Согласно опубликованным 26 апреля результатам научных исследований в журнале Science, оказывается, что температура ядра нашей планеты на 1000 градусов выше, чем предполагалось ранее. Благодаря этим наблюдениям у ученых появилась возможность лучше понять то, как наша Земля создает магнитное поле.

» />

Группа, проводившая новые исследования, измерила в лабораторных условиях показатели высшей точки кипения железа и, сопоставив полученные результаты с показателями внешнего и внутреннего ядра, пришла к выводу, что их температура составляет порядка 6000 градусов Цельсия. То есть почти столько же, как и температура Солнца.

Факт различия в температурных показателях очень важен для ученых. Ведь это помогает объяснить то, как Земля генерирует магнитное поле. Твердое ядро Земли находится внутри внешнего жидкого ядра, сверху которого, в свою очередь, расположен твердый, но в то же время текучий слой мантии. Благодаря разнице температуры между слоем мантии и внутренним ядром, которая составляет порядка 2700 градусов Цельсия, а также за счет движения мантии и вращения планеты и создается магнитное поле.


Для нового эксперимента использовалась новая рентгеновская техника, которая позволяет намного быстрее производить расчеты, чем раньше. В обычных лабораторных условиях временной интервал процесса сжатия железа, который смог бы показать является ли его структура по-прежнему твердой или же железо начинает плавиться, был возможен только в течение нескольких секунд. Новый же метод ученых основан на дифракции, которая образуется тогда, когда рентгеновские лучи или любая другая форма света сталкивается с препятствием и огибает его.

Эксперименты показали, что при давлении в 2,2 миллиона раз выше, чем обычное давление на уровне моря точка плавления железа составляет 4800 градусов Цельсия. Опираясь на результаты полученных исследований, ученые пришли к выводу, что температура между внешним и внутренним ядром Земли при давлении в 3,3 миллиона атмосфер (в 3,3 миллиона раз выше, чем атмосферное давление на уровне моря) составляет 6000 градусов, плюс-минус 500 градусов.

В исследованиях принимали участие такие организации как CEA (французская национальная технологическая исследовательская организация), Французский национальный центр научных исследований, а также Европейский исследовательский ускорительный комплекс (ESRF).

Источник: Hi-News.ru


температуры земли

Согласно большинству научных теорий, Земля некогда отделилась от Солнца. Она была огненной массой из газообразных, жидких и твердых веществ, когда начала вращаться вокруг Солнца. С течением времени эта масса несколько остыла и уменьшилась в объеме, постепенно, за счет постоянного вращения, приняв форму чуть приплюснутого у полюсов шара. Внутри шара очень высокая температура и давление.
Установлено, что вблизи поверхности Земли возрастание температуры с глубиной составляет примерно 20° на каждый километр. Прямое исследование земных глубин пока что невозможно: самые глубокие скважины едва достигают десятикилометровой отметки. Однако сейсмология дала ключ к внутреннему строению Земли. Дело в том, что скорость сейсмических волн зависит от плотности и упругости горных пород, через которые они проходят. Они отражаются и преломляются на границах между различными пластами. По сейсмограммам было установлено строение земной литосферы.


Толщина слоя Состав Температура и давление
Кора около 35 км, в океанических областях меньше Граниты и базальты  
Мантия 2900 км. Твердые кремниевые породы, окислы кремния и магния У нижней границы мантии давление достигает 130 Га, температура 5000 К.
Внешнее ядро 2250 км. Жидкое состояние вещества  
Внутреннее ядро 1220 км (радиус) Твердые железо и никель Давление превышает 3,6•1011 Па, температура 8000 К.

