолированных гранул. Из лизосом в фагосому попадает большое количество гидролитических ферментов. Фагоцитоз также связан с секрецией из фагоцитов ряда ферментов — бета-глюкуронидазы, N-ацетил-бета-глюкозаминидазы, кислой и щелочной фосфатазы, катепсина, миелопероксидазы, лактоферрина, плазминогенного активатора. Подобная секреция сопряжена с активацией гексозомонофосфатного шунта и длится значительно дольше, чем непосредственно процесс фагоцитоза.

После проникновения бактерий внутрь фагоцитов начинает функционировать сложный микробоцидный механизм, представленный антимикробными системами, как требующими кислорода, так и не зависящими от него. Антимикробная система, требующая кислорода, функционирует в двух вариантах — с участием и без участия миелопероксидазы. Вариант с участием миелопероксидазы высокоактивен в отношении бактерий, грибков, микоплазм и вирусов. Взаимодействие миелопероксидазы и перекиси водорода сопровождается образованием окислителей, окислением галоидов и галогенизацией, заключающейся в иодировании, хлорировании, бронировании различных бактериальных компонентов, что приводит к гибели бактерий. При описанных реакциях образуются бактерицидные ионы хлора, йода, хлорамины, нитриты, бактерицидные альдегиды, синглетный кислород, которые блокируют многие ферментные системы бактерий. Не зависящий от миелопероксидазы вариант аштшикробной системы фагоцитов вызывает образование токсичных для микробов промежуточных форм восстановленного кислорода — супероксидного аниона, перекиси водорода, гидроксильного радикала и синглетного кислорода. Наиболее активна из них перекись водорода.

К антимикробной системе фагоцитоза, не зависящей от кислорода, относят: лизоцим (см.), расщепляющий пептидогликаны клеточных стенок некоторых грамположительных бактерий до дисахаридов, состоящих из мураминовой кислоты и глюкозамина; лактоферрин, который в ненасыщенной железом форме оказывает микробостатическое действие в фагосомах за счет связывания железа, являющегося ростовым фактором для ряда из них; различные катионные белки. Определенное бактерицидное действие оказывает также формирующееся в фаголизосомах глубокое закисление до pH 6,5—3,75.

Закисление, кроме того, активирует лизосомальные гидролазы первичных лизосом, неактивные при слабощелочном pH.

Микробоцидные системы фагоцитов функционируют в кооперации. Они обладают различной потенцией, но все вместе оказывают взаимоперекрывающее действие, поэтому обладают высокой надежностью и эффективностью даже при дефектах фагоцитоза.

При нарушении хемотаксиса фагоцитоз бактерий подавлен, что способствует развитию и злокачественному течению ряда инфекционных болезней. Вещества, индуцирующие хемотаксис, называются хемоаттрактантами и подразделяются на несколько групп: 1) продукты специфических, в основном иммунологических реакций,— СЗа-, С5а-субкомпоненты комплемента, активированный комплекс G567, СЗ-конвертаза альтернативного пути активации комплемента, лимфокины (см. Медиаторы клеточного иммунитета), трансферфактор лимфоцитов, цитофильные антитела; 2) неспецифические эндогенные хемо-аттрактанты — продукты поврежденных клеток, калликреин (см. Кинины), плазминогенный активатор, фибринопептид В, гидролизованные или агрегированные IgG, коллаген, а- и Р-казеин молока, циклический аденозинмонофосфат и др.; 3) экзогенные хемоаттрактанты — фрагменты белка бактерий, содержащие N-формилметионин, пептиды, липиды или липопротеиды, выделяющиеся в процессе жизнедеятельности бактерий в организме.

