Внутриклеточный механизм регуляции, обеспечивающий гомеостаз в организме является первым уровнем регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самой клетке или поступающие в неё извне. Эти вещества могут действовать тремя способами:

— изменять активность ферментов путём ингибирования или активации;

— изменять количество ферментов и других белков путём индукции или репрессии их синтеза или путём изменения скорости их распада;

— изменять скорость трансмембранного переноса веществ, взаимодействуя с мембраной.

У сложно устроенных многоклеточных организмов с дифференцированными органами, выполняющими специальные функции, возникает необходимость межорганной координации обмена веществ. Например, интенсивная работа мышц требует включения процессов мобилизации гликогена в печени или мобилизации липидов в жировой ткани. Межорганная координация обеспечивается передачей сигналов двумя путями: через кровь с помощью гормонов (эндокринная система) и через нервную систему.


Эндокринная система – второй уровень регуляции. Она представлена железами (иногда отдельными клетками), синтезирующими гормоны — химические сигналы. Гормоны освобождаются в кровь в ответ на специфический стимул. Этим стимулом может быть нервный импульс или изменение концентрации определённого вещества в крови, протекающей через эндокринную железу (например, снижение концентрации глюкозы). Гормон транспортируется с кровью и, достигая клеток-мишеней, модифицирует в них обмен веществ через внутриклеточные механизмы, т.е. путём изменения активности или количества ферментов, либо скорости трансмембранного переноса веществ. В результате изменения обмена веществ устраняется стимул, вызвавший освобождение гормона (например, повышается концентрация глюкозы в крови). Выполнивший свою функцию гормон разрушается специальными ферментами.

Третий уровень регуляции – нервная система с рецепторами сигналов, как внешней среды, так и внутренней. Сигналы трансформируются в волну деполяризации нервного волокна (нервный импульс), который в синапсе с клеткой-эффектором вызывает освобождение медиатора – химического сигнала. Медиатор через внутриклеточные механизмы регуляции вызывает изменение обмена веществ. Клетками-эффекторами могут быть и некоторые эндокринные клетки, отвечающие на нервный импульс синтезом и выделением гормона.

Три уровня регуляции обмена веществ теснейшим образом взаимосвязаны и функционируют как единая система.

Источник: studopedia.ru


страница 4/9
Дата 26.06.2015
Размер 1,38 Mb.
Тема: Гомеостаз. Виды гомеостаза.


iv>
>


Понятие. Гомеостаз — свойство биологических систем, поддерживающее постоянство внутренней среды.
Гомеостаз на организменном (онтогенетическом) уровне. Представление о постоянстве внутренней среды организма как о необходимом условии для свободной и независимой жизни, окончательно сформулировано французским физиологом Клодом Бернаром в 1878г.

Дальнейшее развитие получило в работах Штерна, полагающего, что стабильное состояние организма достигается через постоянство, внутренней среды.

Из постоянно меняющейся внешней среды организмы получают вещества и энергию.

Внутренняя среда, сложившаяся в процессе эволюции доклеточных организмов, должна быть постоянной.

Механизмы онтогенетического гомеостаза закреплены в генотипе, проявляются на разных уровнях от молекулярно-генетического, клеточного до организменного. Они меняются на протяжении онтогенеза: в детском, юношеском возрасте несовершенные, наиболее надёжны в зрелом возрасте, а в старости их эффективность снижается.

Виды гомеостаза. Главный вид гомеостаза — генетичес­кий.

Генетический гомеостаз направлен на поддержание сбалансированной системы генов, содержащей всю биологическую информацию данного организма. Он может нарушаться вмешательством физических, химических и биологических факторов, проникающих из внешней среды или образующихся внутри организма. Генетический гомеостаз является

главным, а остальные виды гомеостаза на всех уровнях направлены на поддержание; генетического гомеостаза и целостности генетической программы.

Именно этим объясняется отсутствие межвидового скрещивания (чтобы не произошло смешивание генетических программ видов и не образовалась однородная, общая для всех).

Генетический гомеостаз в популяциях поддерживается панмиксией — свободным и независимым скрещивал нем особой, что стабилизирует в популяциях частоты разных аллелей и обеспечивает существование популяции как таковой, длительное время.

Мутации — результат нарушения генетичес­кого гомеостаза. Результатом нарушения генетического гомеостаза являются различные мутации: генные, хромосомные, геномные.
Репликация и репарация — механизмы поддержания гене­тического гомео-

стаза.

