ГЛОБАЛЬНЫЕ ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ

 

Глобальные экологические проблемы – это проблемы человечества, затрагивающие отношения между обществом и природой, создающие угрозу для его существования и требующие для своего решения объединённых усилий, широкого международного сотрудничества.

В процессе взаимодействия человека с природой нарушается экологический баланс.

Предпосылками возникновения глобальных экологических проблем являются:

1. Демографический кризис.

2. Интенсивное развитие промышленности и с/х.

3. Недостаточное внимание со стороны парламентов и правительств многих государств к проблемам экологии.

4. Слабый контроль за состоянием биологических и минеральных ресурсов или его отсутствие.

5. Неполнота научного познания организации и распределения жизни на Земле.

6. Экологическая безграмотность большинства населения Земли.

 

Экологические проблемы можно разделить на 2 большие группы.


Первая группа объединяет проблемы, вызываемые естественным ходом изменения природных условий жизни – климата, почв, водного режима и др.

Вторая группа включает последствия, возникающие в живой природе в результате хозяйственной деятельности человека. Это неграмотное, нерациональное использование природных ресурсов и загрязнение окружающей среды.

Что касается территории Республики Беларусь, то ей свойственны не только специфические, связанные с использованием её народнохозяйственного комплекса экологические проблемы, но и проблемы планетарного уровня. Последние носят наиболее угрожающий характер, поскольку от них невозможно отгородиться государственными границами.

Изменение климата планеты происходит под влиянием, в первую очередь, хозяйственной деятельности человека. Заключается в изменении пылевого и газового состава атмосферы, что во многом приводит к т.н. парниковому эффекту. По сравнению с прошлым веком, количество пыли в атмосфере увеличилось в 20 раз. Происходит регулярное загрязнение атмосферы различными вредными газами, а в особенности углекислым газом, угарным газом, сернистыми соединениями и оксидами азота. Основной причиной возникновения парникового эффекта является накопление в атмосфере углекислого газа, степень накопления составляет 0,4% в год. В конце 19 века содержание у.г. в атмосфере составляло 0,029% объёма атмосферы. На данный момент, в результате сжигания всех видов топлива эта цифра увеличилась до 0,033% и по прогнозам увеличится до 0,039%.


Парниковый эффект, как полагают некоторые ученые, — это современный физико-химический процесс нарушения теплового баланса планеты с ускоряющимся ростом температуры на ней. Принято считать, что этот эффект вызван накоплением в атмосфере Земли “парниковых газов”, образующихся, в основном, в процессе сжигания органического топлива. При сжигании органического топлива в атмосферу Земли ежегодно выбрасывается 11 млрд. т углерода.



Развитие промышленности, транспорта привело к уменьшению содержания кислорода в атмосфере на 0,02%. Изменение газового состава атмосферы приводит к глобальным изменениям климата, проявлением которого является парниковый эффект. Чем выше концентрация углекислого газа в атмосфере, тем меньше тепла отдаёт Земля и соответственно тем больше температура у её поверхности. За последние 100 лет общая температура повысилась на 0,5°С, за последние 10 лет в Беларуси среднезимняя температура поднялась на 2,5°С. В Альпах и на Кавказе ледники уменьшились в объеме наполовину, на горе Килиманджаро — на 73%, а уровень Мирового океана повысился не менее чем на 10 см. По оценке Всемирной метеорологической службы, уже к 2050 г. концентрация двуокиси углерода в атмосфере Земли возрастает до 0.05%, а повышение средней температуры на планете составит 2-3.5° С. Таяние вечной мерзлоты на болотистых равнинах Восточной Сибири даст выброс в атмосферу накопленного там метана, подъем температуры океана приведет к выбросу растворенного углекислого газа и повышению влажности на планете. Все эти факторы будут ускорять и увеличивать парниковый эффект.


Среднее число жертв на Земле от циклонов, тайфунов, землетрясений и наводнений составляло за последние 50 лет XX века 46 000 чел./год. Материальный ущерб, наносимый климатическими катастрофами в среднем за год, возрос за период с 1965 по 1995 г. более чем в 3 раза и превысил 90 млрд. долл. в год. Это значение приближается к значению инвестиционных ресурсов Земли (130-200 млрд. долл. в год), что означает, что через 10-20 лет все инвестиции должны тратиться только на восстановление разрушенного природными явлениями.

Последствия глобального потепления:

1. Если температура на Земле будет продолжать повышаться, это окажет серьезнейшее воздействие на мировой климат.

2. В тропиках будет выпадать больше осадков, поскольку дополнительное тепло повысит содержание водяного пара в воздухе.

3. В засушливых районах дожди станут еще более редкими и интенсивность опустынивания значительно возрастет.

4. Температура морей так же повысится, что приведет к затоплению низинных областей побережья.

5. Повышение температуры на Земле может вызвать поднятие уровня Мирового океана. Вода, нагреваясь, становится менее плотной и расширяется. Повышение температуры может растопить часть многолетних льдов, покрывающих некоторые районы суши (к примеру, Антарктида, горные цепи). Климатологи отметили, что если растают гренландские и антарктические ледники уровень Мирового океана повысится на 70-80 м.

iv>

6. Сократится площадь жилых земель.

7. Нарушится водно-солевой баланс океанов.

8. Изменится траектория движения циклонов и антициклонов.

9. Если температура на планете повысится, многие виды животных не смогут адаптироваться к климатическим изменениям. Многие виды растений погибнут от недостатка влаги, животным придется переселиться в другие места в поисках пищи и воды.

Однако, кроме отрицательных последствий глобального потепления, можно отметить и несколько положительных:

1. При потеплении и увеличении концентрации углекислого газа многие виды растений усилят фотосинтез, что приведет к увеличению растительной биомассы.

2. Увеличатся объемы рыбных уловов.

В последнее время японские рыбаки столкнулись с серьезной проблемой. В их сети все чаще попадаются гигантские медузы (на фото). Обычно они встречаются вдали от берегов Японии, но теперь все чаще заплывают в прибрежные воды.

Проблема изменения климата на планете представляет собой

 

 

Медузы, чья масса доходит до 200 кг, часто повреждают сети и портят рыбу, отравляя ее своим ядом. Как сообщает сайт газеты Times, рыбаки с севера острова Хонсю из-за нашествия медуз вынуждены были в разгар сезона приостановить лов. В других регионах медузы также наносят серьезный ущерб.
Причины нашествия гигантских медуз к берегам Японии остаются загадкой. Некоторые винят в нем глобальное потепление и изменение океанских течений, другие — большое количество осадков в Китае, из-за которых медуз унесло от китайского побережья к японскому. В любом случае, медузы представляют собой серьезную проблему.


Некоторые меры по предупреждению глобального потепления:

1. Уменьшение выбросов в атмосферу т.н. парниковых газов (углекислый газ, метан, озон (его тропосферная часть), некоторые галогеноуглероды, оксиды азота и фторсодержащие газы (в частности, фреон и трифторид азота)).

2. Очистка выбросов в атмосферу.

3. Замена традиционных видов топлива альтернативными.

4. Уменьшение объемов вырубки лесов.

Источник: studopedia.su

Проблема изменения климата на земле

Содержание

Введение

. Климатические изменения на земле

.1 Оледенения

.2 Глобальное потепление

. Факторы воздействующие на климат

.1 Природные факторы и их влияние на изменение климата

.1.1 Парниковые газы

.1.2 Солнечное излучение

.1.3 Изменения орбиты

.1.4 Вулканизм

.2 Антропогенные факторы

.2.1 Сжигание топлива

.2.2 Аэрозоли

.2.3 Скотоводство

. Положительные и отрицательные последствия глобального потепления, прогноз

Заключение

Используемая литература

>

климат природный антропогенный потепление

Введение

Палеонтологические данные свидетельствуют о том, что климат Земли не был постоянным. Тёплые периоды, сменялись холодными ледниковыми. В тёплые периоды среднегодовая температура Арктических широт поднималась до 7 — 13°С, а температура самого холодного месяца января составляла 4-6 градусов, т.е. климатические условия в нашей Арктике мало отличались от климата современного Крыма. На смену тёплым периодам приходили похолодания, во время которых льды достигали современных тропических широт[13].