Из всей массы Земли кора составляет менее 1 %, мантия — около 65 %, ядро — 34 %. На глубине около 100 км температура примерно 1800 К. Упругие волны в коре и мантии распространяются, как в твердом теле. В мантии, по сравнению с корой, скачкообразно увеличивается скорость распространения сейсмических волн, что связано с резким повышением плотности вещества до 5600 кг/м3. Следующее по интенсивности отражение наблюдается на глубине 2900 км. На этой глубине сильно отражаются продольные сейсмические волны. Отсюда можно сделать вывод, что ниже лежит жидкое ядро: в жидкостях поперечные волны не распространяются. Этот слой расплавленного металла называют внешним ядром. В центре Земли находится твердое железное ядро плотностью около 10 000 кг/м3 (1,7 % массы Земли). Граница между твердым и жидким ядрами толщиной около 5 км проходит на расстоянии примерно 1220 км от центра Земли.

Похожие по тематике статьи на сайте:

Температура над Землей

Самое холодное место Солнечной системы — Луна

Температура вселенной

Почему небо голубое?

Почему звездное небо черное? (фотометрический парадокс)

Источник: temperatures.ru

Ядро Солнца


В ядре Солнца гравитационное притяжение приводит к огромным температурам и давлению. Температура здесь может достигать 15 миллионов градусов по Цельсию. Атомы водорода в этой области сжимаются, и сливаются вместе для получения гелия в процессе, называемом ядерным синтезом. Ядерный синтез вырабатывает огромное количество энергии, которая излучается к поверхности Солнца и в впоследствии достигает Земли. Энергия от ядра проникает в конвективную зону.

Конвективная зона

Эта зона простирается на 200 000 км и приближается к поверхности. Температура в этой зоне опускается ниже 2 миллионов градусов Цельсия. Плотность плазмы достаточно низка, чтобы создать конвективные токи и транспортировать энергию к поверхности Солнца. Тепловые колонны зоны создают отпечаток на поверхности Солнца, придавая ему гранулированный вид, называемый супергрануляцией в самом большом масштабе и грануляцией в наименьшем масштабе.

Фотосфера

Фотосфера — это внешняя излучающая оболочка Солнца. Большая часть энергии этого слоя полностью вытекает из Солнца. Толщина слоя составляет от десятков до сотен километров, а солнечные пятна на нем темнее и прохладнее, чем окружающий регион. В основе больших солнечных пятен температура может составлять 4 000 градусов Цельсия. Общая температура фотосферы составляет приблизительно 5 500 градусов Цельсия. Энергия Солнца обнаруживается как видимый свет в фотосфере.

Хромосфера


Хромосфера является одним из трех основных слоев атмосферы Солнца и имеет толщину от 3000 до 5000 км. Она расположена прямо над фотосферой. Хромосфера обычно не видна, если нет полного затмения, в течение которого ее красноватый свет окружает лунный диск. Слой обычно не наблюдается без специального оборудования из-за яркости фотосферы. Средняя температура хромосферы составляет около 4 320 градусов по Цельсию.

Корона

Корона простирается на миллионы километров в космос и, как хромосфера, легко видна во время затмения. Температура короны может достигать 2 миллионов градусов Цельсия, и именно эти высокие температуры придают ей уникальные спектральные особенности. Когда она остывает, теряя как радиацию, так и тепло, вещество сдувается в виде солнечного ветра.

Важность энергии Солнца

Солнечная энергия позволяет растениям в процессе фотосинтеза вырабатывать собственную пищу, которая, в свою очередь, потребляется другими живыми существами. Солнечный свет дает зрение и нагревает воду. Он необходим для образования угля и нефтепродуктов, а также является важным фактором в формировании витамина D, который незаменим для роста костей в организме человека.

Источник: natworld.info


Ядро Земли – внутренняя геосфера Земли со средним диаметром 3470 км, расположенная на средней глубине около 2900 км. Делится на твердое внутреннее ядро диаметром около 1300 км и жидкое внешнее ядро мощностью около 2200 км, между которыми иногда выделяется 250 км переходная зона жидкости повышенной плотности. Вероятно состоит из железо-никелевого сплава с примесью других сидерофильни элементов. Температура в центре ядра Земли достигает 5000 ° C, плотность около 12,5 т / м , давление до 361 ГПа. Масса ядра – 1932 x 10 24 кг. 
Сведений о ядре очень мало – вся информация получена косвенными геофизическими или геохимическими методами, образцы вещества ядра не доступны, и вряд ли будут получены в ближайшем будущем.