На молекулярно-генетическом уровне генетический гомеостаз поддерживается механизмами точной репликативной репарации. В поддержании высокой точной репликации важную роль играет фермент ДНК-полимераза, который отбирает для синтеза ДНК необходимые нуклеотиды. В процессе репликации возникают ошибки, которые исправляются механизмами репарации.

Репарация — вос­становление на­рушенной струк­туры ДНК.

В ядре существует набор различных ферментов осуществляющих постоянный мониторинг ДНК, удаляющих повреждённые участки и заменяющих их нормальными последовательностями нуклеотидов: это — ДНК-полимераза и функционирующая в комплексе с ней редактирующая зндонуклеаза.
Репарация может осуществляться во время репли­кации, до репликации и после. Репарация ДНК во время репликации называется самокоррекцией.

Частой причиной нарушения нормальной репликации является выбор ошибочного» азотистого основания (например, бромурацила вместо тимина). Дочерняя цепь, на конце которой появляется «ошибочный» нуклеотид, прекращает рост. Это сразу обнаруживает редактирующая эдонуклеаза, включается механизм самокоррекции. «ошибочный» нуклеотид вырезается и замещается нормальным.


Репарация ДНК до репликации называется эксцизионной (путем «вырезания»).

Под влиянием УФ-лучей, активных радикалов, нарушается комплементарное спаривание азотистых ocнований. Если в одной цепи нуклеотидов рядом расположены два тимидиновых нуклеотида — Т — Т , они соединяются между собой ковалентными связями, образуя димер. Такой димер не реплицируется, т.к. его комплементарные связи нарушены. В другой — комплементарной цепи нуклеотидов против димеров, образуется «брешь». Перед репликацией «бреши» обнаруживаются ферментами репарации, удаляются и восстанавливаются на основе второй цепи нуклеотидов.

Нарушение этой репарации у людей вызывает заболевание — пигментную ксеродерму, повышенную чувствительность к УФ-лучам, гиперпигментацию, фотофобию, ангиомеланомы, рак кожи, раннюю смерть (до 20 лет).

Репарация после репликации осуществляется путём рекомбинации — обмена фрагментами между сестринскими хроматидами. Тимидиновые «бреши» заполняются нормальными азотистыми основаниями сестринской хроматиды (нити ДНК), а окончательное восстановление которой происходит по принципу комплементарности.

Световая и темновая репарация. Различают темповую и световую репарацию. ферменты световой активируются светом, она более эффективна.
Генетический гомеостаз на клеточном и тканевом

уровнях поддержи­вает митоз.

Иммунитет — прояв­ление генетическо­го гомеостаза на организменном (онтогенетическом) уровне. Генетический гомеостаз на организменном уровне поддерживается неспецифическими механизмами защиты и системой иммунитета.

Неспецифические

механизмы защи­ты: клеточные и гуморальные.

Hнеспецифические механизмы защиты противодействуют проникновению любых факторов из внешней среды, способных нарушить генетический гомеостаз, а так же нейтрализуют аномальные факторы, оказавшиеся в организме. Формы неспецифической защиты образуют две группы: клеточные и гуморальные.

Клеточные эволюционно возникли раньше, т.к. гу­моральные — продукт деятельности клеток.

Клеточные формы неспецифической защиты. К клеточным формам неспецифической защиты отно­сят:

— эпителиальные барьеры кожи и слизистых оболочек;

— гисто-гематические барьеры отдельных органов (гемато-энцефаличеекий, гемато-офтальмический, гемато-тестикулярный);

— межжидкостные барьеры (гемато-ликворный, гемато-плевральный, гемато-синовиальный, гемато-лимфатический).

Фагоцитоз — наи­более древний и общий механизм неспецифической защиты. Фагоцитоз — поглощение и уничтожение чужеродных агентов. В 1831г. И.И.Мечников вскрыл его общебиологическую сущность и эволюционное происхождение от способа питания простейших. Явление фагоцитоза было положено в основу созданной им первой клеточной теории иммунитета.

Иммунитет как проявление генетического гомеостаза.

Определение.

Ответная реакция организма на чужеродные для организма антигены.

Природа антигенов.

Белки: видо-, индивидуально-, органо-, стадиоспецифические. Возникают в процессе травм, инфекций, инвазий, мутаций, опухоле-вого роста.
Неспецифические факторы защиты.

Лизоцим слизистых оболочек, сывороточные белки (комплемент), интерферон, фагоцитоз (Мечников И.И., 1863).
Специфический лимфоидный иммунитет.