На поверхности фагоцитов обнаружены специфические рецепторы для хемоаттрактантов — эйкозатетраеновой кислоты, синтетических формил-метионил-пептидов, С5а-субкомпонента комплемента. По-видимому, число этих рецепторов неодинаково у разных типов фагоцитов, напр, циркулирующие нейтрофилы кролика в 8 раз слабее связывали хемотаксические пептиды, чем перитонеальные нейтрофилы. Доказана реакция сократительной системы клетки на действие хемоаттрактантов. Ее ориентация на градиент хемоаттрактантов обусловлена работой микротрубочек, выполняющих роль цитоскелета клетки,— они поддерживают поляризованную вытянутую на градиент хемоаттрактантов форму клетки. Однако непосредственно движение фагоцита осуществляет система микрофиламентов. Предполагают, что белки крови — альбумин и IgG являются регуляторами локомоторной функции фагоцитов. Активация фагоцитов хемоаттрактантами во многом сопровождается теми же изменениями, которые происходят при фагоцитозе — метаболическим взрывом, секрецией из клеток ферментов и др. Определенная регулирующая роль принадлежит циклическим нуклеотидам: циклический аденозинмонофосфат подавляет, а циклический гуанозинмонофосфат стимулирует хемотаксис.

Способы и методические подходы к оценке фагоцитоза разнообразны и зависят от конкретных задач исследования. Они позволяют определить эффективность процессов поглощения частиц, гибели и переваривания живых микроорганизмов и метаболические изменения фагоцитов. Важные данные о фагоцитозе могут быть также получены при исследовании хемотаксиса и опсонизации.

Для оценки фагоцитоза используют различные микроорганизмы — стафилококки (см.), эшерихии (см.), сальмонеллы (см. Сальмонелла) и др. Используют как живые, так и убитые микробы, но поскольку живые бактерии нередко выделяют токсические продукты, подавляющие фагоцитоз, лучше использовать убитые.

Фагоцитоз усиливается в присутствии сыворотки, опсонизирующей бактерии. Для усиления и стандартизации фагоцитоза используют предопсонизацию, то есть предварительную (до фагоцитоза) обработку микроба опсонинами — специфическими антителами — либо свежей сывороткой, в которой микробы активируют систему комплемента и адсорбируют появляющиеся субкомпоненты комплемента, облегчающие фагоцитоз. Однако в экспериментах с живыми микробами применяют лишь те, которые не убиваются опсонизирующей сывороткой. Скорость фагоцитоза анализируют при совместном инкубировании фагоцитов и живых бактерий. Через разные промежутки времени забирают пробы, с помощью дифференциального центрифугирования освобождаются от фагоцитов и надосадочную жидкость сеют на чашки с агаром, что позволяет определить уменьшение числа живых бактерий в процессе фагоцитоза. При работе с грибками рода Candida препарат просчитывают в камере Горяева, определяя при этом число внеклеточно расположенных грибков.

Для анализа фагоцитоза путем определения процента фагоцитов, поглотивших бактерии (фагоцитарный индекс Гамбургера), или среднего числа бактерий, поглощенных одним фагоцитом (фагоцитарное число Райга), скорости фагоцитоза используют частицы латекса, крахмала, зимозана, кармина, угля и др. Предложен метод исследования фагоцитоза, при котором используют капельки парафинового масла, содержащего специальный краситель и стабилизированного белком. Поглощенный материал определяют спектрофотометрически (см. Спектрофотометрия). Также используют частицы или микробы, меченные радиоактивными изотопами (см. Меченые соединения). Метод характеризуется быстротой выполнения, однако не позволяет полностью избавиться от прилипших бактерий, что завышает показатели фагоцитоза. Другой вариант состоит в добавлении к среде с фагоцитами и частицами меченых сывороточных белков, которые при фагоцитозе попадают в фагосому, что позволяет оценить количественно интенсивность фагоцитоза. Применяют также ксеногенные интактные или сингенные поврежденные или опсонизированные эритроциты, анализируя их поглощение визуально или по выходу гемоглобина.

При исследовании поглощения живых бактерий, особенно с последующим учетом количества убитых бактерий необходимо удалить с поверхности фагоцитов прилипшие микробы. Для этого применяют различные антибиотики, убивающие внеклеточные бактерии, но не проникающие в фагоциты, специальные препараты (фенилбутазан), прерывающие в определенные моменты фагоцитоза и внутриклеточную инактивацию микробов. Разработан метод, позволяющий различать прилипшие и поглощенные убитые грибки рода Candida по окраске препарата трипановым синим.