Изменение климата — колебания климата Земли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения, как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, по одной из версий, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется, как правило для обозначения изменения в современном климате.

Климат — это усредненное состояние погоды и он, напротив, стабилен и предсказуем. Климат включает в себя такие показатели как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.


Цели работы: подробно рассмотреть факторы влияющие на изменение климата, и степень их воздействия на климат.

Задачи:

изучить историю оледенений;

понять закономерности природных циклов;

охарактеризовать влияние факторов воздействующих на климат и причины их возникновения;

дать характеристику каждого фактора, воздействующего на климат,

составить возможные сценарии изменения климата.

Методы: Отбор и обобщение информации в процессе анализа литературы по выбранной тематике; сбор, систематизация и обработка необходимых фактов и сведений; подбор и частичное создание иллюстративного материала; изучение справочной и научной литератур , а также материалов с интернет сайтов.

1. Климатические изменения на земле

.1 Оледенения

Ледниковый период — периодически повторяющийся этап геологической истории Земли продолжительностью в несколько миллионов лет, в течение которого на фоне общего относительного похолодания климата происходят неоднократные резкие разрастания материковых ледниковых покровов — ледниковые эпохи. Ледники признаны одними из самых чувствительных показателей изменения климата. Ледниковые эпохи, в свою очередь, чередуются с относительными потеплениями — эпохами сокращения оледенения (межледниковьями). Существует несколько гипотез о причинах возникновения оледенений [5].


За время геологической истории планеты, насчитывающей более 4 млрд. лет, Земля испытала несколько периодов оледенения.

Раннепротерозойская — 2,5-2 млрд. лет назад

Позднепротерозойская — 900-630 млн. лет назад

Палеозойская — 460-230 млн. лет назад

Кайнозойская — 30 млн. лет назад — настоящее время [15].

В последние несколько миллионов лет оледенение Земли то разрастается, и тогда значительные территории в Европе, Северной Америке и частично в Азии оказываются, заняты покровными ледниками, то сокращается до тех размеров, которые существуют сегодня. Для последнего миллиона лет выявлено 9 таких циклов. Обычно период разрастания и существования ледниковых покровов в Северном полушарии примерно в 10 раз продолжительнее, чем период разрушения и отступания. Периоды отступания ледников называют межледниковьем. Центральная проблема криологии Земли — выявление и изучение общих закономерностей оледенения нашей планеты. Криосфера Земли испытывает как непрерывные сезонно-периодические колебания, так и многовековые изменения. В настоящее время Земля прошла ледниковую эпоху и находится в межледниковом периоде. [1]

Оледенение Земли — планетарный процесс, при его изучении необходимо рассмотреть закономерности развития ледниковых эпох, установить основные причины их возникновения. Решению этих проблем были посвящены труды многих выдающихся ученых A. A. Чернов, B. A. Bарсанофьева, П.И. Мельников. Не вдаваясь в подробности всех теорий и гипотез, можно объединить их в две основные группы: геологические и астрономические. К астрономическим факторам, вызывающим похолодание на земле, относятся:[3]


1. Изменение наклона земной оси;

. Отклонение Земли от ее орбиты в сторону удаления от Солнца;

. Неравномерное тепловое излучение Солнца.

К геологическим факторам относят процессы горообразная, вулканическую деятельность, перемещение материков[16]

1.2 Глобальное потепление

Глобальное потепление — процесс постепенного роста средней годовой температуры поверхностного слоя атмосферы Земли и Мирового океана, вследствие всевозможных причин (увеличение концентрации парниковых газов в атмосфере Земли, изменение солнечной или вулканической активности и т.д.). Очень часто в качестве синонима глобального потепления употребляют словосочетание «парниковый эффект», но между этими понятиями есть небольшая разница. Парниковый эффект — это увеличение средней годовой температуры поверхностного слоя атмосферы Земли и Мирового океана вследствие роста в атмосфере Земли концентраций парниковых газов (углекислый газ, метан, водяной пар и т.д.). Эти газы выполняют роль плёнки или стекла теплицы (парника), они свободно пропускают солнечные лучи к поверхности Земли и задерживают тепло, покидающее атмосферу планеты.


Впервые о глобальном потеплении и парниковом эффекте заговорили в 60-ых годах XX века, а на уровне ООН проблему глобального изменения климата впервые озвучили в 1980 году. С тех пор над этой проблемой ломают головы многие учёные, зачастую, взаимно опровергая теории и предположения друг друга. С начала 20 века началось довольно таки быстрое потепление. Уже к 1940 году в Гренландском море количество льдов сократилось вдвое, в Баренцевом — почти на треть, а в Советском секторе Арктике площадь льдов в сумме сократилась почти на половину (1 млн. км2). В этот период времени даже обычные суда спокойно проплывали северным морским путём от западных до восточных окраин страны. Именно тогда было зафиксировано значительное повышение температуры арктических морей, отмечено значительное отступление ледников в Альпах и на Кавказе. Общая площадь льда Кавказа снизилась на 10%, а толщина льда местами уменьшилась на целые 100 метров. Повышение температуры в Гренландии составило 5°С, а на Шпицбергене все 9°С. В 1940 потепление сменилось кратковременным похолоданием, в скором времени на смену которого, пришло очередное потепление, а с 1979 года начался быстрый рост температуры поверхностного слоя атмосферы Земли, который вызвал очередное ускорение таяния льдов Арктики, Антарктики и повышение зимних температур в умеренных широтах. Так, за последние 50 лет, толщина арктических льдов уменьшилась на 40%, а жители ряда сибирских городов стали для себя отмечать, что крепкие морозы уже давно остались в прошлом [13]. Средняя зимняя температура в Сибири повысилась почти на десять градусов за последние пятьдесят лет. В некоторых областях России безморозный период увеличился на две-три недели. Ареал обитания многих живых организмов сместился к северу вслед за растущими средними зимними температурами. Особенно наглядно о глобальных изменениях климата свидетельствуют старые фотографии ледников (все фото сделаны в одном и том же месяце, см. рис.2 и рис.3.) [13].

2. Факторы воздействующие на климат

2.1 Природные факторы и их влияние на изменение климата

·Парниковые газы

·Солнечное излучение

·Изменение орбиты

·Вулканизм

Парниковые газы

Парниковый эффект — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса. Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон

Таблица 2.1.1.Объем выбросов в атмосферу газов влияющих на климат

Потенциально в парниковый эффект могут вносить вклад и антропогенные галогенированные углеводороды и оксиды азота, однако ввиду низких концентраций в атмосфере оценка их вклада проблематична.

Водяной пар является основным естественным парниковым газом, который ответственен более чем за 60 % эффекта.

В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, повышение влажности способствует развитию облачного покрова, а облака в атмосфере отражают прямой солнечный свет, тем самым увеличивая альбедо Земли. Альбедо- характеристика отражательной (рассеивающей) способности поверхности земли. Повышенное альбедо приводит к антипарниковому эффекту, несколько уменьшая общее количество поступающего солнечного излучения и дневной прогрев атмосферы

Углекислый газ. Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Антропогенными источниками являются: сжигание ископаемого топлива; сжигание биомассы, включая сведение лесов; некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако, в состоянии равновесия, большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Антропогенная эмиссия увеличивает концентрацию углекислого газа в атмосфере, что, предположительно, является главным фактором изменения климата. Углекислый газ является «долго живущим» в атмосфере. Согласно современным научным представлениям, возможность дальнейшего накапливания СО2 в атмосфере ограничена риском неприемлемых последствий для биосферы и человеческой цивилизации

Метан. Парниковая активность метана примерно в 21 раз выше, чем у углекислого газа. Время жизни метана в атмосфере составляет примерно 12 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.

Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет.

Озон- необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли и ввиду своей токсичности вредить живым существам. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы. По наиболее широко распространенным научным оценкам, вклад озона составляет около 25% от вклада СО2

Большая часть тропосферного озона образуется, когда оксиды азота (NOx), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии кислорода, водяных паров и солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и HO2.