Происхождение и место дифференцировки В- и Т-лимфоцитов. Их роль в иммунной защите.
Гуморальный иммунитет. 3-х звеньевая система защиты. Роль макрофагов — образование РHK-антигенного комплекса. Сенсибилизация лимфоцитов и превраще­ние их в иммунно-компетентные клетки. Образование плазматических клеток, вырабатывающих антитела — иммуноглобулины сыворотки под действием Т-хелперов.
Клеточный иммунитет. Трансплацентарный иммунитет.

Роль Т-лимфоцитов-киллеров в уничтожении чужеродных клеток и отторжении чужеродного трансплантата.
Становление иммунитета в онтогенезе. Генетическая запрограммированность иммунитета. Закладка тимуса (у человека на 2-ом месяце эмбриональной жизни). Максимальная ве­личина на 9-ом месяце эмбриональной жизни. Уменьшение в течение жизни и исчезновение в старости. Роль тимуса в дифференцировке иммуни­тета. Роль тимуса в старении.
Толерантность. Способность организма не «распознавать» чужеродного антигена и не давать на него иммунного ответа (Медавар, Гашек 1959).
Проблема трансплантации. Виды трансплантаций. Материал для трансплантаций. Антигены тка­невой совместимости донора и реципиента. Пути преодоления тка­невой несовместимости. Индивидуальные характеристики по системе «человеческих лейкоцитарных антигенов» и белков «парламентеров» Примененное облучения, иммунодепрессантов, антилимфоцитарных сывороток.
Повышение эффективности вакцинаций. Индивидуальный подбор вакцин. Создание поливакцин со многими, детерминированными группами от разных возбудителей.
Нарушение иммунной системы. Иммунодефициты, связанные с выведением или поражением какого-либо звена иммунной системы. Аутоиммунные заболевания, связанные с травмой или генетически обусловленные.


ЛЕКЦИЯ № 15
Тема: Теория биологической эволюции.


Развитие эволюцион­ных идей.

Представления об изменяемости органического мира ученых-философов древнейших цивилизаций (Демокрит, Гераклит, Лукреций, Кар,Фалес).
Идеалисти­ческие пред­ставления. Платон — учение об «идеях» — бестелесных формах вещей. Аристотель – причина развития материального мира в нематериальном начале.
Креационизм. Представления об абсолютной неизменяемости и целе­сообразности природы.
Первые клас­сификации. Цезальпин (1583) Джо Рей (1393), Цезальппн (1583) Джвн Рей (1393), Карл Линней (1707-1778) — создатель первой полной искусственной класси­фикации живого. Введение в практику бинарной номен­клатуры вида. Определение «вида» как сходных по строе­нию организмов.
Трансформизм. Признание изменяемости органического мира (Бюффон, Эрадм, Дарвин, Ломоносов, Гёте, Радищев).
Идеи эво­люционизма.

Введение сравнительного метода в биологию. Учении е о гомологии Сент-Илера.
Первая эво­люционная теория. Ламарк «Философия зоологии» (1309 г). Теория градаций. Причина развития – в стремлении организмов к совершенствованию.

Факторы эволюции:

I) упражнение и неупражнение органов в зависимости от среды;

2) передача достигнутых изменений потомству. Отрицание реального существования видов.

Неоламаркизм.

1) психоламаркизм — стремление в развитии к конечной цели;

2) механоламаркизм — все изменения адекватны среде и «отбор» не нужен.

Эволюцион­ная теория Дарвина. «Происхождение видов» (1853г). Факторы эволюции:

Естественный отбор, интенсивность размножения.

Борьба за существование.

Наследственная изменчивость.

Дивергенция. Вымирание промежуточных форм.

Основные критерии вида: морфологический, географический, экологический, физиологический. Теория Альфреда Уоллеса «О стремлении разновидностей к неограниченному отклонению от первоначального типа».

Значение теории Дарвина. Создание естественной классификации, отражающей историческое развитие видов.
Слабые стороны теории Дарвина. Незнание природы наследственной изменчивости и дис­кретного характера наследственных факторов.
Современная синтетическая теория эволюции.

Определение.

Теория, являющаяся синтезом классического дарвинизма и генетики. Значение работ Четверикова, Добржанского, Тимо­феева-Ресовского ( 1937 — 1940 г.г.).

Элементарная эволюционная единица. Популяция. Критерии ее характеризующие: экологический, морфо-физиологический, генетический.
Элементарный эволюционный материал. Мутации — дискретные изменения кода наследственной ин­формации. Спектр мутаций: морфологические, биохимические, физиологические, этологические.

Генетическая комбинаторика мутаций.