Гибель и переваривание поглощенных микробов выявляют путем инкубирования суспензии фагоцитов с микробами, последующего отмывания фагоцитов of прилипших микробных клеток, подсчета живых микробов, оставшихся в пробах фагоцитов, забираемых в различные сроки инкубации. Число живых бактерий определяют серийными посевами из проб фагоцитов на чашки Петри с агаром. Число живых грибков подсчитывают в лизате фагоцитов после инкубации с помощью окрашивания метиленовым синим. Внутриклеточное переваривание бактерий изучают также с помощью включения в них 3H-уридина. Для этого культуру фагоцитов, поглотивших бактерии, обрабатывают актиномицином D, добавляя в среду 3H-уридин. Метка, включаясь в живые внутриклеточные бактерии, не попадает в убитые и фагоциты.

Анализ повреждающего действия фагоцитов на микробы можно проводить по степени окрашивания поглощенных микробов красителями или по окраске метиленовым синим фаголизосом фагоцитов. Завершенность фагоцитоза оценивают по отношению среднего числа убитых микробов к живым или числа фагоцитов с переваренными микробами к общему числу фагоцитирующих фагоцитов, а также по проценту разрушенных микробов от числа фагоцитированных или по среднему числу убитых микробов на один фагоцит. Выраженность метаболических изменений при фагоцитозе анализируют по потреблению кислорода, хемилюминесценции, окислению глюкозы, иодированию и др.

Фагоциты играют ключевую роль в формировании противомикробного иммунитета (см. Иммунитет), обусловленного как специфическими, так и неспецифическими факторами защиты. Несмотря на то, что специфический иммунитет опосредуется специфическими Т-клетками, а также специфическими антителами, опсонизирующими бактерии и усиливающими фагоцитоз, элиминация патогенных бактерий осуществляется неспецифически — фагоцитами, активированными лимфокинами специфических Т-лимфоцитов. Активированные фагоциты значительно эффективнее убивают бактерии, что показал еще И. И. Мечников. Естественная невосприимчивость к возбудителям инфекционных болезней также обусловлена в основном фагоцитарными клетками. Ключевая роль принадлежит им и в детоксикации бактериальных токсинов, нейтрализованных антителами.

Макрофаги, перерабатывая антиген и представляя его лимфоцитам, участвуя в межклеточной кооперации, активации и супрессии пролиферации лимфоцитов, являются необходимым звеном в формировании иммунологической толерантности (см. Толерантность иммунологическая) и трансплантационного иммунитета (см. Иммунитет трансплантационный). Макрофаги участвуют в противоопухолевом иммунитете (см. Иммунитет противоопухолевый), оказывая цитостатическое и цитотоксическое действие на опухолевые клетки.

Повреждения фагоцитов различными иммуносупрессорами, блокаторами (см. Иммунитет, Иммунодепрессивные вещества), ионизирующим излучением (см.) вызывают резкое подавление противомикробной устойчивости организма. При воздействии на животных большими дозами ионизирующего излучения фагоцитарная активность может практически исчезнуть. Нормализуется фагоцитарная активность у животных, как правило, после 20-го дня. У кроликов, облученных в дозе 600 рад (6 Гр), она восстанавливается только через 40 дней. Между дозой ионизирующего излучения и степенью подавления фагоцитоза существует корреляция. Дозы 10—75 рад (0,1 — 0,75 Гр) усиливают фагоцитоз гранулоцитов, а 350—600 рад (3,5—6 Гр)—резко его угнетают, причем снижается завершенность фагоцитоз, в 3—4 раза подавляется подвижность фагоцитов, а также уменьшается абсолютное их число. Эти же закономерности характерны для макрофагов, число и переваривающая способность которых при облучении также резко снижаются.

Выявлены болезни, сопровождающиеся первичными (врожденными) или вторичными (приобретенными) дефектами фагоцитоза. К ним относится так называемая хроническая гранулематозная болезнь, возникающая у детей, в фагоцитах которых из-за дефекта оксидаз нарушено образование перекисей и надперекпсей и, следовательно, процесс инактивации микробов. Сниженная способность к уничтожению бактерий выявлена у людей, нейтрофилы которых синтезируют недостаточное количество миелопероксидазы, глюкозо-б-фосфат-дегидрогеназы, пируваткиназы. Замедленная гибель микробов обнаружена у больных с синдромом Чедиака — Хигаси (см. Тромбоцитопатии), в нейтрофилах которых нарушено выделение в фагосому лизосомальных ферментов из-за дефекта системы микротрубочек. Описано нарушение процесса полимеризации актина, ведущее к замедлению поглощения частиц нейтрофилами и их подвижности. Больные с указанными дефектами фагоцитов часто страдают тяжелыми бактериальными и грибковыми инфекциями.