История исследования

Одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она гораздо больше, чем плотность характерна для пород, выходящих на земную поверхность.
Существование ядра было доказано в 1897 году немецким сейсмологом Э. Вихерт за наличия эффекта так называемой «сейсмической тени». В 1910 году за резким скачком скоростей продольных сейсмических волн американским геофизиком Б. Гутенбергом была определена глубина залегания его поверхности – 2900 км.

Основатель геохимии В. М. Гольдшмидт (нем. Victor Moritz Goldschmidt (1888-1947) в 1922 году предположил, что ядро образовалось путем гравитационной дифференциации первичной Земли в период ее роста или в более поздние периоды. Альтернативную гипотезу, что железное ядро возникло еще в протопланетного облака, развивали немецкий ученый А. Эйкен (1944), американский ученый Э. Орован и советский ученый А. П. Виноградов (60-70-е годы).


В 1941 году Кун и Ритман, основываясь на гипотезе идентичности химического состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядре состоит из металлического водорода. Эта гипотеза не прошла экспериментальную проверку. Эксперименты с ударного сжатия показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако эта гипотеза позже была адаптирована для объяснения строения планет-гигантов – Юпитера, Сатурна и т.д. Современной наукой вважааеться, которые магнитное поле возникает именно в металлическом водородном ядре.

Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав – на границе ядро-мантия при давлении 1,36 MБар мантийные силикаты переходят в жидкую металлическую фазу (металлизированное силикатное ядро).

Состав ядра

Состав ядра может быть оценен лишь из нескольких источников.

Наиболее близкими веществу ядра считаются образцы железных метеоритов, которые являются фрагментами ядер астероидов и протопланет. Однако железные метеориты не эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, т.е. при других физико-химических параметрах.


Из данных гравиметрии известна плотность ядра, ограничивающий дополнительно компонентный состав. Так как плотность ядра примерно на 10% меньше, чем плотность сплавов железо-никель, то соответственно ядро Земли содержит больше легких элементов, чем железные метеориты. 

Исходя из геохимических соображений, рассчитывая первичный состав Земли и вычисляя долю элементов, находящихся в других геосферах, можно построить приблизительную оценку состав ядра. Помощь в таких вычислениях оказывают высокотемпературные и високобарични эксперименты по распределению элементов между расплавленным железом и силикатными фазами. 

Образование земного ядра

Время формирования

Образование ядра – ключевой момент истории Земли. Для определения возраста этого события были использованы следующие соображения:

В веществе, из которого образовалась Земля, был изотоп 182 Hf, который имеет период полураспада 9 млн лет и превращается в изотоп 182 W. Гафний являются литофильных элементов, т.е. при разделении первичного вещества Земли на силикатный и металлическую фазы он преимущественно сконцентрировался в силикатной фазе, а вольфрам – сидерофильных элемент, и сконцентрировался в металлической фазе. В металлическом ядре Земли соотношение Hf / W близко к нулю, тогда как в силикатной оболочке это отношение близко 15.


Из анализа нефракцийованих хондритов и железных метеоритов известно первичное соотношение изотопов гафния и вольфрама.
Если ядро образовалось через время много больше, чем период полураспада 182 Hf, то он бы успел почти полностью превратиться в 182 W, и изотопный состав вольфрама в силикатной части Земли и ее ядре был бы одинаковый, такой же как и в хондритах.
Если ядро формировалось пока 182 Hf еще не распался, то силикатный оболочка Земли должна содержать некоторый излишек 182 W по сравнению с хондритов, что реально и наблюдается.

