Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.
m>Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии:

  • лептотена (завершение репликации ДНК),
  • зиготена (конъюгация гомологичных хромосом, образование бивалентов), 
  • пахитена (кроссинговер, перекомбинация генов), 
  • диплотена (выявление хиазм, 1 блок овогенеза у человека), 
  • диакинез (терминализация хиазм).

Деление клетки мейоз

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1; 9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.


Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.


Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Источник: vseobiology.ru

Фазы митоза

Митоз — лишь одна из частей клеточного цикла, но он достаточно сложен, и в его составе, в свою очередь, были выделены пять фаз: профаза, прометафаза, метофаза, анафаза и телофаза. Удвоение хромосом и центриолей (в клетках животных) происходит еще в ходе интерфазы. В результате этого, в митоз хромосомы вступают уже удвоенными, напоминающими букву X (идентичные копии материнской хромосомы соединены друг с другом в области центромеры).


  • В профазе происходит конденсация гомологичных (парных) хромосом и начинается формирование веретена деления. В клетках животных начинается расхождение пары центриолей (полюсов веретена).
  • Прометафаза начинается с разрушения ядерной оболочки. Хромосомы начинают двигаться и их кинетохоры вступают в контакт с микротрубочками веретена деления, а полюса продолжают расхождение друг от друга. К концу прометафазы формируется веретено деления.
  • В метафазе движения хромосом почти полностью замирают, и кинетохоры хромосом располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку. Важно отметить, что они остаются в таком положении в течение довольно длительного времени. В это время в клетке происходят существенные перестройки, которые «разрешают» последующее расхождение хромосом. Обычно в связи с этим метафаза — наиболее удобное время для подсчета хромосомных чисел.
  • В анафазе хромосомы делятся (соединение в районе центромеры разрушается) и расходятся к полюсам деления. Параллельно полюса веретена также расходятся друг от друга.
  • В телофазе происходит разрушение веретена деления и образование ядерной оболочки вокруг двух групп хромосом, которые деконденсируются и образуют дочерние ядра.

Варианты митоза

Следует отметить, что в разных группах живых организмов митоз протекает несколько по-разному. Описанный выше вариант митоза называется открытый ортомитоз (ядерная оболочка разрушается, веретено деления прямое, поскольку продукты деления клеточного центра располагаюся на противоположных полюсах ядра). Характерен для многоклеточных животных, многоклеточных растений и ряда простейших.

В некоторых группах простейших продукты деления клеточного центра в анафазе не достигают противоположных сторон ядра, в результате чего микротрубочки веретена деления располагаются под углом, напоминая букву V (такой вариант деления получил название плевромитоз). В ряде случаев митоз происходит без разрушения ядерной оболочки (закрытый митоз — например, митоз микронуклеусов инфузорий, динофлагеллят, эвгленовых, многих групп грибов). Иногда в ядерной оболочке при митозе образуются крупные отверстия, через которые в ядро заходят нити веретена, но в целом ядерная оболочка сохраняется (полузакрытый митоз, например, у хламидомонады). Среди закрытых митозов встречаются варианты с внутриядерным и с внеядерным веретеном деления (к последним относится митоз динофлагеллят и некоторых других групп жгутиконосцев). Наконец, клеточный центр может содержать центриоли (как, например, у животных) или не содержать их (как, например, у цветковых растений). Соответственно, различают также центриолярный и ацентриолярный митоз.

См. также

  • Амитоз
  • Клеточный цикл
  • Мейоз

Литература

Райков И.Б. Ядро простейших. Морфология и эволюция. — Л., «Наука», 1978. — 328 с.

Источник: biograf.academic.ru

Мейоз — один из типов клеточного деления, наряду с митозом. Мейоз включает два деления диплоидной клетки, результат которых — появление четырех гаплоидных половых клеток, у животных это гаметы, у растений и грибов споры. В любой гамете имеется половина первичного соматического набора хромосомы.

Иначе говоря, мейоз — это такое деление клетки, при котором происходит сокращение исходного количества хромосом вдвое: диплоидный набор (2n) превращается в гаплоидный (n).