Первичные нарушения фагоцитоза наблюдаются и на уровне опсонинов, например, при врожденном дефиците СЗ- и С5-компонентов комплемента, который может привести к развитию рецидивирующих инфекций с поражением легких, костей, кожи.

Вторичные дефекты фагоцитоза описаны при заболеваниях соединительной ткани, почек, нарушении питания, вирусных и рецидивирующих бактериальных инфекциях.

Библиогр.: Берман В. М. и Славская E. М, Завершенный фагоцитоз, Журн. микр., эпид. и иммун., № 3, с. 8, 1958; Подопригора Г. И. и Андреев В. Н. Современные методы изучения фагоцитарной активности лейкоцитов in vitro, там же, № 1, с. 19, 1976; Храмцов А. В. и Земсков В. М. Роль плазматической мембраны в активации лизосомальных ферментов, Докл. АН СССР, т. 271, № 1, с. 241, 1983; Handbook of experimental immunology, ed. by D. M. Weir, v. 2—3, Oxford a. o., 1979; Handbook of experimental pharmacology, ed. by J. R. Vane a. S. H. Ferreira, v. 50, pt 1, В. a. o., 1978; Klebanoff S. J. a. Clark R. A. The neutrophil, function and clinical disorders, Amsterdam a. o., 1978; Mononuclear phagocytes, Functional aspects, ed. by R. van Furth, pt 1 — 2, Hague a. o., 1980; The reticuloendothelial system, a comprehensive treatise, v. 1 — Morphology, ed. by H. Friedman a. o., N. Y.— L., 1980.

Источник: xn--90aw5c.xn--c1avg

процесс активного захватывания и поглощения живых и неживых частиц одноклеточными организмами или особыми клетками (фагоцитами) многоклеточных животных организмов. Явление Ф. было открыто И. И. Мечниковым , который проследил его эволюцию и выяснил роль этого процесса в защитных реакциях организма высших животных и человека, главным образом при воспалении и иммунитете . Большую роль Ф. играет при заживлении ран. Способность захватывать и переваривать частицы лежит в основе питания примитивных организмов. В процессе эволюции эта способность постепенно перешла к отдельным специализированным клеткам, вначале пищеварительным, а затем √ к особым клеткам соединительной ткани. У человека и млекопитающих животных активными фагоцитами являются нейтрофилы (микрофаги, или специальные лейкоциты) крови и клетки ретикуло-эндотелиальной системы , способные превращаться в активных макрофагов . Нейтрофилы фагоцитируют мелкие частицы (бактерии и т.п.), макрофаги способны поглощать более крупные частицы (погибшие клетки, их ядра или фрагменты и т.п.). Макрофаги способны также накапливать отрицательно заряженные частицы красителей и коллоидных веществ. Поглощение мелких коллоидных частиц называют ультрафагоцитозом, или коллоидопексией.

Ф. требует затраты энергии и связан прежде всего с активностью клеточной мембраны и внутриклеточных органоидов √ лизосом, содержащих большое количество гидролитических ферментов. В ходе Ф. различают несколько стадий. Вначале фагоцитируемая частица прикрепляется к клеточной мембране, которая затем обволакивает её и образует внутриклеточное тельце √ фагосому. Из окружающих лизосом в фагосому попадают гидролитические ферменты, переваривающие фагоцитируемую частицу. В зависимости от физико-химических свойств последней переваривание может быть полным или неполным. В последнем случае образуется остаточное тельце, которое может оставаться в клетке длительное время.

Лит.: Мечников И. И., Избранные биологические произведения, М., 1950; Зильбер Л. А., Основы иммунологии, 3 изд., М., 1958.

Н. Г. Хрущов.