Основываясь на этой модели разделения металлической и силикатной части Земли, расчеты показали, что ядро сформировалось за время меньше 30 млн лет, с момента образования в Солнечной системе первым твердых частиц. Аналогичные расчеты можно сделать для металлических метеоритов, которые являются фрагментами ядер мелких планетарных тел. В них формирования ядра происходило значительно быстрее – за несколько миллионов лет. Возраст внутреннего твердого ядра оценивается в 2-4 млрд лет.

Теория Сорохтина – Ушакова

Согласно модели Сорохтина – Ушакова, процесс формирования земного ядра растянулся приблизительно на 1,6 млрд. лет (от 4 до 2,6 млрд. лет назад). По мнению авторов формирования земного ядра происходило в два этапа. Сначала планета была холодной, и в ее глубинах не происходило никаких движений. Затем она прогрелась энергией радиоактивного распада до начала плавки металлического железа, которое стало проникать к центру Земли.
и этом за счет гравитационной дифференциации выделялось большое количество тепла, и процесс отделения ядра только ускорялся. Этот процесс шел только до глубины, ниже которой вещество, из сверхвысокое давление, становилась настолько вязким, что железо глубже погружаться уже не могло. В результате образовался плотный кольцевой слой расплавленного железа и его окиси. Он располагался над более легким веществом первородной «сердцевины» Земли. Позже состоялось выдавливания силикатного вещества из центра Земли на экваторе, что и привело асимметрию планеты.

Механизм формирования земного ядра

О механизме образования ядра известно очень мало. Согласно различным оценкам формирование происходило при давлении и температуре близкой, той, что сейчас царит в верхнем и среднем мантии, а не в планетозималях и астероидах. Это значит что при аккреции Земли происходила ее новая гомогенизация.

Механизм постоянного обновления внутреннего ядра

Ряд исследований последних лет показал аномальные свойства земного ядра – было установлено, что сейсмические волны пересекают восточную часть ядра быстрее западную. Классические модели предполагают, что внутреннее ядро нашей планеты – образование симметричное, однородное и практически стабильное, медленно растет за счет застывания вещества внешнего ядра. Однако внутреннее ядро довольно динамичная структура.
Группа исследователей из университетов Жозефа Фурье (фр. Universite Joseph Fourier) и Лиона (фр. Universite de Lyon) выдвинула предположение, что внутреннее ядро Земли постоянно кристаллизуется на западе и плавится на востоке. Геометрический центр внутреннего ядра смещен относительно центра Земли. Части ядра на западе и востоке имеют разную температуру, что приводит к одностороннему плавления и кристаллизации. Приводит в движение всю масса внутреннего ядра, медленно смещается от западной стороны к восточной, где разрушаясь твердое вещество пополняет состав жидкой оболочки со скоростью 1,5 см / год. Т.е. полная переплав за 100 млн лет. Разница в соотношении легких и тяжелых элементов на западе и востоке ядра закономерно приводит и к разнице скоростей сейсмических волн.

Столь мощные процессы затвердевания и плавления, не могут не сказаться на конвективных потоках во внешнем ядре. Они затрагивают планетарную динамо-машину, земное магнитное поле, поведение мантии и движение материков. Гипотеза объясняет несовпадение скорости вращения ядра и остальных планеты, ускоренный сдвиг магнитных полюсов.

Похожие статьи:


Температура внутри ядра достигает

Изотопы

Распределение изотопов. По горизонтали – заряд ядра (число протонов). По вертикали – атомная масса (число нуклонов). Цвет – стабильность изотопа …


Температура внутри ядра достигает

Ядро атома

Ядро – центральная часть атома. В ядре сосредоточены положительный электрический заряд и основная часть массы атома. По сравнению с размерами атома, …


Температура внутри ядра достигает

Генри Кавендиш

Генри Кавендиш (англ. Henry Cavendish * 10 октября 1731, Ницца – † 24 февраля 1810, Лондон) – английский физик и химик, член Лондонского королевского …