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США и Европе, основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды. Нынешняя средняя концентрация тропосферного озона в Европе в три раза выше, чем в доиндустриальную эпоху [14].

Солнечное излучение

Солнце является основным источником тепла в климатической системе. Солнечная энергия, превращённая на поверхности Земли в тепло, является неотъемлемой составляющей, формирующей земной климат. Если рассматривать длительный период времени, то в этих рамках Солнце становится ярче и выделяет больше энергии, так как развивается согласно главной последовательности.

Это медленное развитие влияет и на земную атмосферу. Считается, что на ранних этапах истории Земли Солнце было слишком холодным для того, чтобы вода на поверхности Земли была жидкой, что привело к т. н. «парадоксу слабого молодого Солнца» [13]

На более коротких временных отрезках также наблюдаются изменения солнечной активности: 11-летний солнечный цикл и более длительные модуляции. Однако 11-летний цикл возникновения и исчезновения солнечных пятен не отслеживается явно в климатологических данных. Изменение солнечной активности считается важным фактором наступления малого ледникового периода, а также некоторых потеплений,. Циклическая природа солнечной активности ещё не до конца изучена; она отличается от тех медленных изменений, которые сопутствуют развитию и старению Солнца [14].

Изменения орбиты

По своему влиянию на климат изменения земной орбиты сходны с колебаниями солнечной активности, поскольку небольшие отклонения в положении орбиты приводят к перераспределению солнечного излучения на поверхности Земли. Такие изменения положения орбиты называются циклами Миланковича, они предсказуемы с высокой точностью, поскольку являются результатом физического взаимодействия Земли, её спутника Луны и других планет. Изменения орбиты считаются главными причинами чередования гляциальных и интергляциальных циклов последнего ледникового периода. Результатом прецессии земной орбиты являются и менее масштабные изменения, такие как периодическое увеличение и уменьшение площади пустыни Сахара.[14]

Милутин Миланкович (1879-1958)- сербский геофизик, астроном. В начале 20го века выдвинул теорию о теорию периодичности ледниковых периодов. Объяснение теории связано с изменениями в земной орбите («циклы Миланковича»). В соответствии с законом всемирного тяготения Ньютона (а также первым из законов Кеплера, описывающим траектории движения планет Солнечной системы), каждая планета вращается вокруг Солнца по эллиптической орбите.

Кроме того, согласно закону сохранения момента импульса, если Земля вращается вокруг своей оси, то направление этой оси в пространстве должно оставаться неизменным. Но в реальной Солнечной системе Земля вращается вокруг Солнца не в гордом одиночестве. На нее действует притяжение Луны и других планет, и это притяжение оказывает хоть и слабое, но очень важное влияние и на земную орбиту, и на вращение Земли.

За последние 3 миллиона лет было по крайней мере четыре периода масштабного оледенения, а до этого были и еще. Хочу напомнить, что последний ледниковый период достиг своего максимума примерно 18 тысяч лет назад и что время, в которое мы живем, ученые определяют как межледниковое [17].

Вулканизм

Вулканы воздействуют на природную среду и на человечество несколькими способами. Во-первых, прямым воздействием на окружающую среду извергающихся вулканических продуктов (лав, пеплов и т.п.), во-вторых, воздействием газов и тонких пеплов на атмосферу и тем самым на климат, в-третьих, воздействием тепла продуктов вулканизма на лед и на снег, часто покрывающих вершины вулканов, что приводит к катастрофическим селям, наводнениям, лавинам, в-четвертых, вулканические извержения обычно сопровождаются землятресениями и т.д. Но особенно долговременны и глобальны воздействия вулканического вещества на атмосферу, что отражается на изменении климата Земли.

При катастрофических извержениях выбросы вулканической пыли и газов, сублимирующих частички серы и других летучих компонентов, могут достигать стратосферы и вызывать катастрофические изменения климата. Такие извержения, часто имеющие эксплозивный стиль, особенно характерны для островодужных вулканов. Фактически при таких извержениях мы имеем природную модель «ядерной зимы».

Эмиссия газов пассивно дегазирующих вулканов в целом может оказывать глобальное влияние на состав атмосферы. Так плинианские и коигнимбритовых колонны выносили вулканический материал в тропосферу с образованием аэрозольного облака, полярных дымок и нарушением состояния полярного озонового слоя. В качестве примера стоит привести извержение вулкана Уайнапутина, Перу. 19 февраля 1600 года (6 баллов по шкале вулканических извержений VEI). Сильнейшее извержение вулкана в Южной Америке за историческое время, которое, по некоторым оценкам, вызвало общемировое понижение температуры и стало причиной неурожая в России 1601-1603 и начала Смутного времени [14].

2.2 Антропогенные факторы

Сжигание топлива

Многие ученые считают, что процесс потепления климата вызван увеличением выбросов в атмосферу парниковых газов (ПГ), в первую очередь СО2, с продуктами сжигания ископаемых топлив и их накоплением в атмосфере. В середине ХIX в. концентрация СО2 в атмосфере составляла около 290?10-4 % объема, через 100 лет — 313?10-4 %, в 1978 г. — 330?10-4 %, в 1990 г. — 353?10-4 %. В атмосферу выбрасывается в год примерно 700 млрд т СО2: суша — 370млрд т, океан — 330 млрд т, вулканическая деятельность — 2 млрд т. Годовые уровни выбросов СО2 в атмосферу с продуктами сжигания ископаемых топлив составляли: в 1970 г. -16 млрдт, а в 2008 г. -32 млрд т, т.е. не превышали 5 % от суммарной эмиссии СО2 в атмосферу. Это наглядно показано на рисунке 4. Поэтому увеличение содержание СО2 в атмосфере с 1971 гпо 2009 г. определялось, видимо, с большой степенью вероятности, уменьшением поглощения СО2 наземными фотосинтезирующими системами и снижением его растворимости в водах мирового океана. Климатическая система изменялась во времени в результате внешних воздействий, обусловленных «неразумной» хозяйственной деятельностью человека. В результате изменялся состав атмосферы, гидросферы и литосферы из-за загрязнения ОС выбросами энергетики, промышленности, бытовыми отходами, ухудшения землепользования, вырубки и старения лесов. Как следствие, снижался объем и продуктивность фотосинтезирующей растительности и микроорганизмов на поверхности суши и в водах мирового океана. Растительный мир особо чувствителен к концентрациям вредных веществ в атмосфере (оксидов азота и серы, озона, канцерогенных веществ и др.), при этом нарушается его жизнедеятельность, снижается фотосинтезирующая активность и продуктивность. Физико-химическое, биологическое и тепловое загрязнение внутренних водоемов, морей и океанов нарушает газообмен воды с атмосферой, что приводит к снижению растворимости СО2 вводах мирового океана), к исчезновению многих видов животных и растений. Способность природных систем к самоочищению атмосферы серьезно нарушена, атмосферный воздух не в полной мере выполняет свои защитные жизнеобеспечивающие экологические функции. Из этого следует, что современное глобальное потепление приземного слоя атмосферы в значительной степени является антропогенно-экологической проблемой, определяемой, в том числе, снижением способности деградируемых наземных и океанических экосистем поглощать (СО2) по мере роста их концентраций в атмосфере. Основным антропогенным источником выбросов является сжигание всевозможных видов углеродосодержащего топлива. В настоящее время экономическое развитие обычно связывается с ростом индустриализации. Исторически сложилось, что подъём экономики зависит от наличия доступных источников энергии и количества сжигаемого ископаемого топлива. Данные о развитии экономики и энергетики для большинства стран за период 1860-1973 гг. Свидетельствуют не только об экономическом росте, но и о росте энергопотребления. Тем не менее одно не является следствием другого.