Элементарные

факторы эволюции.

1) Главный фактор — естественный отбор.

2) Популяционные волны — периодические колебания числен­ности, обусловленные различными причинами, нарушающие закон равновесия генных частот.

3) Изоляции, обусловленные различными факторами, нарушаю­щими панмиксию и приводящие к гомогенизации.

Элементарное эволюционное явление. Сдвиг, в соотношении между нормальным и мутантным геном под действием естественного отбора.
Формы отбора.

Отбор осуществляется по фенотипам и величина давления отбора обусловлена адаптивной ценностью признака, т.е. способностью к выживанию.
Значение отбора. Шмальгаузен открыл стабилизирующий отбор и движущий. Возможны также дизруптивный, половой, индивидуальный и групповой тип отбора. Поэтому роль отбора творческая и ведущая.
Значение микро­эволюции. Может привести к образованию новых видов. Превращение генетически открытых систем в генетически закрытые.
Главный крите­рий вида — ге­нетическое единство. Вид — это репродуктивно изолированный генофонд. Это наи­меньшая, генетически неделимая, закрытая система в живой природе.
Пути видообра­зования. 1) Аллопатрическое — на периферии ареала исходного вида.

2) Симпатрическое — внутри ареала за счет быстрого изменения генотипа, приводящего к репродуктивной изоля­ции.

ЛЕКЦИЯ №16
Тема: Теория биологической эволюции. Популяционная генетика человека.

Генетическая

характеристика

популяции.

Большая группа организмов, характеризующаяся панмиксией, собственным генофондом и частотой генов в генофонде.
Методы популяционной

генетики.

Построение математических моделей популяций аналитических и машинных. Изучение природных популяций (С.С.Четвериков, Н.В. Тимофеев-Ресовский, Н.П.Дубинин, Ф.Г.Добржанский, Иосида).

Закон равно­весия генных частот и его значение для анализа чело­веческих популяций.

Установлен в 1908 г. английским математиком Харди и немецким врачом Вайнбергом, С.С. Четвериковым. Позволяет установить генетиче­скую структуру популяции, таким образом проанализировать популяцию по любому гену. Действует только в идеальных популяциях: неограни­ченно больших и панмиксических, при отсутствии естественного отбора, мутаций и др.

Генетико-автоматические процессы — «дрейф генов». Установлены С.С. Четвериковым, Н.П. Дубининым,Д.Д. Ромашевым (1931 г.) и С.Райтом в ограниченной популяции или при снижении ее численности. Скорость дрейфа генов обратно пропорциональна размеру популяции и приводит к гомогенизации генофонда, популяции. Этому способст­вуют физиологические, географические, экономические, социаль­ные и религиозные изоляты, а также временное снижение числен­ности популяций, обусловленные войнами, стихийными бедствиями, эпидемиями и т.д.

Эффект основателя.

Проявляется при восстановлении численности популяции вследствие распространения случайно оставшегося в генофонде какого-нибудь мутантного гена (порфирии, амавротической идиотии, симфалангии, ночной слепоты и т.д.).

Система бра­ков. Медико-генетические аспекты семьи. Работы С.С. Четверикова и Н.П. Дубинина по переводу скрытых летальных генов в гомозиготное состояние в эксперименте. Коэффициент родства — количество общих генов супругов. Коэффициент инбри­динга — вероятность перехода их в гомозиготное состояние у по­томства. Коэффициент инбридинга популяции показывает среднюю степень кровного родства в популяции.

K= ∑ F·M

F-коэффициент инбридинга

M-частота кровнородственных браков

Опасность родственных браков: гибель плода, гибель при рождении, ранняя смерть, отягощённость наследственными не­дугами.

Специфика действия ес­тественного отбора в

популяциях человека.

Селективное значение групповых факторов крови. Предрасположен­ность и устойчивость к особо опасным инфекциям, инфаркту, яз­венной болезни, диабету и др.Естественный и эмбриональный отбор ,их влияние на генетический груз в популяциях человека.

Фармакогенетика.

Фармакогенетика изучает генетический контроль метаболизма фар­макологических средств. Непереносимость и аномальные реакции на лекарства (сульфаниламиды, барбитураты и др.) вследствие ферментопатий. Значение для практического здравоохранения дан­ных об их популяционном распространении.

Экологическая генетика. Изучает патологические наследственно-обусловленные реакции человека на факторы среды: пищевые добавки, продукты загрязнения окружающей среды, профвредности.