Температура внутри ядра достигает

Плотность населения

Плотность населения Земли (линейная шкала, 1994 год) Плотность населения по странам (2006) Плотность населения – уровень заселенности данной …


Температура внутри ядра достигает

Клеточное ядро

Диаграмма клеточного ядра В клеточной биологии, ядро (лат. nucleus) – клеточные органеллы, найденная в большинстве клеток эукариот и содержит ядерные …


Температура внутри ядра достигает

Земля

Земля – это третья от Солнца планета Солнечной системы, единственная планета, на которой известно жизнь, дом человечества. Планетарные …

Источник: mir-prekrasen.net

Уронив ключи в поток расплавленной лавы, попрощайся с ними, потому что, ну, чувак, они – всё.
— Джек Хэнди

Взглянув на нашу родную планету, можно заметить, что 70% её поверхности покрыто водой.

Температура внутри ядра достигает

Мы все знаем, отчего это так: потому что океаны Земли всплывают над камнями и грязью, из которых состоит суша. Концепция плавучести, при которой менее плотные объекты всплывают над более плотными, погружающимися ниже, объясняет гораздо больше, чем просто океаны.

Температура внутри ядра достигает

Тот же принцип, объясняющий, почему лёд плавает в воде, шар с гелием поднимается в атмосфере, а камни тонут в озере, объясняет, почему слои планеты Земля устроены именно так.

Температура внутри ядра достигает

Наименее плотная часть Земли, атмосфера, плавает над водными океанами, которые плавают над земной корой, которая находится над более плотной мантией, которая не тонет в самую плотную часть Земли: в ядро.

Температура внутри ядра достигает

В идеале самым стабильным состоянием Земли было бы такое, которое идеально распределялось бы на слои, на манер луковицы, и самые плотные элементы были в центре, а по мере продвижения наружу каждый последующий слой состоял бы из менее плотных элементов. И каждое землетрясение, на самом-то деле, двигает планету по направлению к этому состоянию.

И это объясняет строение не только Земли, но и всех планет, если вспомнить, откуда эти элементы взялись.

Температура внутри ядра достигает

Когда Вселенная была молодой – возрастом всего в несколько минут – в ней существовали только водород и гелий. Все более тяжёлые элементы создавались в звёздах, и только когда эти звёзды погибли, тяжёлые элементы вышли во Вселенную, позволяя формироваться новым поколениям звёзд.

Температура внутри ядра достигает

Но на этот раз смесь всех этих элементов – не только водорода с гелием, но и углерода, азота, кислорода, кремния, магния, серы, железа и других – формирует не только звезду, но и протопланетный диск вокруг этой звезды.

Давление изнутри наружу в формирующейся звезде выталкивает более лёгкие элементы, а гравитация приводит к тому, что неравномерности в диске коллапсируют и формируют планеты.

Температура внутри ядра достигает

В случае Солнечной системы четыре внутренних мира являются самыми плотными из всех планет системы. Меркурий состоит из самых плотных элементов, которые не смогли удержать большое количество водорода и гелия.

Другие планеты, более массивные и более удалённые от Солнца (а следовательно, получающие меньше его излучения), смогли удержать больше этих ультралёгких элементов – так сформировались газовые гиганты.

У всех миров, как и на Земле, в среднем самые плотные элементы сосредоточены в ядре, а лёгкие формируют всё менее плотные слои вокруг него.

Температура внутри ядра достигает

Неудивительно, что железо, самый стабильный элемент, и самый тяжёлый элемент, создаваемый в больших количествах на границе сверхновых, и есть самый распространённый элемент земного ядра. Но возможно, удивительным будет то, что между твёрдым ядром и твёрдой мантией находится жидкий слой толщиной более 2000 км: внешнее ядро Земли.