Начиная с 1973 года во многих странах отмечается снижение удельных энергозатрат при росте реальных цен на энергию..В последние десятилетия химический состав атмосферы вызывает особенный интерес в связи с так называемым «парниковым эффектом», который заключается в том, что атмосфера поглощает энергию инфракрасной части спектра уходящего от поверхности Земли излучения в диапазоне 8-18 мкм. Усиление эффекта ведет к повышению средней температуры атмосферного воздуха, изменению ее распределения по земной поверхности, уменьшению атмосферной циркуляции и другим явлениям, вследствие чего могут начаться глобальные изменения климата с неблагоприятными последствиями: засуха, таяние ледников Антарктиды и Гренландии, подъем уровня Мирового океана, затопление прибрежных, плотно населенных территорий и др.[2]

Аэрозоли

Аэрозоль- дисперсная система, состоящая из взвешенных в газовой среде, обычно в воздухе, мелких частиц. В зависимости от природы аэрозоли подразделяют на естественные и искусственные. Естественные аэрозоли образуются вследствие природных сил, например при вулканических извержениях, сочетании эрозии почвы с ветром, явлениях в атмосфере. Искусственные аэрозоли образуются в результате хозяйственной деятельности человека. Важное место среди них занимают промышленные аэрозоли. Примером промышленного аэрозоля может служить газовый баллончик Важнейшие оптические свойства аэрозолей — рассеяние и поглощение ими света. В прошлом климат Земли изменялся много раз без воздействия или при малом воздействии антропогенных источников. Поэтому возникает вопрос: может ли оказать воздействие на климат присутствие в атмосфере аэрозоля вообще и антропогенного в частности. Отмечалось, что глобальные выбросы антропогенного аэрозоля в настоящее время достаточно велики. Так, среднегодовой выброс аэрозоля из естественных источников составляет 2312 млн. т, а из антропогенных-296 млн. т, что составляет соответственно 88.5 и 11.5% от общего среднегодового количества генерируемого аэрозоля [12]

При оценке потенциального влияния антропогенного аэрозоля важно сознавать, что его образование ограничено промышленными центрами, расположенными в основном в Северной Америке, Европе, Японии и на части территории Австралии. Таким образом, 296 млн. т антропогенного аэрозоля образуется над площадью, равной примерно 2.5% поверхности Земли. Для сравнения отметим, что эта же территория продуцирует 58 млн. т аэрозоля естественного происхождения, т. е. лишь 20% от антропогееного аэрозоля. Эта относительно высокая концентрация антропогенного аэрозоля над относительно маленькой площадью позволяет предположить возможность локального, вполне вероятно что и регионального, воздействия на климат. Например, в большом количестве работ рассматривается влияние больших промышленных центров на процесс облакообразования, влияние промышленности на термический режим атмосферы, изменение прозрачности атмосферы в результате хозяйственной деятельности человека. Известно, что изменение аэрозольной оптической толщины со временем в стратосфере после вулканических извержений, а в тропосфере от промышленных загрязнений и пылевых бурь могут вызывать климатические изменения. Непоглощающий аэрозоль увеличивает альбедо атмосферы и, следовательно уменьшает количество солнечной радиации, достигающей поверхности Земли. Если аэрозоль поглощает в коротковолновой области спектра, то поглощенная энергия солнечного излучения передается атмосфере. Это приводит к нагреванию атмосферы и охлаждению подстилающей поверхности. Если аэрозоль поглощает и соответственно испускает энергию в инфракрасной области спектра, то это приводит к противоположному результату, т. е. энергия выводится из тропосферы, что приводит к охлаждению воздуха и усилению парникового эффекта у поверхности Земли. Общий эффект зависит от соотношения коэффициентов поглощения в видимой и инфракрасной области, а также от альбедо поверхности. Изменение радиационных потоков в аэрозольной атмосфере приводит к изменению ее температурной стратификации, а также к изменению температуры земной поверхности.

Те же механизмы, что приводят к изменению температурного режима поверхности и атмосферы, могут влиять на точность определения температуры поверхности моря и суши из космоса, и на возникновение и поведение воздушных потоков, включая развитие струйных течений на низких высотах. Эти факторы сказываются также на точность местного и регионального прогноза погоды. Наличие сильных полос поглощения в атмосферном «окне» 8 -12 мкм для аэрозоля аридного происхождения может привести к уменьшению температуры подстилающей поверхности, которое достигает нескольких кельвинов. [4]

Скотоводство

«Длинная тень животноводства», — доклад Организации Объединенных Наций по вопросу защиты окружающей среды, от 29 ноября 2006 года , описывающий полный урон , наносимый сектором животноводства окружающей среде и человеку.

Оценки основаны на самых последних и полных данных , с учетом прямых последствий скота вместе с нуждами этого сектора кормовых культур . Сектор животноводство стал одним из главных 2-3 наиболее значимых причин наиболее серьезных экологических проблем , на местном и глобальном уровне . Выводы этого доклада, показывают , что необходимо серьезно взяться за политику по вопросу скотоводства.[14]

Данные доклада:

·Животноводство отвечает за 18% выбросов парниковых газов, измеренная в эквиваленте СО2 (углекислый газ). Для сравнения на транспортный сектор приходится 13.5% выбросов. Стоит отметить, этот показатель был пересмотрен в 2009 году двумя учёными из Worldwatch Institute: они оценили вклад животноводства в выбросы парниковых газов в 81 % общемирового.

·Животноводство использует 30% поверхности суши Земли, в основном постоянные пастбища, но и 33% пахотных земель в мире используется для производства корма для животных

·Животноводство как ожидается, будет основным внутренним источником фосфора и азотного загрязнения Южно-Китайского моря, способствуя утраты биоразнообразия в морских экосистемах (так называемые «мертвые зоны»).

·15 из 24 важных полезных для человека, экосистем находятся в упадке, очевидно виновником которых сельскохозяйственные животные8]

3. Положительные и отрицательные последствия глобального потепления, прогноз

К негативным последствиям можно отнести:

-деградация вечной мерзлоты

-смещение границ климатических зон

-рост годового стока в бассейнах рек

-увеличение питания подземными водами

-неравномерное распределения количества осадков холодного и теплого периода

-рост процессов опустынивания

-развитием процессов заболачивания

-подъем уровня мирового океана

К позитивным последствиям можно отнести:

+возрастание продуктивности естественных лесных формаций

+увеличение урожайности культурных растений

Возможные сценарии глобальных климатических изменений:

Сценарий 1 — глобальное потепление будет происходить постепенно

Земля очень большая и сложная система, состоящая из большого количества связанных между собой структурных компонентов. На планете есть подвижная атмосфера, движение воздушных масс которой распределяет тепловую энергию по широтам планеты, на Земле есть огромный аккумулятор тепла и газов — Мировой океан (океан накапливает в 1000 раз больше тепла, чем атмосфера) Изменения в такой сложной системе не могут происходить быстро. Пройдут столетия и тысячелетия, прежде чем можно будет судить об сколько-нибудь ощутимом изменении климата

Сценарий 2 — глобальное потепление будет происходить относительно быстро

Самый «популярный» в настоящее время сценарий. По различным оценкам за последние сто лет средняя температура на нашей планете увеличилась на 0,5-1°С, концентрация — СО2 возросла на 20-24 %, а метана на 100%. В будущем эти процессы получат дальнейшее продолжение и к концу XXI века средняя температура поверхности Земли может увеличиться от 1,1 до 6,4°С, по сравнению с 1990 годом (по прогнозам IPCC от 1,4 до 5,8°С). Дальнейшее таяние Арктических и Антарктических льдов может ускорить процессы глобального потепления из-за изменения альбедо планеты. По утверждению некоторых учёных, только ледяные шапки планеты за счёт отражения солнечного излучения охлаждают нашу Землю на 2°С, а покрывающий поверхность океана лёд существенно замедляет процессы теплообмена между относительно теплыми океаническим водами и более холодным поверхностным слоем атмосферы. Кроме того, над ледяными шапками практически нет главного парникового газа — водяного пара, так как он выморожен. Глобальное потепление будет сопровождаться подъёмом уровня мирового океана. С 1995 по 2005 год уровень Мирового океана уже поднялся на 4 см, вместо прогнозируемых 2-ух см. Если уровень Мирового океана в дальнейшем будет подниматься с такой же скоростью, то к концу XXI века суммарный подъём его уровня составит 30 — 50 см, что вызовет частичное затопление многих прибрежных территорий, особенно многонаселённого побережья Азии. Следует помнить, что около 100 миллионов человек на Земле живёт на высоте меньше 88 сантиметров над уровнем моря. Кроме повышения уровня Мирового океана глобальное потепление влияет на силу ветров и распределение осадков на планете. В результате на планете вырастет частота и масштабы различных природных катаклизмов (штормы, ураганы, засухи, наводнения).В настоящее время от засухи страдает 2% всей суши, по прогнозам некоторых учёных к 2050 году засухой будет охвачено до 10% всех земель материков. Кроме того, изменится распределение количества осадков по сезонам. В Северной Европе и на западе США увеличится количество осадков и частота штормов, ураганы будут бушевать в 2-а раза чаще, чем в XX веке. Климат Центральной Европы станет переменчивым, в сердце Европы зимы станут теплее, а лето дождливее. Восточную и Южную Европу, включая Средиземноморье, ждёт засуха и жара.