Современные методы Изучение нуклеотидной последовательности

популяционной генетики ДНК митохондрий, У-хромосомы,

человека микросателлитов и макросателлитов. Изучение

генетической гетерогенности популяций, опре-

деление степени родства по различиям в

последовательности нуклеотидов.

Современные Генетический анализ популяций: определение

направления происхождения и становления популяций

человека (этносов, народностей), их миграции и взаимовлияния.
Коэффициенты родства и инбридинга в популяции человека

Типы браков

Коэффициент родства

Коэффициент

инбридинга

1.Полные сибсы

(родители и дети)
2.Полусибсы

1/2 (50%)

1/4

3.Дважды двоюродные

сибсы (дядя-

племянник)

1/4 (25%)

1/8

4.Двоюродные сибсы

1/8 (12,5%)

1/16

5.Троюродные сибсы 1/32 (6,25%) 1/64
ЛЕКЦИЯ № 17
Тема: Взаимодействие индивидуального и исторического развития

Закон «зародышевых сходств»
«Эмбриологический закон» К.Бэра 1828 г.

Ч. Дарвин 1859 г.

Биогенетический закон Ф. Мюллера и Э.Геккеля 1866 г.
Дополнение биогенетического закона Э. Геккелем
Учение

А.Н. Северцова о филэмбриогенезах

1938 г.
Филэмбриогенезы

Выводы И.И. Шмальгаузена

1938 г.

Атавизмы.

Атавистические

пороки развития

Атавистические – анцестральные онто-филогенетически обусловленные пороки развития
Аллогенные пороки развития

Ранние стадии развития эмбрионов, принадлежащих к одному типу практически не различимы.
Признаки (структуры) зародыша закладываются в определенной последовательности (признаки типа, затем класса, отряда и т.д., в последнюю очередь признаки вида и индивидуальные).
обнаружил сходство эмбрионов и личинок с их предковыми формами.
«Онтогенез краткое и быстрое повторение филогенеза».

Черты предков у эмбрионов – рекапитуляции. Поддерживают целостность онтогенеза, особенно важны на ранних этапах эмбриогенеза, являются индукторами (организационными центрами) для развития последующих структур.

Зародыш повторяет признаки эмбрионов и личиночных стадий, а не взрослых форм.

Признаки зародыша:

палингенезы (рекапитуляции)

ценогенезы – новые признаки, необходимые только зародышу, не сохраняющиеся у взрослых стадий, поэтому не влияющие на ход филогенеза.

Новые признаки зародыша, уклоняющие прежний путь развития, сохраняющиеся у взрослых стадий, поэтому меняющие направление филогенеза – филэмбриогенезы.
Анаболии возникают после завершения развития органа и проявляются в виде удлинения формирования органа, появления дополнительной стадии, дополнительного изменения формы, изменения положения органа. Анаболии в наименьшей степени нарушают ход онтогенеза, т.к. развивающийся орган полностью рекапитулирует.
Девиации – отклонения от прежнего развития органа возникают в середине морфогенеза органа (орган частично рекапитулирует).

Архаллаксисы – эволюционные изменения возникают в самом начале развития органа (без рекапитуляций), и как новые дополнительные эмбриональные зачатки.
Онтогенез – основа филогенеза. Филогенез исторический ряд последовательных онтогенезов. Различные изменения в онтогенезе вызовут отклонение всей филогенетической линии.
Признак, не встречающийся в норме у представителя данного вида, но нормальный для предковой формы – атавизм.

Атавизмы проявляются:

а) в виде недоразвития органа в связи с остановкой на определенном этапе онтогенеза (расщелина нёба, трёхкамерное сердце);

б) в сохранении (персистировании) эмбриональной структуры (боталлов проток, две дуги аорты, шейные рёбра);

в) в нарушении нормального положения органа (анаболии и гетеротопии) (тазовая почка, крипторхизм, шейная эктопия сердца);

г) в чрезмерном развитии рудиментов.

Атавизмы, снижающие жизнеспособность организмов, приводящие к гибели, называются атавистическими пороками развития (анэнцефалия, несмыкание нервной трубки – рахисхиз, трёхкамерное сердце).
Атавистические пороки, имеющие одинаковое фенотипическое проявление у родственных форм. В основе – одинаковые мутации – причины параллельной изменчивости (щелинные дефекты верхней губы, челюсти, нёба у собак). Их изучение важно для лечения и коррекции.

лекция № 18

Источник: zubstom.ru

2. Учебные цели:

— Знать сущность гомеостаза, физиологические механизмы поддержания гомеостаза, основы регуляции гомеостаза.