Источник: xn--b1algemdcsb.xn--p1ai

По­яс­не­ние.

При­зна­ки жи­вот­ной клет­ки:

1) эу­ка­ри­о­ти­че­ская клет­ка;

2) от­сут­ству­ет кле­точ­ная стен­ка;

3) на на­руж­ной по­верх­но­сти кле­точ­ной мем­бра­ны име­ет­ся гли­ко­ка­ликс, об­ра­зо­ван­ный оли­гос­а­ха­ри­да­ми;

4) в на­руж­ной кле­точ­ной мем­бра­не при­сут­ству­ет хо­ле­сте­рин;

5) мем­бран­ные ор­га­но­и­ды: ЭПС, ап­па­рат Голь­д­жи, ми­то­хон­дрии, ли­зо­со­мы, пе­рок­си­со­мы;

6) не­мем­бран­ные ор­га­но­и­ды: ри­бо­со­мы, кле­точ­ный центр (цен­три­о­ли), мик­ро­тру­боч­ки, мик­ро­фи­ла­мен­ты;

7) от­сут­ству­ют пла­сти­ды (хло­ро­пла­сты, хро­мо­пла­сты, лей­ко­пла­сты), от­сут­ству­ют круп­ные цен­траль­ные ва­ку­о­ли;

8) за­пас­ной по­ли­са­ха­рид – гли­ко­ген;

9) со­кра­ти­тель­ные ва­ку­о­ли (ха­рак­тер­ны для од­но­кле­точ­ных жи­вот­ных – про­стей­ших, вы­пол­ня­ют функ­цию осмо­ре­гу­ля­ции;

10) пи­та­тель­ные ве­ще­ства по­сту­па­ют в клет­ку путем фа­го­ци­то­за (для мно­го­кле­точ­ных жи­вот­ных – путем за­гла­ты­ва­ния) – го­ло­зой­ный спо­соб.

 

На ри­сун­ке изоб­ра­же­но про­стей­шее (од­но­кле­точ­ное жи­вот­ное) амёба (име­ют­ся лож­но­нож­ки).

(1) осмот­роф­ный спо­соб пи­та­ния – при­знак вы­па­да­ет (у жи­вот­ных – го­ло­зой­ный спо­соб пи­та­ния, путем за­гла­ты­ва­ния или фа­го­ци­то­за; осмот­роф­ный спо­соб пи­та­ния ха­рак­тер для кле­ток с кле­точ­ным стен­ка­ми – бак­те­ри­аль­ной, гриб­ной, рас­ти­тель­ной);

(2) раз­мно­же­ние путём про­доль­но­го де­ле­ния – при­знак амёбы;

(3) на­ли­чие со­кра­ти­тель­ной ва­ку­о­ли – при­знак амёбы;

(4) на­ли­чие раз­но­об­раз­ных пла­стид – при­знак вы­па­да­ет (при­знак рас­ти­тель­ной клет­ки);

(5) спо­соб­ность к фа­го­ци­то­зу – при­знак амёбы.

 

 

Ответ:14

При­ме­ча­ние.

Осмот­роф­ный (от др.-греч. ὄσμος — «тол­чок, дав­ле­ние» и τροφή — «пи­та­ние») — пи­та­ние без за­хва­та твёрдых пи­ще­вых ча­стиц — по­сред­ством транс­пор­та (пас­сив­но­го — ос­мо­са, или ак­тив­но­го) рас­творённых пи­та­тель­ных ве­ществ через по­верх­ност­ные струк­ту­ры клет­ки. Может ис­поль­зо­вать­ся как при ге­те­ро­троф­ном так и при ав­то­троф­ном спо­со­бе пи­та­ния. Дан­ный спо­соб ха­рак­те­рен для фо­то­син­те­зи­ру­ю­щих рас­те­ний, гри­бов и боль­шин­ства мик­ро­ор­га­низ­мов (ис­клю­чая ге­те­ро­троф­ных про­стей­ших).

Источник: bio-ege.sdamgia.ru

Согласно представлениям И.И. Мечникова (1882), ключевым звеном механизма воспаления является именно фагоцитоз.