Сценарий 3 — Глобальное потепление в некоторых частях Земли сменится кратковременным похолоданием

Известно, что одним из факторов возникновения океанических течений является градиент (разница) температур между арктическими и тропическими водами. Таяние полярных льдов способствует повышению температуры Арктических вод, а значит, вызывает уменьшение температурной разницы между тропическими и арктическими водами, что неминуемо, в будущем приведёт к замедлению течений. Одним из самых известных тёплых течений является Гольфстрим, благодаря которому во многих странах Северной Европы среднегодовая температура на 10 градусов выше, чем в других аналогичных климатических зонах Земли. Понятно, что остановка этого океанического конвейера тепла очень сильно повлияет на климат Земли. Уже сейчас течение Гольфстрим, стало слабее на 30% по сравнению с 1957 годом. Математическое моделирование показало, чтобы полностью остановить Гольфстрим достаточно будет повышения температуры на 2-2,5 градуса. В настоящее время температура Северной Атлантики уже прогрелась на 0,2 градуса по сравнению с 70-ми годами. В случае остановки Гольфстрима среднегодовая температура в Европе к 2010 году понизится на 1 градус, а после 2010 года дальнейший рост среднегодовой температуры продолжится. Другие математические модели «сулят» более сильное похолодание Европе. Согласно этим математическим расчётам полная остановка Гольфстрима произойдёт через 20 лет, в результате чего климат Северной Европы, Ирландии, Исландии и Великобритании может стать холоднее настоящего на 4-6 градусов, усилятся дожди и участятся шторма. Похолодание затронет также и Нидерланды, Бельгию, Скандинавию и север европейской части России. После 2020-2030 года потепление в Европе возобновится по сценарию №2.

Сценарий 4 — Глобальное потепление сменится глобальным похолоданием

Остановка Гольфстрима и других океанических вызовет глобальное похолодание на Земле и наступление очередного ледникового периода.

Сценарий 5 — Парниковая катастрофа

Парниковая катастрофа — самый «неприятный» сценарий развития процессов глобального потепления. Автором теории является наш учёный Карнаухов, суть её в следующем. Рост среднегодовой температуры на Земле, вследствие увеличения в атмосфере Земли содержания антропогенного CO2, вызовет переход в атмосферу растворённого в океане CO2, а также спровоцирует разложение осадочных карбонатных пород с дополнительным выделением углекислого газа, который, в свою очередь, поднимет температуру на Земле ещё выше, что повлечёт за собой дальнейшее разложение карбонатов, лежащих в более глубоких слоях земной коры (в океане содержится углекислого газа в 60 раз больше, чем в атмосфере, а в земной коре почти в 50 000 раз больше). Ледники будут интенсивно таять, уменьшая альбедо Земли. Такое быстрое повышение температуры будет способствовать интенсивному поступлению метана из тающей вечной мерзлоты, а повышение температуры до 1,4-5,8°С к концу столетия будет способствовать разложению метангидратов (льдистых соединений воды и метана), сосредоточенных преимущественно в холодных местах Земли. Если учесть, что метан, является в 21 раз более сильным парниковым газом, чем CO2 рост температуры на Земле будет катастрофическим. Чтобы лучше представить, что будет с Землёй лучше всего обратить внимание на нашего соседа по солнечной системе — планету Венера. При таких же параметрах атмосферы, как на Земле, температура на Венере должна быть выше Земной всего на 60°С (Венера ближе Земли к Солнцу) т.е. быть в районе 75°С, в реальности же температура на Венере почти 500°С. Большинство карбонатных и метано-содержащих соединений на Венере давным давно были разрушены с выделением углекислого газа и метана. В настоящее время атмосфера Венеры состоит на 98% из СО2, что приводит к увеличению температуры планеты почти на 400°СЕсли глобальное потепление пойдёт по такому же сценарию, как на Венере, то температура приземных слоев атмосферы на Земле может достигнуть 150 градусов. Повышение температуры Земли даже на 50°С поставит крест, на человеческой цивилизации, а увеличение температуры на 150°С вызовет гибель почти всех живых организмов планеты.

По оптимистическому сценарию Карнаухова, если количество, поступающего в атмосферу CO2, останется на прежнем уровне, то температура 50°С, на Земле установится через 300 лет, а 150°С через 6000 лет. К сожалению, прогресс не остановить, с каждым годом объёмы выбросов CO2 только растут. По реалистическому сценарию, согласно которому выброс CO2 будет расти с такой же скоростью, удваиваясь каждые 50 лет, температура 502 на Земле уже установится через 100 лет, а 150°С через 300 лет.[13][6]

Заключение

В результате отбора и обобщения информации в настоящей курсовой работе рассмотрены факторы воздействующие на климат, дана характеристика каждого из них, составлены прогнозы его изменения. Составлены прогнозы изменения климата и их описание.В результате проведенного исследования можно сделать следующие выводы: климат на земле менялся на протяжении миллионов лет и продолжает меняется, в наши дни климат продолжает меняться под воздействием описаных выше факторов, также имеет место быть такое явления как глобальное потепление которое активизировалось в течении последних двух столетий под воздействием антропогенных факторов. Из этого понятно что изменение климата это сложный процесс, на который оказывает влияние как человек так и природа

Используемая литература

1. Ершов Э.Д.; «Общая геокриология» 1990

. П.М. Канило, И.В. Парсаданов; «Проблемы сжигания ископаемых топлив и Глобальное потепление климата» 2010

«Ледниковый период»; Большая Советская Энциклопедия

. «Аэрозоли»; Большая Советская Энциклопедия

. Гаршин И.К.; «Галактические года в истории Земли и ее биосферы

6. Кривенко В. Г. «Концепция внутривековой и многовековой изменчивости климата как предпосылка прогноза // Климаты прошлого и климатический прогноз»

7. «Изменение климата 2007». Обобщающий доклад Межправительственной группы экспертов по изменению климата

. Доклад ООН «Длинная Тень Скотоводства»; От 29 Ноября 2006 Года

. «Национальный доклад по проблемам изменения климата» от 12 августа 2002 года

. Климат океана- http://www.okeanavt.ru/klimat-okeana.html(климат океана)

11. http://www.ecoexpertcenter.ru/info/koncepciya_cikliki_144.html (Концепция природной циклики и некоторые задачи хозяйственных стратегий России)

. http://www.newreferat.com/ref-7209-1.html (Влияние городского антропогенного аэрозоля на микрофизические характеристики атмосферы)

. http://www.priroda.su/item/389/catid/ (Глобальное потепление: факты, гипотезы, комментарии)

. http://ru.wikipedia.org/wiki/(Свободная энциклопедия)

http://www.bestreferat.ru/referat-213661.html (История ледниковых эпох)

http://biofile.ru/geo/3757.html (Оледенение земли)

http://elementy.ru/trefil/milankovic_cycles(Циклы Меланковича)

Источник: diplomba.ru

Введение

Земля – третья от Солнца планета и пятая по размеру среди всех планет Солнечной системы. Она является так же крупнейшей по диаметру, массе и плотности среди планет земной группы. Примерная дата образования Земли – 4,54 млрд. лет назад. Весь процесс формирования планеты занял примерно 10-20 млн. лет.

Планета Земля уникальна: огромный каменный шар окружностью 40 тысяч километров, одна треть суши, две трети воды и богатая кислородом атмосфера создали единственное известное место во Вселенной, где есть жизнь! Однако этот сине-зеленый оазис не всегда был столь гостеприимным. На планете сохранились следы ее сурового прошлого – времени, когда ее раздирали страшнейшие катастрофы и условия жизни на ней были невыносимы.