Биологический смысл мейоза:

1)      мейоз — залог постоянного образования половых клеток у животных, спор у грибов и растений;

2)      в результате мейоза набор хромосом становится в два раза меньше, что способствует сохранению постоянства хромосомного набора в поколениях (диплоидный набор вновь восстанавливается после оплодотворения);

3)      в процессе мейоза между гомологичными хромосомами происходит генетическая рекомбинация — кроссинговер, дающий новые «свежие» комбинации аллелей генов в половых клетках и новые комбинации признаков;


4)      в мейозе идет независимое расхождение хромосом, в результате чего в половых клетках возникают новые сочетания хромосом, что также способствует появлению новых комбинаций признаков у отдельных особей.

Профаза 1 мейоза 1

Профаза мейоза 1 имеет пять последовательных стадий. Ниже мы рассмотрим подробности конъюгации и кроссинговера во всех пяти стадиях профазы мейоза 1: лептотене, зиготене, пахитене, диплотене и диакинезе.

1.      Лептотена. Это так называемая стадия тонких нитей. Хромосомы тоненькие, удлиненные, «составлены» из двух сестринских хроматид, но они пока тесно сближены, отчего каждая хромосома кажется одиночной. Хромосомы конденсируются и видны в микроскоп. Они прикреплены концами к ядерной мембране. Итак, в ходе лептотены хромосомы «слипаются» в единое образование, становятся видимыми.

2.      Зиготена. Гомологичные хромосомы объединяются. Вначале идет синапс — тесное сближение гомологов, это и обозначает переход от лептотены к зиготене. Концы хромосом-гомологов могут сближаться, а затем соединение от кончиков распространяется вдоль хромосом (впрочем, иногда бывает и наоборот). Образуется синаптонемальный комплекс.


1)      Бивалент образуется при соединении двух гомологичных хромосом. Так как ДНК удваивалась в интерфазе, каждая из гомологичных хромосом будет состоять из пары хроматид.

2)      Итак, бивалент — структура, содержащая четыре хроматиды, или (что аналогично) две гомологичные хромосомы. Используется и другое название — тетрада, при этом подчеркивается, что любая хромосома построена из пары сестринских хроматид.

3)      Обратите внимание, что ниже на рисунках показан пример поведения в клетке лишь одной пары гомологичных хромосом (одного бивалента). Как вы понимаете, в разных клетках разное количество пар хромосом, значит, такие же процессы по аналогии будут идти с каждой парой хромосом.

4)      На рисунке 1 две гомологичные хромосомы (бивалент) до сближения (очевидно, что состоят они из двух хроматид).

5)      На рисунке 2 представлены биваленты при соединении двух гомологичных хромосом в профазе. Идет обмен участками хромосом. Проведем аналогию — на стадии зиготены хромосомы, как половые клетки при образовании зиготы в половом процессе, сближаются.

3.      Пахитена. Стадия толстых нитей. Синапс завершен. Главное событие этой стадии — кроссинговер, или же перекрест между несестринскими хроматидами гомологичных хромосом. Перекресты проявляются в виде хиазм. Для запоминания можно применить «правило двух П»: пахитена и перекрест начинаются с буквы П.


1)      В чем смысл кроссинговера? Материнские и отцовские хромосомы, построенные из пары хроматид, обмениваются участками.

2)      Кроссинговер дает новые сочетания аллелей генов в хромосомах гамет. Помните, что в ходе кроссинговера не возникают новые аллели генов, он создает только их новые комбинации. Новые аллели возникают как результат генных мутаций.

3)      Итак, при кроссинговере появляются хромосомы с новыми сочетаниями аллелей и, как следствие, новыми сочетаниями признаков, которые несут эти аллели.

4)      Однако если в гомологичных хромосомах присутствуют две идентичные аллели генов, обмен ими не приведет к изменению признаков. Например, если идет перекрест между гомологичными хромосомами, в каждой из которых два одинаковых аллеля цвета глаз, то нового сочетания аллелей не образуется. Если же в одной хромосоме аллель А (карие глаза), а в другой а (голубые глаза), то кроссинговер приведет к обмену аллелями и образованию новых сочетаний аллелей в хромосомах.