ФАГОЦИТОЗ

• активный биологический процесс,

• заключающийся в поглощении чужеродного материала и

• его внутриклеточной деструкции

• специализированными клетками организма — фагоцитами.

Фагоцитоз осуществляют специальные клетки — фагоциты (преимущественно макрофаги и нейтрофилы). В ходе фагоцитоза образуются большие эндоцитозные пузырьки — фагосомы. Фагосомы сливаются с лизосомами и формируют фаголизосомы. Фагоцитоз индуцируют сигналы, воздействующие на рецепторы в плазмолемме фагоцитов (например, АТ, опсонизирующие фагоцитируемую частицу).

Результатом фагоцитоза является

Стадии фагоцитоза: 1 — адгезия частицы (например, бактерии) с помощью Fc-рецептора мембраны фагоцита; 2 — погружение адгезированной частицы в фагоцит и образование фагосомы; 3 — приближение и присоединение к фагосоме лизосом; 4 — слияние мембран фагосомы и лизосом с образованием фаголизосомы; 5 — разрушение поглощённой частицы. [по 4].

Фагоциты

Термин «фагоцит» предложил И.И. Мечников. В настоящее время принято различать два основных класса фагоцитирующих клеток: микрофаги и макрофаги.

• Микрофаги

К микрофагам отнесены полиморфноядерные гранулоциты: нейтрофилы (в наибольшей мере), эозино‑ и базофилы (существенно меньше). Их называют микрофагами, поскольку диаметр гранулоцитов сравнительно мал (6–8 мкм).

• Макрофаги

Макрофагами (диаметр клеток достигает 20 мкм), или мононуклеарными фагоцитами называют моноциты крови и происходящие из них тканевые макрофаги. Все клетки моноцитарного генеза (например, клетки фон Купффера печени, остеокласты, клетки микроглии, альвеолярные макрофаги, перитонеальные макрофаги и т.д.) рассматривают как систему мононуклеарных фагоцитов (ранее эти фагоцитирующие клетки обозначали термином «ретикуло–эндотелиальная система»).

• Астроциты и клетки микроглии мозга также могут быть отнесены к фагоцитам, так как они экспрессируют Аг MHC II и могут фагоцитировать.

Объекты фагоцитоза

Объектами фагоцитоза для микрофагов являются микроорганизмы и инородные неживые частицы, а для макрофагов — повреждённые, погибшие и разрушенные клетки (чужеродные и собственного организма), а также инородные неживые частицы.

Терминология

Применительно к процессу фагоцитоза применяют следующие уточняющие определения.

• Собственно фагоцитоз: поглощение клеток, их фрагментов и их внутриклеточное переваривание.

• Незавершённый фагоцитоз (см. ниже)

• Иммунный (специфический) фагоцитоз и опсонизация (см. далее).

• Неспецифический фагоцитоз характерен, например, для альвеолярных макрофагов, захватывающих пылевые частицы различной природы, сажу и т.п.

• Ультрафагоцитоз: захватывание фагоцитом мелких корпускулярных частиц (пыли, попадающей с воздухом в лёгкие или инородных частиц в тканях).

Стадии фагоцитоза

В процессе фагоцитоза условно выделяют несколько основных стадий:

• Сближение фагоцита с объектом фагоцитоза.

• Распознавание фагоцитом объекта поглощения и адгезия к нему.

• Поглощение объекта фагоцитом с образованием фаголизосомы.

• Разрушение объекта фагоцитоза.

Сближение фагоцита с объектом фагоцитоза

Первая стадия фагоцитоза — сближение фагоцита с объектом фагоцитоза — рассмотрена выше в разделе главы 5 «Направленная миграции лейкоцитов».

Распознавание объекта фагоцитоза

Этапы распознавания фагоцитом объекта поглощения и «приклеивания» к нему перечислены на рис. 5–22.

Результатом фагоцитоза является

Рис. 5–22. Стадия распознавания и «приклеивания» лейкоцита к объекту фагоцитоза.

• Распознавание поверхностных детерминант объекта фагоцитоза

Большинство объектов идентифицируется с помощью рецепторов на поверхности лейкоцитов. К таким объектам относятся микроорганизмы, грибы, паразиты, собственные повреждённые или опухолевые, или вируссодержащие клетки, а также фрагменты клеток.

