Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток. Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды — нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина). ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами.


Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы. Плотно спирализованные части хромосом называются гетерохроматином. Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин — более деспирализованная часть хромосом. На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки — готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой, состоящей из двух мембран (внешней и внутренней). Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС). Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.


Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры. Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры — это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.

Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке(их может быть несколько). Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой). Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, — это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.


Источник: biology.su

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

iv>

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин — внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП).


зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Хромосомы

Размеры хромосомы

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

>

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).


Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

 


 Группа   Число пар  Номер Размер Форма
A 3 1, 2, 3 Крупные 1, 3 — метацентрические, 2 — субметацентрические
B 2 4, 5 Крупные Субметацентрические
C 7 6, 7, 8, 9, 10, 11, 12 Средние Субметацентрические
D 3 13, 14, 15 Средние Акроцентрические, спутничные (вторичная перетяжка в коротком плече)
E 3 16, 17, 18 Мелкие Субметацентрические
F 2 19, 20 Мелкие Метацентрические
G 2 21, 22 Мелкие Акроцентрические, спутничные (вторичная перетяжка в коротком плече)

 

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.


 

Источник: licey.net

Ядро было открыто и описано в 1833 г. англичанином Р. Броуном. Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы. В некоторых клетках встречаются сегментированные ядра. Размеры ядер — от 3 до 10 мкм в диаметре.

Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.

Ядро имеет ядерную оболочку, отделяющую его от цитоплазмы, кариоплазму (ядерный сок), одно или несколько ядрышек, хроматин

Клеточное ядро

Ядерная оболочка состоит из двух мембран. В ней имеются поры, играющие важную роль в переносе веществ в цитоплазму и из нее. Поры не являются постоянными образованиями. Их число меняется в зависимости от функциональной активности ядра. Число пор увеличивается в период наибольшей ядерной активности. Ядерная оболочка связана непосредственно с эндоплазматической сетью.


На наружной мембране ядерной оболочки, с внешней стороны находятся рибосомы, синтезирующие специфические белки, образующиеся только на рибосомах ядерной оболочки.

Ядерный сок (кариоплазма) — внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем

присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического материала.

Ядрышки — обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез р-РНК, других видов РНК и образование субъединиц рибосом.

Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены р-РНК.

Хроматин (окрашенный материал) — плотное вещество ядра, хорошо окрашиваемое основными красителями. В состав хроматина входят молекулы ДНК в комплексе с белками (гистонами и негистонами), РНК.

В неделящихся (интерфазных) ядрах хроматин может равномерно заполнять объем ядра, находясь в деконденсированном состоянии. Этот диффузный хроматин (эухроматин) генетически активен. Молекулы ДНК, содержащие наследственную информацию, способны удваиваться при репликации, и возможна передача (транскрипция) генетической информации с ДНК на и-РНК.

Иногда в интерфазном ядре бывают видны глыбки хроматина, представляющие собой участки конденсированного хроматина (гетерохроматина). Это неактивные участки. Например, в клетках женского организма, где присутствуют две X -хромосомы, одна находится в активном диффузном состоянии, а вторая в неактивном, конденсированном состоянии.

Во время деления ядра хроматин окрашивается интенсивнее, происходит его конденсация — образование более спирализованных (скрученных) нитей, называе­мых хромосомами.

Хромосомы синтетически неактивны. Строение хромосом лучше всего изучать в момент их наибольшей конденсации, т. е. в метафазе и начале анафазы митоза.

Каждая хромосома в метафазе митоза состоит из двух хроматид, образовавшихся в результате редупликации, и соединенных центромерой (первичной перетяжкой). В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки нитей веретена (рис. 47). В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины — неравноплечими -субметацентрическими, с одним коротким и вторым почти незаметным — палочковидными или акроцентрическими.

Некоторые хромосомы имеют вторичную перетяжку, отделяющую спутник. Вторичные перетяжки называют ядрышковыми организаторами. В них в интерфазе происходит образование ядрышка. В ядрышковых организаторах находится ДНК,

отвечающая за синтез р-РНК. Плечи хромосом оканчиваются участками, называемыми теломерами, не способными соединяться с другими хромосомами.

Клеточное ядро

Кинетохоры располагаются в центромерном районе хромосом. / — кинетохор, 2 — пучок кинетохорных микротрубочек; 3 — хроматида.

Число, размер и форма хромосом в наборе у разных видов могут варьировать. Совокупность признаков хромосомного набора называют кариотипом

Клеточное ядро

Хромосомный набор специфичен и постоянен для особей каждого вида. У человека 46 хромосом, у мыши — 40 хромосом и т.д.

В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая — от отцовского.

Изменения в структуре хромосом или в их числе возникают в результате мутаций.

Каждая пара хромосом в наборе индивидуальна. Хромосомы из разных пар называют негомологичными.

В кариотипе различают половые хромосомы (у человека это Х-хромосома и Y -хромосома) и аутосомы (все остальные).

Половые клетки имеют гаплоидный набор хромосом.

Основу хромосомы составляет молекула ДНК, связанная с белками (гистонами и др.) в нуклеопротеид.

Основное положение молекулярной биологии, сформулированное Ф. Криком, утверждает, что перенос генетической информации осуществляется:

1) от ДНК к ДНК путем репликации;

2) от ДНК через и-РНК (м-РНК) к белку.