4.      Диплотена. Хромосомы в биваленте отталкиваются, они связаны только в местах хиазм. Идет окончание синапса, разрушение синаптонемального комплекса. У женщин на стадии диплотены хромосомы могут находиться в течение 10–15 лет, так как у них исходные клетки, из которых сформируются яйцеклетки, ооциты 1 порядка, начинают формироваться еще в ходе эмбрионального развития.


1)      Итак, объединение хромосом заканчивается, они снова разделяются, и мы видим «ди» — две хромосомы, причем каждая имеет в своем составе две хроматиды.

2)      В профазе 1 мейоза в отличие от профазы митоза, многие петли хромосом еще не конденсированы, в них идет транскрипция. К примеру, в ооцитах идет активный синтез РНК, синтез белков для питания будущего зародыша. Хромосомы с отходящими от них неконденсированными петлями хроматина называют хромосомами типа ламповых щеток (встречаются также у амфибий и других организмов).

5.      Диакинез. Заканчивается конденсация хромосом. Они утолщены, отделены от ядерной мембраны. Бивалент явно состоит их двух гомологичных хромосом. Каждая из них — из двух хроматид. Набор хромосом и количество ДНК — 2n4c.

Источник: EgeVideo.ru

Рекомендации подготовлены методистами по биологии ГМЦ ДОгМ Миловзоровой А.М. и Кулягиной Г.П. по материалам пособий, рекомендованных ФИПИ для подготовки к ЕГЭ по биологии.

Биологическое значение мейоза: благодаря мейозу про­исходит редукция числа хромосом. Из одной диплоидной клетки образуется 4 гаплоидных.

Благодаря мейозу обра­зуются генетически различные клетки (в том числе гаметы), т. к. в процессе мей­оза трижды происходит перекомбинация генетического материала:

1) за счёт кроссинговера;

2) за счёт случайного и независимо­го расхождения гомологичных хромосом;

3) за счёт случайного и независимо­го расхождения кроссоверных  хроматид.

Первое и второе деление мейоза складываются из тех же фаз, что и митоз, но сущность изменений в наследственном аппарате другая.

Профаза 1. (2n4с) Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий. Гомо­логичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют.

Конъюгацией называют процесс тесного сближения гомологичных хромо­сом. Пару конъюгирующих хромосом называют бивален­том. Биваленты продолжают укорачиваться и утолщать­ся. Каждый бивалент образован четырьмя хроматидами. Поэтому его называют тетрадой.

Важнейшим событием является кроссинговер – обмен участками хромосом. Кроссинговер приводит к первой во время мейоза реком­бинации генов.

В конце профазы 1 формируется веретено деления, исчезает ядерная оболочка. Биваленты перемещаются в экватори­альную плоскость.

Метафаза 1. (2n; 4с) Заканчивается формирование веретена деления. Спирализация хромосом максимальна. Биваленты располагаются в плоскости экватора. Причем центромеры гомологичных хромосом обращены к разным полюсам клетки. Расположение бивалентов в экваториаль­ной плоскости равновероятное и случайное, то есть каждая из отцовских и материнских хромосом может быть повер­нута в сторону того или другого полюса. Это создает пред­посылки для второй за время мейоза рекомбинации генов.

Анафаза 1. (2n; 4с) К полюсам расходятся целые хро­мосомы, а не хроматиды, как при митозе. У каждого полюса оказывается половина хромосомного набора. Причем пары хромосом расходятся так, как они располагались в плоскости экватора во время метафазы. В результате возникают самые разнообразные сочетания от­цовских и материнских хромосом, происходит вторая рекомбинация генетического материала.

Телофаза 1. (1n; 2с) У животных и некоторых растений хроматиды деспирализуются, вокруг них формируется ядерная оболочка. Затем происходит деление цитоплазмы (у животных) или образуется разделяющая клеточная стен­ка (у растений). У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе деление мейоза

Интерфаза 2. (1n; 2с) Харак­терна только для животных клеток. Репликация ДНК не происходит. Вторая стадия мейоза включает также профазу, метафазу, анафазу и телофазу.

Профаза 2. (1n; 2с) Хромосомы спирализуются, ядер­ная мембрана и ядрышки разрушаются, центриоли, если они есть, перемещаются к полюсам клетки, формируется веретено деления.