• Опсонизация

Опсонизация (иммунный фагоцитоз) — связывание АТ с клеточной стенкой микроорганизма с последующим эффективным поглощением образовавшегося комплекса фагоцитом при взаимодействии Fc‑фрагмента АТ с соответствующим Fc‑рецептором (FcR) на мембране фагоцита. Наиболее активные опсонины: Fc‑фрагмент IgG, IgM, факторы комплемента C3bi, лектины.

IgG. Бактерия, покрытая молекулами IgG, эффективно фагоцитируется макрофагом или нейтрофилом. Fab‑фрагменты IgG связываются с антигенными детерминантами на поверхности бактерии, после чего те же молекулы IgG своими Fc‑фрагментами взаимодействуют с рецепторами Fc‑фрагментов, расположенными в плазматической мембране фагоцита, и активируют фагоцитоз.

IgM . Большая молекула IgM легко активирует комплемент и служит опсонином при фагоцитозе. Многие АТ к грамотрицательным бактериям являются IgM.

• Адгезия фагоцита к объекту фагоцитоза реализуется с участием рецепторов лейкоцита FсR (при наличии у объекта соответствующего лиганда) и молекул адгезии (при отсутствии лиганда, например, у неклеточных частиц).

• При фагоцитозе в зернистых лейкоцитах происходит активация реакций метаболизма («метаболический взрыв»), что обеспечивает ряд важных событий: экспрессию гликопротеинов HLA и молекул адгезии, респираторный взрыв, а также дегрануляцию лейкоцитов.

† Метаболический взрыв

К наиболее значимым метаболическим изменениям относятся активация реакций пентозофосфатного шунта, усиление гликолиза, потенцирование гликогенолиза, накопление восстановленного НАДФ.

† Дегрануляция лейкоцитов

Дегрануляция нейтрофилов, эозинофилов и базофилов сопровождается высвобождением в интерстициальную жидкость медиаторов воспаления (например, ИЛ1 и ИЛ6, ФНО, лейкотриенов) и активных форм кислорода, образовавшихся при респираторном взрыве.

Поглощение объекта и образование фаголизосомы

Фагоцитируемый материал погружается в клетку в составе фагосомы — пузырька, образованного плазматической мембраной. К фагосоме приближаются лизосомы и выстраиваются по её периметру. Затем мембраны фагосомы и лизосом сливаются и образуется фаголизосома. В образовании фаголизосомы принимают участие и специфические гранулы нейтрофильного лейкоцита — видоизменённые лизосомы, а для самого процесса слияния необходимы микрофиламенты цитоскелета, Ca2+, протеинкиназа C.

Погружение объекта фагоцитоза в лейкоцит сопровождается секрецией медиаторов воспаления и других компонентов специфических гранул лейкоцита. При дегрануляции все эти факторы поступают в воспалительный экссудат, где оказывают бактериолитическое и цитолитическое действие.

Внутриклеточное «переваривание»

Разрушение объекта фагоцитоза — внутриклеточное «переваривание» — реализуется в результате активации двух сложных механизмов: кислородзависимой (респираторный взрыв) и кислороднезависимой цитотоксичности фагоцитов.

• Кислороднезависимые механизмы активируются в результате контакта опсонизированного объекта с мембраной фагоцита. В процессе фагосомо–лизосомального слияния первыми с мембраной фагосомы сливаются гранулы, содержащие лактоферрин и лизоцим, затем к ним присоединяются азурофильные гранулы, содержащие катионные белки (например, САР57, САР37), протеиназы (например, эластаза и коллагеназа), катепсин G, дефензины и др. Эти химические соединения вызывают повреждение клеточной стенки и нарушение некоторых метаболических процессов; в большей степени их активность направлена против грамположительных бактерий.

• Кислородзависимая цитотоксичность фагоцитов играет ведущую роль в деструкции объекта фагоцитоза. Цитотоксичность сопряжена со значительным повышением интенсивности метаболизма с участием кислорода. Этот процесс получил название метаболического (дыхательного, респираторного, кислородного) взрыва. При этом потребление кислорода фагоцитом может увеличиться в течение нескольких секунд во много раз.