— Изучить основные виды гомеостаза. Знать возрастные особенности гомеостаза

3. Вопросы для самоподготовки к освоению данной темы:

1) Определение понятия гомеостаз

2) Виды гомеостаза.

3) Генетический гомеостаз

4) Структурный гомеостаз

5) Гомеостаз внутренней среды организма

6) Иммунологический гомеостаз

7) Механизмы регуляции гомеостаза: нейрогуморальный и эндокринный.

8) Гормональная регуляция гомеостаза.

9) Органы, участвующие в регуляции гомеостаза

10) Общий принцип гомеостатических реакций

11) Видовая специфичность гомеостаза.

12) Возрастные особенности гомеостаза

13) Патологические процессы, сопровождающиеся нарушением гомеостаза.

14) Коррекция гомеостаза организма – главная задача врача.

__________________________________________________________________

4. Вид занятия: внеаудиторное

5. Продолжительность занятия – 3 часа.

6. Оснащение.Электронная презентация «Лекции по биологии», таблицы, муляжи

7. Содержания занятия:

Гомеостаз (гр. homoios — равный, stasis -состояние) — свойство организма поддерживать постоянство внутренней среды и основные черты присущей ему организации, несмотря на изменчивость параметров внешней среды и действие внутренних возмущающих факторов.

Гомеостаз каждого индивидуума специфичен и обусловлен его генотипом.

Организм — открытая динамичная система. Поток веществ и энергии, наблюдаемый в организме, обуславливает самообновление и самовоспроизведение на всех уровнях от молекулярного до организменного и популяционного.

В процессе обмена веществ с пищей, водой, при газообмене в организм из окружающей среды поступают разнообразные химические соединения, которые после превращений уподобляются химическому составу организма и входят в его морфологические структуры. Через определённый период усвоенные вещества разрушаются, освобождая энергию, а разрушенную молекулу заменяет новая, не нарушая целостности структурных компонентов организма.

Организмы находятся в условиях непрерывно меняющейся среды, несмотря на это, основные физиологические показатели продолжают осуществляться в определённых параметрах и организм поддерживает устойчивое состояние здоровья в течение длительного времени, благодаря процессам саморегуляции.

Таким образом, понятие гомеостаза не связано со стабильностью процессов. В ответ на действие внутренних и внешних факторов происходит некоторое изменение физиологических показателей, а включение регуляторных систем обеспечивает поддержание относительного постоянства внутренней среды. Регуляторные гомеостатические механизмы функционируют на клеточном, органном, организменном и надорганизменном уровнях.

В эволюционном плане гомеостаз — это наследственно закреплённые адаптации организма к обычным условиям окружающей среды.

Различают следующие основные виды гомеостаза:

1) генетический

2) структурный

3) гомеостаз жидкой части внутренней среды (кровь, лимфа, межтканевая жидкость)

4) иммунологический.

Генетический гомеостаз — сохранение генетической стабильности благодаря прочности физико-химических связей ДНК и её способности к восстановлению после повреждения (репарация ДНК). Самовоспроизведение — фундаментальное свойство живого, оно основано на процессе редупликации ДНК. Сам механизм этого процесса, при котором новая нить ДНК строится строго комплементарно около каждой из составляющих молекул двух старых нитей, является оптимальным для точной передачи информации. Точность этого процесса высока, но всё же могут происходить ошибки при редупликации. Нарушение структуры молекул ДНК может происходить и в её первичных цепях вне связи с редупликацией под воздействием мутагенных факторов. В большинстве случаев происходит восстановление генома клетки, исправление повреждения, благодаря репарации. При повреждении механизмов репарации происходит нарушение генетического гомеостаза как на клеточном, так и на организменном уровнях.

Важным механизмом сохранения генетического гомеостаза является диплоидное состояние соматических клеток у эукариот. Диплоидные клетки отличаются большей стабильностью функционирования, т.к. наличие у них двух генетических программ повышает надёжность генотипа. Стабилизация сложной системы генотипа обеспечивается явлениями полимерии и другими видами взаимодействия генов. Большую роль в процессе гомеостаза играют регуляторные гены, контролирующие активность оперонов.

Структурный гомеостаз — это постоянство морфологической организации на всех уровнях биологических систем. Целесообразно выделить гомеостаз клетки, ткани, органа, систем организма. Гомеостаз нижележащих структур обеспечивает морфологическое постоянство вышестоящих структур и является основой их жизнедеятельности.