Температура внутри ядра достигает

У Земли есть толстый жидкий слой, содержащий 30% массы планеты! А узнали мы о его существовании довольно остроумным методом — благодаря сейсмическим волнам, происходящим от землетрясений!

Температура внутри ядра достигает

В землетрясениях рождаются сейсмические волны двух типов: основная компрессионная, известная, как Р-волна, проходящая продольным путём

Температура внутри ядра достигает

и вторая сдвиговая волна, известная, как S-волна, похожая на волны на поверхности моря.

Температура внутри ядра достигает

Сейсмические станции по всему миру способны улавливать Р- и S-волны, но S-волны не проходят через жидкость, а Р-волны не только проходят через жидкость, но и преломляются!

Температура внутри ядра достигает

В результате можно понять, что у Земли есть жидкое внешнее ядро, вне которого находится твёрдая мантия, а внутри – твёрдое внутреннее ядро! Вот поэтому в ядре Земли содержатся самые тяжёлые и плотные элементы, и так мы знаем, что внешнее ядро – это жидкий слой.

Но почему внешнее ядро жидкое? Как и все элементы, состояние железа, твёрдое, жидкое, газообразное, или другое, зависит от давления и температуры железа.

Температура внутри ядра достигает

Железо – элемент более сложный, чем многие привычные вам. Конечно, у него могут быть разные кристаллические твёрдые фазы, как указано на графике, но нас не интересуют обычные давления. Мы спускаемся к ядру земли, где давления в миллион раз превышают давление на уровне моря. А как выглядит фазовая диаграмма для таких высоких давлений?

Прелесть науки в том, что даже если у вас сразу нет ответа на вопрос, есть вероятность, что кто-то уже делал нужное исследование, в котором можно найти ответ! В этом случае, Аренс, Коллинз и Чен в 2001 году нашли ответ на наш вопрос.

Температура внутри ядра достигает

И хотя на диаграмме показаны гигантские давления до 120 ГПа, важно помнить, что давление атмосферы составляет всего лишь 0.0001 ГПа, в то время как во внутреннем ядре давления достигают 330-360 ГПа. Верхняя сплошная линия показывает границу между плавящимся железом (вверху) и твёрдым (внизу). Вы обратили внимание, как сплошная линия в самом конце совершает крутой поворот вверх?

Для того, чтобы железо плавилось при давлении 330 ГПа, требуется огромная температура, сравнимая с той, что преобладает на поверхности Солнца. Эти же температуры при меньших давлениях легко будут поддерживать железо в жидком состоянии, а при более высоких – в твёрдом. Что это означает с точки зрения ядра Земли?

Температура внутри ядра достигает

Это означает, что с охлаждением Земли падает её внутренняя температура, а давление остаётся неизменным. То есть, при формировании Земли, скорее всего, жидкой было всё ядро, и по мере охлаждения внутреннее ядро растёт! И в процессе этого, поскольку у твёрдого железа плотность выше, чем у жидкого, Земля потихоньку сжимается, что приводит к землетрясениям!

Температура внутри ядра достигает

Так что, ядро Земли жидкое, поскольку оно достаточно горячее, чтобы расплавить железо, но только в регионах с достаточно низким давлением. По мере старения и охлаждения Земли всё большая часть ядра становится твёрдой, и поэтому Земля немного сжимается!

Если мы захотим заглянуть далеко в будущее, мы можем ожидать появления таких же свойств, какие наблюдаются у Меркурия.

Температура внутри ядра достигает

Меркурий благодаря малому размеру уже значительно охладился и сжался, и обладает разломами длиной в сотни километров, появившимися из-за необходимости сжатия благодаря охлаждению.

Так почему у Земли жидкое ядро? Потому, что она ещё не охладилась. И каждое землетрясение – это небольшое приближение Земли к конечному, остывшему и насквозь твёрдому состоянию. Но не волнуйтесь, задолго до этого момента взорвётся Солнце, и все, кого вы знаете, будут уже очень давно мертвы.

Источник: habr.com