Процесс самовоспроизведения макромолекул нуклеиновых кислот (репликация) обеспечивает точное копирование генетической информации и передачу ее от поколения к поколению.

Принцип комплементарности, лежащий в основе структуры молекулы ДНК, дает возможность понять, как синтезируются новые молекулы в синтетическом периоде интерфазы жизненного цикла клетки перед ее делением.

Источник: ibrain.kz

Клеточное ядро

Схема строения интерфазного ядра
Схема строения интерфазного ядра: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — перинуклеарное пространство; 4 — пора; 5 — ядрышко; 6 — кариоплазма; 7 — хроматин.

Ядро является обязательным компонентом всех эукариотических клеток. Форма и размеры ядра зависят от формы и величины клетки и выполняемой ею функции.

Химический состав ядра

По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15 — 30%) и РНК (12%). В ядре клетки сосредоточено 99% ДНК клетки в виде комплекса с белками – дезоксирибонуклеопротеина (ДНП).

Функции ядра

Ядро выполняет две главные функции:

  1. хранение, воспроизведение и передачу наследственной информации
  2. регуляцию процессов обмена веществ, протекающих в клетке.

Выделяют два состояния ядра: делящееся и интерфазное. В интерфазном ядре различают: ядерную оболочку, ядерный сок, хроматин и ядрышки.

Ядерная оболочка

Ядерная оболочка (кариолемма) представлена двумя биологическими мембранами, между которыми находится перинуклеарное пространство. Наружная ядерная мембрана непосредственно соединена с мембранами каналов эндоплазматической сети. На ней располагаются рибосомы. Ядерная оболочка пронизана многочисленными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Основная функция ядерной оболочки: регуляция обмена веществ между ядром и цитоплазмой клетки.

Ядерный сок

Ядерный сок (кариоплазма) – это однородная масса, заполняющая пространство между структурами ядра. В его состав входят вода, минеральные соли, белки (ферменты), нуклеотиды, аминокислоты, АТФ и различные виды РНК.

Функция кариоплазмы: обеспечение взаимосвязей между ядерными структурами.

Хроматин

Хроматин представляет собой дезоксирибонуклеопротеин (ДНП), состоящий преимущественно из ДНК и белков-гистонов, выявляемый под световым микроскопом в виде глыбок и гранул. Это деспирализованные хромосомы интерфазного ядра. В процессе митоза хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры – хромосомы.

Метафазная хромосома

Метафазная хромосома
Схема строения метафазной хромосомы (А) и типы хромосом (Б). А: 1 — плечо; 2 — центромера; 3 — вторичная перетяжка; 4 — спутник; 5 — две хроматиды; Б: 1 — акроцентрическая; 2 — субметацентрическая; 3 — метацентрическая.

Метафазная хромосома состоит из двух продольных нитей ДНП – хроматид, соединенных друг с другом в области первичной перетяжки – центромеры. Центромера делит каждую хроматиду на два плеча.

В зависимости от расположения первичной перетяжки различают следующие типы хромосом: метацентрические (равноплечие), в которых центромера расположена посередине, а плечи примерно равной длины; субметацентрические (неравноплечие), когда центромера смещена от середины хромосомы, а плечи неравной длины; акроцентрические (палочковидные), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Некоторые хромосомы могут иметь вторичные перетяжки, отделяющие от хроматиды участок, называемый спутником. Основная функция хромосом – хранение, воспроизведение и передача генетической информации.

Кариотип

Кариотип – это диплоидный набор хромосом соматических клеток организма определенного вида. Каждый вид растений и животных имеет определенное, постоянное число хромосом. Так, в ядре соматических клеток у лошадиной аскариды содержится 2 хромосомы, у мухи дрозофилы – 8, у человека – 46. Во всех соматических клетках число хромосом всегда парное (диплоидный набор – 2n), т.е. каждая хромосома в наборе имеет парную, гомологичную (одну из этих хромосом дочерний организм получает от отца, а вторую от матери). Гомологичные хромосомы одинаковы по величине, форме, расположению центромер. Для каждого биологического вида характерно постоянство числа, величины и формы хромосом. При образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна, поэтому хромосомный набор гамет называется гаплоидным (одинарным – 1n). При оплодотворении восстанавливается диплоидный набор хромосом.

Ядрышки

Ядрышки имеют шаровидную форму, не окружены мембраной. Они содержат преимущественно белки и р-РНК. Ядрышки – непостоянные образования, они растворяются в начале деления клетки и восстанавливаются после его окончания. Их образование связано со вторичными перетяжками (ядрышковыми организаторами) спутничных хромосом, в которых локализованы гены, кодирующие синтез рибосомальных РНК и белков. Функция ядрышек – образование субъединиц рибосом.

Эукариотические клетки

Клетки подавляющего большинства живых организмов имеют оформленное, сложно устроенное ядро, цитоплазму с органоидами и оболочку. Такие клетки называются эукариотическими. Они характерны для протистов, грибов, растений и животных.

Прокариотические клетки

Прокариотические клетки не имеют оформленного ядра и мембранных органоидов. Генетический аппарат прокариот представлен нуклеоидом одной кольцевой молекулой ДНК, не связанной с белками-гистонами и не окруженной мембраной. Имеются рибосомы. Функций мембранных органоидов выполняют впячивания плазмалеммы – мезосомы. К прокариотам относятся бактерии и цианобактерии.

Клетки растений и животных сходны по строению и химическому составу, но между ними имеются и определенные отличия.

Источник: biobloger.ru