В течении 4,5 млрд. лет этот мир изменялся – он горел в огне и замерзал во льдах, его затопляли океаны и отравляли ядовитые небеса. Организмам, населяющим нашу планету сегодня, повезло. Им удалось выжить в условиях массового вымирания. Ученые постигают тайны Земли на протяжении двух столетий.

Проблема изменения климата на планете представляет собой

Изменение климата

Климат — это многолетний статистический режим погоды, характерный для данной местности в силу её географического положения.

Итак, чтобы предсказать погоду, надо знать температурный режим всей атмосферы Земли, а тепло исходит от двух источников: от Солнца и от недр Земли. Солнце – внешний источник тепла, кора Земли, которая содержит большое количество радиоактивных веществ – внутренний источник тепла.

Краткий перечень главных причин изменения климата на Земле:

1) Главные (постоянные) факторы формирования климата (действуют на протяжении 5 миллиардов лет), которые влияют на климат всей планеты на 80 %. Это космические и геофизические факторы, которые воздействуют на климат Земли в глобальном масштабе и на протяжении уже 5 миллиардов лет.

— Остывание Солнца, снижение эволюционной солнечной активности;

— Охлаждение всего объёма земного шара,

— Эволюционное уменьшение количества влаги в атмосфере.

— Эволюционная потеря атмосферы Земли через 3 миллиарда лет.

2) Факторы кратковременного действия на процессы формирование климата (на 100 – 10 000 лет), которые влияют на климат всей планеты на 19 %.

— периодическое увеличение солнечной активности каждые 12 лет,

— изменение наклона оси вращения Земли. Земная ось наклонена к плоскости орбиты под углом 66,33° градусов. Таким образом, угол между перпендикуляром и плоскостью орбиты (90° – 66,33° = ) равняется 23,77 °. Исключительно наклоном оси обусловлены смены времен года.

— изменение наклона плоскости вращения Земли по отношению к эклиптике,

— изменение эксцентриситета орбиты Земли; орбита вращения Земли вокруг Солнца представляет собой эллипс, в одном из фокусов которого расположено Солнце.

3) Локальные факторы изменения климата, которые влияют на климат всей планеты на 1 %, которые воздействуют на отдельный регион, и не имеют никакого влияние на формирование климата всей планеты. Это техногенные и антропогенные факторы, то есть процессы, возникающие от действия техники и человечества, когда происходит незначительное изменение климата в местном, а не в глобальном масштабе.

Теперь коротко опишем в популярной форме все космические механизмы, которые сильно или слабо влияют на формирование климата Земли.

4. Главный (постоянный) фактор формирования климата: эволюционное охлаждение земного шара. Все планеты вначале своей эволюции состоят из радиоактивных элементов, а поэтому быстро разогреваются и светятся как маленькие звёздочки. Первая эволюционная стадия планет характеризуется сильным разогреванием их вещества (до нескольких тысяч градусов). Причина известна – высокая радиоактивность первичной материи. Геофизикой установлено, что единственной причиной нагревания недр планет является радиоактивный распад изотопов. Теплота – это хаотическое движение атомов. Радиоактивные изотопы периодически излучают элементарные частицы, и от отдачи вылета частицы сами атомы начинают совершать колебательные тепловые движения внутри «кристаллической решетки». Элементарная частица во время полета сталкивается с соседними атомами, передает им равное количество движения, и те также начинают колебаться. Хаотическое колебательное движение миллионов атомов является причиной возникновения тепла и температуры, отражает физический смысл нагретого, горячего вещества. Так происходит распространение тепла от радиоактивных пород.

В настоящее время в объеме Земли, масса которой 10 24 кг, содержится всего 1014 кг радиоактивных элементов, а 5 миллиардов лет назад их масса была в миллионы раз больше. Радиоактивные элементы нагревают окружающее пространство. Поэтому поверхность молодых планет всегда горячая (достигает 1 – 4 тысячи градусов). Причиной уменьшения количества радиоактивных элементов является их переход в стабильные изотопы после серии радиоактивных превращений. Стабильные элементы не обладают теплотворной функцией. Все старые планеты с возрастом 6 — 8 миллиардов лет состоят исключительно из стабильных элементов, поэтому являются холодными и снаружи и внутри. На их поверхности начинают образовываться льды и снега.

ПРИЧИНЫ ИЗМЕНЕНИЯ КЛИМАТА

Что такое глобальное изменение климата и почему его часто называют «глобальным потеплением»?

Нельзя не согласиться с тем, что климат на Земле меняется и это становится глобальной проблемой для всего человечества. Факт глобального изменения климата подтвержден научными наблюдениями и не оспаривается большинством ученых. И все же вокруг этой темы идут постоянные дискуссии. Одни употребляют термин «глобальное потепление» и делают апокалиптические прогнозы. Другие пророчат наступление нового «ледникового периода» — и тоже делают апокалиптические прогнозы. Третьи считают изменения климата естественным, а доказательства обеих сторон о неизбежности катастрофических последствий изменения климата – спорными.

Какие существуют доказательства изменения климата?

Они всем хорошо известны (это заметное уже и без приборов): повышение среднемировой температуры (более мягкие зимы, более жаркие и засушливые летные месяцы), таяние ледников и повышение уровня мирового океана, а также всё чаще возникающие и всё более разрушительные тайфуны и ураганы, наводнения в Европе и засухи в Австралии. А кое-где, например, в Антарктике, отмечается похолодание.

Если климат менялся и раньше, почему сейчас это стало проблемой?

Действительно, климат нашей планеты меняется постоянно. Всем известно про ледниковые периоды (они бывают малые и большие), про всемирный потоп и пр. Согласно геологическим данным среднемировая температура в разные геологические периоды колебалась от +7 до +27 градусов по Цельсию. Сейчас средняя температура на Земле составляет примерно +14оС и еще довольно далека от максимума. Так, чем же обеспокоены ученые, главы государств и общественность? Если коротко, обеспокоенность вызывает то, что к естественным причинам изменения климата, которые были всегда, добавляется еще один фактор – антропогенный (результат деятельности человека), влияние которого на изменение климата, по мнению ряда исследователей, становится все сильнее с каждым годом.

Каковы причины изменения климата?

Главной движущей силой климата является Солнце. Например, неравномерное нагревание земной поверхности (сильнее у экватора) является одной из главных причин ветров и океанических течений, а периоды повышенной солнечной активности сопровождаются потеплением и магнитными бурями.

Кроме того на климат влияют изменение орбиты Земли, ее магнитного поля, размеров материков и океанов, извержения вулканов. Все это — естественные причины изменения климата. До недавнего времени они, и только они, определяли изменения климата, в том числе начало и конец долговременных климатических циклов, таких как ледниковые периоды. Солнечной и вулканической активность можно объяснить половину температурных изменений до 1950 года (солнечная активность приводит к повышению температуры, а вулканическая – к снижению).

В последнее время к естественным факторам добавился еще один – антропогенный, т.е. вызванный деятельностью человека. Основным антропогенным воздействием является усиление парникового эффекта, влияние которого на изменение климата в последние два столетия в 8 раз выше влияния изменений солнечной активности.

ПОНЯТИЕ И СУЩНОСТЬ ПАРНИКОВОГО ЭФФЕКТА

Парниковый эффект – это задержка атмосферой Земли теплового излучения планеты. Парниковый эффект наблюдал любой из нас: в теплицах или парниках температура всегда выше, чем снаружи. То же самое наблюдается и в масштабах Земного шара: солнечная энергия, проходя через атмосферу нагревает поверхность Земли, но излучаемая Землей тепловая энергии не может улетучиться обратно в космос, так как атмосфера Земли задерживает ее, действуя наподобие полиэтилена в парнике: она пропускает короткие световые волны от Солнца к Земле и задерживает длинные тепловые (или инфракрасные) волны, излучаемые поверхностью Земли. Возникает эффект парника. Парниковый эффект возникает из-за наличия в атмосфере Земли газов, которые обладают способностью задерживать длинные волны. Они получили название «парниковых» или «тепличных» газов.