† В результате дыхательного взрыва образуются цитотоксичные метаболиты кислорода (так называемые активные формы кислорода), свободные радикалы и перекисные продукты органических и неорганических соединений.

† К этому времени в цитоплазме фагоцита накапливается большое количество восстановленного НАДФ. НАДФ-оксидаза (флавопротеин цитохромредуктаза) плазматической мембраны и цитохром b в присутствии хинонов трансформируют О2 в анион супероксида (О2), проявляющий выраженное повреждающее действие.

† В последующих реакциях O2может трансформироваться в другие активные формы: синглетный кислород (1O2), гидроксильный радикал (OH), пероксид водорода (Н2О2). Последний процесс катализирует СОД.

† Пероксид водорода (Н2О2) проявляет меньший, чем О2 повреждающий эффект, но в присутствии миелопероксидазы конвертирует ионы Сl в ионы HClO, обладающие бактерицидным действием, во многом аналогичным эффекту хлорной извести (NaClO).

† Образующиеся активные радикалы обусловливают повреждение и деструкцию белков и липидов мембран, нуклеиновых кислот и других химических соединений объекта фагоцитоза. При этом сам фагоцит защищён от действия указанных выше агентов, поскольку в его цитоплазме имеются комплексы защитных неферментных факторов (глутатион, витамины E и C) и ферментов (СОД, устраняющая супероксидный анион, глутатионпероксидаза и каталаза, инактивирующие Н2О2).

Повреждённый кислородзависимыми и независимыми механизмами объект фагоцитоза подвергается деструкции с участием лизосомальных ферментов. Образовавшиеся продукты какое-то время хранятся в остаточных тельцах и могут утилизироваться клеткой или выводиться из неё путём экзоцитоза.

Незавершённый фагоцитоз

Поглощённые фагоцитами бактерии обычно погибают и разрушаются, но некоторые микроорганизмы, снабжённые капсулами или плотными гидрофобными клеточными стенками, захваченные фагоцитом, могут быть устойчивы к действию лизосомальных ферментов или способны блокировать слияние фагосом и лизосом. В силу этого обстоятельства они на длительное время остаются в фагоцитах в жизнеспособном состоянии. Такая разновидность фагоцитоза получила название незавершённого. Существует множество причин незавершённого фагоцитоза, основные из них перечислены на рис. 5–23.

Результатом фагоцитоза является

Рис. 5–23. Основные причины незавершённого фагоцитоза.

Многие факультативные и облигатные внутриклеточные паразиты не только сохраняют жизнеспособность внутри клеток, но и способны размножаться. Персистирование патогенов опосредуют три основных механизма.

• Блокада фагосомо–лизосомального слияния. Этот феномен обнаружен у вирусов (например, у вируса гриппа), бактерий (например, у микобактерий) и простейших (например, у токсоплазм).

• Резистентность к лизосомальным ферментам (например, гонококки и стафилококки).

• Способность патогенных микроорганизмов быстро покидать фагосомы после поглощения и длительно пребывать в цитоплазме (например, риккетсии).

Фагоцитоз и иммунные реакции

Фагоцитоз сопряжен с процессом передачи информации об Аг лимфоцитам. Это происходит тогда, когда объектом фагоцитоза являлся носитель чужеродной антигенной информации (клетки, микроорганизмы, опухолевые и вируссодержащие клетки, белковые неклеточные структуры и др.). В этом случае Аг после его модификации в фагоците (процессинг) экспрессируется на поверхности клетки. Такой Аг значительно более иммуногенен, чем интактный Аг. Фагоцитирующие клетки, осуществляющие процессинг, называют антигенпредставляющие клетки. При этом фагоцит представляет (презентирует) клеткам иммунной системы двоякую информацию: о чужеродном Аг и о собственных Аг, кодируемых генами HLA и необходимых для сравнения их с чужими Аг.

Фагоциты также продуцируют и выделяют в межклеточную жидкость ряд БАВ, регулирующих развитие либо иммунитета, либо аллергии, либо состояния толерантности. Таким образом, воспаление непосредственно связано с формированием иммунитета или иммунопатологических реакций в организме.

Источник: studfile.net