Клетке, как сложной биологической системе, присуща саморегуляция. Установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из неё. В клетке непрерывно идут процессы изменения и восстановления органоидов, разрушаются и восстанавливаются и сами клетки. Восстановление внутриклеточных структур, клеток, тканей, органов в процессе жизнедеятельности организма происходит благодаря физиологической регенерации. Восстановление структур после повреждения — репаративной регенерации.

Гомеостаз жидкой части внутренней среды — постоянство состава крови, лимфы, тканевой жидкости, осмотического давления, общей концентрации электролитов и концентрации отдельных ионов, содержания в крови питательных веществ и т.д. Эти показатели даже при значительных изменениях условий внешней среды удерживаются на определённом уровне, благодаря сложным механизмам.

К примеру, одним из важнейших физико-химических параметров внутренней среды организма является кислотно-щелочное равновесие. Соотношение водородных и гидроксильных ионов во внутренней среде зависит от содержания в жидкостях организма (кровь, лимфа, тканевая жидкость) кислот — донаторов протонов и буферных оснований — акцепторов протонов. Обычно активную реакцию среды оценивают по иону H+. Величина pH (концентрация водородных ионов в крови) является одним из стабильных физиологических показателей и колеблется у человека в узких пределах — от 7,32 до 7,45. От соотношения водородных и гидроксильных ионов в значительной мере зависят активность ряда ферментов, проницаемость мембран, процессы синтеза белка и т.д.

В организме имеются различные механизмы, обеспечивающие поддержание кислотно-щелочного равновесия. Во-первых, это буферные системы крови и тканей (карбонатный, фосфатные буферы, тканевые белки). Буферными свойствами обладает и гемоглобин, он связывает углекислоту и препятствует её накоплению в крови. Сохранению нормальной концентрации водородных ионов способствует и деятельность почек, поскольку значительное количество метаболитов, имеющих кислую реакцию, выводится с мочой. Если перечисленные механизмы оказываются недостаточными, концентрация углекислоты в крови увеличивается, происходит некоторый сдвиг pH в кислую сторону. В таком случае возбуждается дыхательный центр, усиливается легочная вентиляция, что приводит к понижению содержания углекислоты и нормализации концентрации водородных ионов.

Чувствительность тканей к изменениям внутренней среды различна. Так сдвиг pH на 0,1 в ту или другую сторону от нормы приводит к значительным нарушениям деятельности сердца, а отклонение на 0,3 является опасным для жизни. Нервная система особенно чувствительна к снижению содержания кислорода. Для млекопитающих опасно колебание концентрации ионов кальция, превышающее 30% и т.д.

Иммунологический гомеостаз — поддержание постоянства внутренней среды организма путём сохранения антигенной индивидуальности особи. Под иммунитетом понимают способ защиты организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации (Петров, 1968).

Чужеродную генетическую информацию несут бактерии, вирусы, простейшие, гельминты, белки, клетки, включая изменённые клетки самого организма. Все перечисленные факторы являются антигенами. Антигены — это вещества, которые при введении в организм способны вызвать образование антител или другую форму иммунного реагирования. Антигены очень разнообразны, чаще ими являются белки, но это бывают и крупные молекулы липополисахаридов, нуклеиновых кислот. Неорганические соединения (соли, кислоты), простые органические соединения (углеводы, аминокислоты) не могут быть антигенами, т.к. не имеют специфичности. Австралийский учёный Ф.Бернет (1961) сформулировал положение, что основное значение иммунной системы состоит в распознавании «своего» и «чужого», т.е. в сохранении постоянства внутренней среды — гомеостаза.

Иммунная система имеет центральное (красный костный мозг, вилочковая железа — тимус) и периферическое (селезёнка, лимфоузлы) звено. Защитная реакция осуществляется лимфоцитами, образующимися в указанных органах. Лимфоциты типа В при встрече с чужеродными антигенами дифференцируются в плазматические клетки, которые выделяют в кровь специфические белки — иммуноглобулины (антитела). Эти антитела, соединяясь с антигеном, обезвреживают их. Такая реакция получила название гуморального иммунитета.

Лимфоциты типа Т обеспечивают клеточный иммунитет, уничтожая чужеродные клетки, например, отторжение трансплантата, и подвергшиеся мутации клетки собственного организма. По расчётам, приведённым Ф.Бернетом (1971), в каждой генетической смене делящихся клеток человека в течение одних суток накапливается около 10 6 спонтанных мутаций, т.е. на клеточном и молекулярном уровнях непрерывно происходят процессы, нарушающие гомеостаз. Т-лимфоциты опознают и уничтожают мутантные клетки собственного организма, таким образом обеспечивается функция иммунного надзора.