Парниковые газы присутствовали в атмосфере в небольших количествах (около 0,1%) с момента ее образования. Этого количества было достаточно, чтобы поддерживать за счет парникового эффекта тепловой баланс Земли на уровне, пригодном для жизни. Это так называемый естественный парниковый эффект, не будь его средняя температура поверхности Земли была бы на 30°С меньше, т.е. не +14° С, как сейчас, а -17° С.

Естественный парниковый эффект ничем не грозит ни Земле, ни человечеству, поскольку общее количество парниковых газов поддерживалось на одном уровне за счет круговорота природы, более того, ему мы обязаны жизнью.

Но увеличение в атмосфере концентрации парниковых газов приводит к усилению парникового эффекта и нарушению теплового баланса Земли. Именно это и произошло в последние два столетия развития цивилизации. Угольные электростанции, автомобильные выхлопы, заводские трубы и другие созданные человечеством источники загрязнения выбрасывают в атмосферу около 22 миллиардов тонн парниковых газов в год.

Какие газы называют «парниковыми»?

К наиболее известным и распространенным парниковым газам относятся водяной пар (Н2О), углекислый газ (CO2), метан (СН4) и веселящий газ или закись азота (N2O). Это парниковые газы прямого действия. Большая часть их образуется в процессе сжигания органического топлива.

Кроме того, есть еще две группы парниковых газов прямого действия, это галоуглероды и гексафторид серы (SF6). Их выбросы в атмосферу связанны с современными технологиями и промышленными процессами (электроника и холодильное оборудование). Их количество в атмосфере совсем ничтожно, но, они их влияние на парниковый эффект в десятки тысяч раз сильнее, чем CO2.

Водяной пар — основной парниковый газ, ответственный более, чем за 60% естественного парникового эффекта. Антропогенное увеличение его концентрации в атмосфере пока не отмечалось. Однако увеличение температуры Земли, вызванное другими факторами, усиливает испарение воды океана, что, может привести к росту концентрации водяного пара в атмосфере и – к усилению парникового эффекта. С другой стороны, облака в атмосфере отражают прямой солнечный свет, что уменьшает поступление энергии на Землю и, соответственно, снижает парниковый эффект.

Углекислый газ – наиболее известный из парниковых газов. Естественными источниками СО2 являются вулканические выбросы, жизнедеятельность организмов. Антропогенными источниками являются сжигание органического топлива (включая лесные пожары), а также целый ряд промышленных процессов (например, производство цемента, стекла). Углекислый газ, по мнению большинства исследователей, несет основную ответственность за глобальное потепление, вызванное «парниковым эффектом». Концентрация CO2 за два века индустриализации выросла более, чем на 30% и корректируется с изменением среднемировой температуры.

Метан — второй по значимости парниковый газ. Выделяется из-за утечки на разработке месторождений каменного угля и природного газа, из трубопроводов, при горении биомассы, на свалках (как составная часть биогаза), а также в сельском хозяйстве (скотоводство, рисоводство) и т.п. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Количество метана в атмосфере невелико, но его парниковый эффект или потенциал глобального потепления (ПГП) в 21 раз сильнее, чем у СO2.

Закись азота –третий по значимости парниковый газ: его воздействие в 310 раз сильнее, чем у СO2,, но содержится в атмосфере он в очень небольших количествах. В атмосферу попадает в результате жизнедеятельности растений и животных, а также при производстве и применении минеральных удобрений, работе предприятий химической промышленности.

Галоуглероды (гидрофторуглероды и перфторуглероды) — газы, созданные для замены озоноразрушающих веществ. Используются в основном в холодильном оборудовании. Имеют исключительно высокие коэффициенты влияния на парниковый эффект: в 140-11700 раз выше, чем у СО2.Их эмиссии (выделение в окружающую среду) невелики, но быстро возрастают.

Гексафторид серы – его поступление в атмосферу связано с электроникой и производством изоляционных материалов. Пока оно невелико, но объем постоянно возрастает. Потенциал глобального потепления равен 23900 ед.

ГЛОБАЛЬНОЕ ПОТЕПЛЕНИЕ И ВОЗДЕЙСТВИЕ НА НЕГО ЧЕЛОВЕКА

Глобальное потепление — это постепенное увеличение средней температуры на нашей планете, вызванное повышением концентрации парниковых газов в атмосфере Земли.

По данным прямых климатических наблюдений (изменение температур в течение последних двухсот лет) средние температуры на Земле повысились, и хотя причины такого повышения все ещё являются предметом дискуссий, но одной из наиболее широко обсуждаемых и является антропогенный парниковый эффект. Антропогенное увеличение концентрации парниковых газов в атмосфере нарушает естественный тепловой баланс планеты, усиливает парникового эффекта, и как следствие, вызывает глобальное потепление.

Это процесс медленный и постепенный. Так, за последние 100 лет средняя температура Земли увеличилась всего на 1оС. Казалось бы, немного. Что же тогда вызывает тревогу мировой общественности и заставляет правительства многих стран принимать меры для уменьшения выбросов парниковых газов?

Во-первых, этого оказалось достаточно, чтобы вызвать таяние полярных льдов и повышение уровня мирового океана со всеми вытекающими последствиями.

А во-вторых, некоторые процессы легче запустить, чем остановить. Например, в результате таяния вечномерзлых пород субарктики в атмосферу попадает огромные количества метана, что еще больше усиливает парниковый эффект. А опреснение океана из-за таяния льдов вызовет изменение теплого течения Гольфстрим, что скажется на климате Европы. Таким образом, глобальное потепление спровоцирует изменения, которые, в свою очередь, ускорят изменение климата. Мы запустили цепную реакцию…

Насколько сильно воздействие человека на глобальное потепление?

Идея о значительном вкладе человечества в парниковый эффект (а значит и в глобальное потепление) поддерживается большинством правительств, ученых, общественных организаций и СМИ, но пока не является окончательно установленной истиной.

Одни утверждают, что: концентрация углекислого газа и метана в атмосфере с доиндустриального периода (с 1750 г.) увеличились на 34% и 160% соответственно. Причем такого уровня она не достигала в течение сотен тысяч лет. Это явно связано с ростом потребления топливных ресурсов и развитием промышленности. И подтверждается совпадением график роста концентрации углекислого газа с графиком роста температуры.

Другие возражают: в поверхностном слое Мирового океана растворено углекислого газа в 50-60 раз больше, чем в атмосфере. По сравнению с этим воздействие человека просто ничтожно. Кроме того, океан обладает способностью поглощать СО2 и тем самым компенсирует воздействие человека.

Однако в последнее время появляется все больше фактов в пользу влияния деятельности человека на глобальное изменение климата. Вот только некоторые из них.

южная часть мирового океана потеряла свою способность поглощать значительные количества углекислоты, и это еще больше ускорит глобальное потепление на планете

поток тепла, поступающего на Землю от Солнца, в последние пять лет сокращается, но на земле наблюдается не похолодание, а потепление…

Насколько повысится температура?

Согласно некоторым сценариям изменения климата к 2100 году среднемировая температура может вырасти на 1,4 — 5,8 градуса по Цельсию — если не будут приняты шаги по сокращению парниковых выбросов в атмосферу. Кроме того, периоды жаркой погоды могут стать более длительными и более экстремальными по температурам. При этом развитие ситуации будет очень сильно отличаться в зависимости от региона Земли, и эти различия предсказать чрезвычайно сложно. Например, для Европы предсказывают вначале не очень большой период похолодания в связи с замедлением и возможным изменением течения Гольфстрим.

ПОСЛЕДСТВИЯ ГЛОБАЛЬНОГО ПОТЕПЛЕНИЯ

Глобальное потепление сильно отразится на жизни некоторых животных. Например, белые медведи, тюлени и пингвины будут вынуждены сменить места своего обитания, так как полярные льды исчезнут. Многие виды животных и растений также исчезнут, не успев приспособиться к быстро изменяющейся среде обитания. 250 млн лет назад глобальное потепление убило три четверти всего живого на Земле

Глобальное потепление изменит климат в мировом масштабе. Ожидаются рост числа климатических катаклизмов, рост числа наводнений из-за ураганов, опустынивание и сокращение летних осадков на 15-20% в основных сельскохозяйственных районах, повышения уровня и температуры океана, границы природных зон сдвинутся к северу.