Метафаза 2. (1n; 2с) Формируются метафазная пластинка и веретено деления, нити веретена деления прикреп­ляются к центромерам.

Анафаза 2. (2n; 2с) Центромеры хромосом делятся, хроматиды становятся самостоятельными хромосомами, и нити веретена деления растягивают их к полюсам клетки. Число хромосом в клетке становится диплоидным, но на каждом полюсе формируется гаплоидный набор. Поскольку в метафазе 2 хроматиды хромосом располагаются в плоскости экватора случайно, в анафазе происходит третья рекомбинация генетического материала клетки.

Телофаза 2. (1n; 1с) Нити веретена деления исчезают, хромосомы деспирализуются, вокруг них восстанавливается ядерная оболочка, делится цитоплазма.

Таким образом, в результате двух последовательных делений мейоза диплоидная клетка дает начало четырём дочерним, генетически различным клеткам с гаплоидным набором хромосом.

Задача 1.

Хромосомный набор соматических клеток цветкового растения N равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в метафазе мейоза I и метафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Решение: В соматических клетках 28 хромосом, что соответствует 28 ДНК.

Фазы мейоза

Число хромосом

Количество ДНК

Ин­терфаза 1 (2п4с)

   28

56

Профаза 1 (2n4с)    

   28

56

Метафаза 1 (2n4с)

   28

56

Анафаза 1 (2n4с)

   28

56

Телофаза 1 (1n2с)

   14

28

Интерфаза 2 (1n2с)

   14

28

Профаза 2 (1n2с)

   14

28

Метафаза 2 (1n2с)

   14

28

Анафаза 2 (2n2с)

   28

28

Телофаза 2 (1n1с)

   14

14

  1. Перед началом мейоза количество ДНК – 56, так как оно удвоилось, а число хромосом не изменилось – их 28.
  2. В метафазе мейоза I количество ДНК – 56, число хромосом – 28, гомологичные хромосомы попарно располагаются над и под плоскостью экватора, веретено деления сформировано.
  3. В метафазе мейоза II количество ДНК – 28, хромосом – 14, так как после редукционного деления мейоза I число хромосом и ДНК уменьшилось в 2 раза, хромосомы располагаются в плоскости экватора, веретено деления сформировано.

Задача 2.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Задача 3.

Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в профазе мейоза I и метафазе мейоза II. Объясните результаты в каждом случае.

Задача 4.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетке семязачатка в конце мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 5.

Хромосомный набор соматических клеток крыжовника равен 16. Определите хромосомный набор и число молекул ДНК в телофазе мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

Задача 6.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазе и в конце телофазы мейоза I.

Задача 7.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 8.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и в метафазе мейоза I. Объясните результаты в каждом случае.

Задача 9.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазу и в конце телофазы мейоза I. Объясните, как образуется такое число хромосом и молекул ДНК.

1.  Перед началом деления число хромосом = 8, число молекул ДНК = 16 (2n4с); в конце телофазы мейоза I число хромосом = 4, число молекул ДНК = 8.

2. Перед началом деления молекулы ДНК удваиваются, но число хромосом не изменяется, потому что каждая хромосома становится двухроматидной (состоит из двух сестринских хроматид).

3.  Мейоз – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается вдвое.

Задача 10.

У крупного рогатого скота в соматических клетках 60 хромосом. Каково будет число хромосом и молекул ДНК в клетках семенников в интерфазе перед началом деления и после деления мейоза I?

1. В интерфазе перед началом деления: хромосом – 60, молекул ДНК – 120; после мейоза I: хромосом – 30, ДНК – 60.

2. Перед началом деления молекулы ДНК удваиваются, их число увеличивается, а число хромосом не изменяется – 60, каждая хромосома состоит из двух сестринских хроматид.

3) Мейоз I – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается в 2 раза.

Задача 11.

Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

1. Клетки пыльцевого зерна сосны и спермии имеют гаплоидный набор хромосом – n.

2. Клетки пыльцевого зерна сосны развиваются из гаплоидных спор МИТОЗОМ.

3. Спермии сосны развиваются из пыльцевого зерна (генеративной клетки) МИТОЗОМ.

 

 

 

 

 

 

 

 

 

Источник: mosmetod.ru