Иммунная система осуществляет контроль за генетическим постоянством организма. Эта система, состоящая из анатомически разобщённых органов, представляет функциональное единство. Свойство иммунной защиты достигло высшего развития у птиц и млекопитающих.

Регуляция гомеостаза осуществляется следующими органами и системами (рис. 91):

1) центральной нервной системой;

2) нейроэндокринной системой, включающей в свой состав гипоталамус, гипофиз, периферические эндокринные железы;

3) диффузной эндокринной системой (ДЭС), представленной эндокринными клетками, расположенными практически во всех тканях и органах (сердце, лёгкое, ЖКТ, почки, печень, кожа и др.). Основная масса клеток ДЭС (75%) сосредоточена в эпителии пищеварительной системы.

В настоящее время известно, что ряд гормонов одновременно присутствует в центральных нервных структурах и эндокринных клетках ЖКТ. Так гормоны энкефалины и эндорфины обнаружены в нервных клетках и эндокринных клетках поджелудочной железы и желудка. Холицистокинин выявлен в головном мозге и в 12-перстной кишке. Такие факты дали основание для создания гипотезы о наличии в организме единой системы клеток химической информации. Особенность нервной регуляции состоит в быстроте наступления ответной реакции, причём эффект её проявляется непосредственно в том месте, куда поступает по соответствующему нерву сигнал; реакция кратковременна.

В эндокринной системе регуляторные влияния связаны с действием гормонов, разносимых с кровью по всему организму; эффект действия длительный и не имеет локального характера.

Объединение нервных и эндокринных механизмов регуляции происходит в гипоталамусе. Общая нейроэндокринная система позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральных функций организма.

Гипоталамус обладает и железистыми функциями, продуцируя нейрогормоны. Нейрогормоны, попадая с кровью в переднюю долю гипофиза, регулируют выделение тропных гормонов гипофиза. Тропные гормоны регулируют непосредственно работу эндокринных желёз. Например, тиреотропный гормон гипофиза возбуждает работу щитовидной железы, повышая уровень тиреоидного гормона в крови. Когда концентрация гормона возрастёт выше нормы для данного организма, тиреотропная функция гипофиза угнетается и деятельность щитовидной железы ослабляется. Таким образом, для сохранения гомеостаза необходимо уравновешивание функциональной активности железы с концентрацией гормона, находящегося в циркулирующей крови.

На этом примере проявляется общий принцип гомеостатических реакций: отклонение от исходного уровня — сигнал — включение регуляторных механизмов по принципу обратной связи — коррекция изменения (нормализация).

Некоторые эндокринные железы не испытывают прямой зависимости от гипофиза. Это островки поджелудочной железы, продуцирующие инсулин и глюкагон, мозговая часть надпочечников, эпифиз, тимус, околощитовидные железы.

Особое положение в эндокринной системе занимает тимус. В ней вырабатываются гормоноподобные вещества, которые стимулируют образование Т-лимфоцитов, и устанавливается взаимосвязь между иммунными и эндокринными механизмами.

Способность сохранять гомеостаз — одно из важнейших свойств живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды. Способность к поддержанию гомеостаза неодинакова у различных видов, она высока у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции.

В онтогенезе каждый возрастной период характеризуется особенностями обмена веществ, энергии и механизмами гомеостаза. В детском организме преобладают процессы ассимиляции над диссимиляцией, чем обусловлен рост, увеличение массы тела, механизмы гомеостаза ещё недостаточно созрели, что накладывает отпечаток на протекание как физиологических, так и патологических процессов.

С возрастом происходит совершенствование обменных процессов, механизмов регуляции. В зрелом возрасте процессы ассимиляции и диссимиляции, система нормализации гомеостаза обеспечивают компенсацию. При старении снижается интенсивность обменных процессов, ослабляется надёжность механизмов регуляции, происходит угасание функции ряда органов, одновременно развиваются новые специфические механизмы, поддерживающие сохранение относительного гомеостаза. Это выражается, в частности, в увеличении чувствительности тканей к действию гормонов наряду с ослаблением нервных воздействий. В этот период ослаблены адаптационные особенности, поэтому повышение нагрузки и стрессовые состояния легко могут нарушить гомеостатические механизмы и нередко становятся причиной патологических состояний.

Знание этих закономерностей необходимо для будущего врача, так как болезнь является следствием нарушения механизмов и путей восстановления гомеостаза у человека.

Источник: studopedia.org