Более того, по некоторым прогнозам глобальное потепление вызовет наступление малого ледникового периода. В 19-м веке причиной такого похолодания было извержение вулканов, в нашем веке причина уже другая — опреснение мирового океана в результате таяния ледников

Как глобальное потепление отразится на человеке?

В краткосрочной перспективе: нехваткой питьевой воды, ростом числа инфекционных заболеваний, проблемами в сельском хозяйстве из-за засух, рост числа смертей в результате наводнений, ураганов, жары и засухи.

Самый серьезный удар может быть нанесен по беднейшим странам, которые меньше всех ответственны за обострение данной проблемы, и которым наименее всего готовы к изменению климат. Потепление и рост температур, в конце концов, могут повернуть вспять все, что было достигнуто трудом предыдущих поколений.

Разрушение устоявшихся и привычных систем ведения сельского хозяйства под воздействием засух, нерегулярных осадков и т.д. может реально поставить на грань голода примерно 600 млн человек. К 2080 году серьезную нехватку воды испытает 1,8 млрд человек. А в Азии и Китае из-за таяния ледников и изменения характера осадков может случиться экологический кризис.

Увеличение температуры на 1,5-4,5°С приведет к подъему уровня океана на 40-120 см (по некоторым расчетам до 5 метров). Это означает затопление многих малых островов и наводнения в прибрежных территориях. На территориях, подверженным наводнениям, окажутся около 100 млн жителей, более 300 млн людей будут вынуждены мигрировать, исчезнут некоторые государства (например, Нидерланды, Дания, часть Германии ).

Всемирная организация здравоохранения (ВОЗ) считает, что здоровье сотен миллионов человек может оказаться под угрозой в результате распространения малярии (из-за увеличения числа комаров на затопленных территориях), кишечных инфекций (из-за нарушения водопроводно-канализационных систем) и т.д.

В долгосрочной перспективе это может привести — к очередному этапу эволюции человека. Наши предки столкнулись с подобной проблемой, когда после ледникового периода температура резко поднялась на 10°С, но именно это привело к созданию нашей цивилизации.

Специалисты не располагают точными данными о том, каков вклад человечества в наблюдаемый рост температур на Земле и какой может быть цепная реакция.

Также неизвестно точное соотношение между ростом концентрации парниковых газов в атмосфере и ростом температур. Это одна из причин того, что прогнозы изменения температур так сильно разнятся. И это дает пищу скептикам: некоторые ученые считают проблему глобального потепления несколько преувеличенной, как и данные о росте средней температуры на Земле.

У ученых нет единого мнения по поводу того, каким может быть итоговый баланс позитивных и негативных эффектов изменения климата, и по какому сценарию будет дальше развиваться ситуация.

Ряд ученых полагают, что некоторые факторы могут ослабить эффект глобального потепления: с ростом температур ускорится рост растений, что позволит растениям забирать из атмосферы больше углекислого газа.

Другие же считают, что возможные негативные последствия глобального изменения климата недооценены:

засухи, циклоны, штормы и наводнения станут происходить чаще,

повышение температура мирового океана вызывает к тому же и увеличение силы ураганов,

скорость таяния ледников и повышение уровня океана также будут более быстрыми…. И это подтверждается данными новейших исследований.

Уже сейчас уровень океана увеличился на 4 см вместо прогнозированных 2 см, скорость таяния ледников выросла в 3 раза (толщина ледяного покрова уменьшилась на 60-70 см, а площадь нетающих льдов Северного ледовитого океана только за один 2005 год сократилась на 14%).

Возможно, деятельность человека уже обрекла ледяной покров на полное исчезновение, что может вылиться в несколько раз большее повышение уровня океана (на 5-7 метров вместо 40-60 см).

Более того, по некоторым данным глобальное потепление может наступить гораздо быстрее, чем считалось ранее из-за высвобождения углекислого газа из экосистем, в том числе из Мирового океана.

И, наконец, мы не должны забывать, что вслед за глобальным потепление может наступить глобальное похолодание.

Однако, каким бы не был сценарий, все говорит за то, что мы должны перестать играть в опасные игры с планетой и уменьшить свое воздействие на нее. Лучше переоценить опасность, чем недооценить ее.

МЕРЫ, НЕОБХОДИМЫЕ ДЛЯ ПРЕДОТВРАЩЕНИЯ ГЛОБАЛЬНОГО ПОТЕПЛЕНИЯ

Международное сообщество, признавая опасность, связанную с постоянным ростом выбросов парниковых газов в 1992 г. в Рио-де-Жанейро на Конференции ООН по окружающей среде и развитию договорилось о подписании Рамочной Конвенции ООН об изменении климата (РКИК).

В декабре 1997 г. в Киото (Япония) был принят Киотский протокол, который обязывает индустриально развитые страны сократить к 2008-2012 годам выбросы парниковых газов на 5% от уровня 1990 года, в том числе Европейский союз должен сократить выбросы тепличных газов на 8%, США — на 7%, Япония — на 6%. России и Украине достаточно, чтобы их выбросы не превышали уровень 1990 года, а 3 страны (Австралия, Исландия и Норвегия) могут даже увеличить свои выбросы, поскольку обладают лесами, поглощающими CO2 .

Для вступления Киотского протокола в силу необходимо, чтобы его ратифицировали государства, на долю которых приходится не менее 55 % выбросов парниковых газов. На сегодня протокол ратифицирован 161 страной мира (более 61 % общемировых выбросов). В России Киотский протокол ратифицирован в 2004 г. Заметным исключением стали США и Австралия, вносящие значительный вклад в парниковый эффект, но отказавшиеся ратифицировать протокол.

В 2007 году в Бали был подписан новый протокол, расширяющий перечень мер, которые необходимо предпринять для снижения антропогенного влияния на изменение климата.

Вот некоторые из них:

1. Уменьшить сжигание ископаемого топлива

Сегодня 80% энергии мы получаем из ископаемого топлива, сжигание которого что является основным источником парниковых газов.

2. Шире использовать возобновляемые источники энергии.

Солнечная и ветровая энергия, энергия биомассы и геотермальная энергия, энергия приливов и отливов — сегодня использование альтернативных источников энергии становиться ключевым фактором для долгосрочного устойчивого развития человечества.

3. Прекратить уничтожение экосистем!

Должны быть прекращены всякие нападки на нетронутые экосистемы. Естественные экосистемы поглощают СО2 и являются важным элементом в поддержании баланса СО2. Особенно хорошо с этим справляются леса. Но во многих регионах мира леса продолжают уничтожаться с катастрофической скоростью.

4. Снизить потери энергии при производстве и транспортировке энергии

Переход от крупномасштабной энергетики (ГЭС, ТЭЦ, АЭС) к мелким местным электростанциям позволит сократить потери энергии. При транспортировке энергии на дальнее расстояние может быть потеряно в пути до 50% энергии!

5. Использовать новые энергоэффективные технологии в промышленность

В настоящий момент КПД большинства используемых технологий составляет около 30%! Необходимо внедрять новые энергоэффективные технологии производства.

6. Снизить энергопотребление в строительном и жилищном секторе.

Должны быть приняты регламенты, предписывающие использовать при строительстве новых зданий энергоэффективные материалы и технологии, что позволит сократить потребление энергии в домах в несколько раз.

7. Новые законы и стимулы.

Должны быть приняты законы, облагающие повышенными налогами предприятия, превышающие лимиты выбросов СО2, и предусматривающие налоговые льготы производителям энергии от возобновляемых источников и энергоэффективных товаров. Перенаправить финансовые потоки на развитие именно этих технологий и производств.

8. Новые способы перемещения

Сегодня в больших городах выбросы автотранспорта составляет 60-80% всех выбросов. Необходимо поощрять использование новых экологически безопасных видов транспорта, поддерживать общественный транспорт, развивать инфраструктуры для велосипедистов.

Источник: StudFiles.net