Юпитер
Юпитер
Сатурн
Сатурн
Уран
Уран
Нептун
Нептун

Планеты-гиганты — самые крупные тела Солнечной системы

Планеты-гиганты — самые большие тела Солнечной системы после Солнца: Юпитер, Сатурн, Уран и Нептун. Они располагаются за Главным поясом астероидов и поэтому их ещё называют «внешними» планетами.
Юпитер и Сатурн — газовые гиганты, то есть они состоят в основном из газов, находящихся в твёрдом состоянии: водорода и гелия.
А вот Уран и Нептун были определены как ледяные гиганты, поскольку в толще самих планет вместо металлического водорода находится высокотемпературный лёд.
Планеты-гиганты во много раз больше Земли, но по сравнению с Солнцем, они совсем не большие:


Планеты-гиганты на фоне Солнца

Компьютерные расчёты показали, что планеты-гиганты играют важную роль в деле защиты внутренних планет земной группы от астероидов и комет.
Не будь этих тел в Солнечной системе, наша Земля в сотни раз чаще подвергалась бы падению астероидов и комет!
Как же планеты-гиганты защищают нас от падений незванных гостей?

Вы наверняка слышали о «космическом слаломе», когда автоматические станции, направляемые к далёким объектам Солнечной системы, совершают «гравитационные манёвры» около некоторых планет. Они подходят к ним по заранее расчитанной траектории и, используя силу их притяжения, разгоняются ещё сильнее, но не падают на планету, а «выстреливают» слово из пращи с ещё большей скоростью, чем на входе и продолжают своё движение. Тем самым экономится топливо, которое было бы нужно для разгона одними только двигателями.
Точно также планеты-гиганты выбрасывают за пределы Солнечной системы астероиды и кометы, которые пролетают мимо них, пытаясь прорваться к внутренним планетам, в том числе к Земле. Юпитер, со своими собратьями, увеличивает скорость такого астероида, сталкивает его со старой орбиты, тот вынужденно меняет свою траекторию и улетает в космическую бездну.
Так что, без планет-гигантов, жизнь на Земле вероятно была бы невозможна из-за постоянных метеоритных бомбардировок.


Ну, а теперь вкратце познакомимся с каждой из планет-гигантов.

Юпитер — самая большая планета-гигант.

Первым по порядку от Солнца, из планет-гигантов, идёт Юпитер. Это и самая большая планета Солнечной системы.
Иногда говорят, что Юпитер — не состоявшаяся звезда. Но, чтобы запустить собственный процесс ядерных реакций, Юпитеру не хватает массы, причём довольно много. Хотя, масса потихоньку растёт за счёт поглощения межпланетного вещества — комет, метеоритов, пыли и солнечного ветра. Один из вариантов развития Солнечной системы показывает, что если так пойдёт и дальше, то Юпитер вполне может стать звездой или коричневым карликом. И тогда наша Солнечная станет двойной звёздной ситемой. Кстати, двойные звёздные системы — обычное дело в окружающем нас Космосе. Одиночных звёзд, вроде нашего Солнца, — гораздо меньше.

Существуют расчёты, показывающие, что уже сейчас Юпитер излучает больше энергии, чем поглощает её от Солнца. И если это действительно так, то ядерные реакции уже должны идти, иначе энергии взяться просто неоткуда. А это уже признак именно звезды, а не планеты…

Сравнение размеров Земли и Юпитера:


Сравнение размеров Земли и Юпитера

На этом снимке видно и знаменитое Большое Красное Пятно, его ещё называют «глазом Юпитера». Это гигантский вихрь, который существует по-видимому уже не одну сотню лет.

В 1989 году к Юпитеру был запущен аппарат «Галилео». За 8 лет работы, он сделал уникальные снимки самой планеты-гиганта, спутников Юпитера, а также провёл множество измерений.
Что творится в атмосфере Юпитера и в его недрах — остаётся только догадываться. Зонд аппарата «Галилео» спустившися в его атмосферу на 157 км., выдержал всего 57 минут, после чего был раздавлен давлением в 23 атмосферы. Но, он успел сообщить о мощных грозах и ураганных ветрах, также передал данные о составе и температуре.
Ганимед, самый большой из спутников Юпитера, является и самым большим из спутников планет в Солнечной системе.
В самом начале исследований, в 1994 году «Галилео» наблюдал падение кометы Шумейкеров-Леви на поверхность Юпитера и прислал изображения этой катастрофы. С Земли это событие наблюдать было нельзя — только остаточные явления, которые стали видны по мере вращения Юпитера.

Сатурн.

iv>

Далее идёт не менее знаменитое тело Солнечной системы — планета-гигант Сатурн, который известен прежде всего благодаря своим кольцам. Кольца Сатурна состоят из частичек льда, размером от пылинок до довольно больших кусков льда. При внешнем диаметре колец Сатурна 282000 километров, их толщина — всего около ОДНОГО километра. Поэтому, при взгляде сбоку, кольца Сатурна не видны.
Но, у Сатурна есть и спутники. Сейчас открыто около 62 спутников Сатурна.
Самый большой спутник Сатурна — Титан, размер которого больше планеты Меркурий! Но, он состоит в значительной мере из замёрзшего газа, то есть легче Меркурия. Если Титан переместить на орбиту Меркурия, то лёдяной газ испарится и размеры Титана сильно уменьшатся.
Ещё один интересный спутник Сатурна — Энцелад, привлекает учёных тем, что под его ледяной поверхностью есть океан жидкой воды. А если так, то в ней возможна и жизнь, ведь и температуры там положительные. На Энцеладе открыты мощные водяные гейзеры, бьющие в высоту на сотни километров! Подробнее об Энцеладе

Сатурн

Исследовательская станция Кассини Исследовательская станция «Кассини» находится на орбите Сатурна с 2004 года. За это время собрано множество данных о самом Сатурне, его спутниках и кольцах.

br />Так же осуществлена посадка автоматической станции «Гюйгенс» на поверхность Титана, одного из спутников Сатурна. Это была первая в истории посадка зонда на поверхность небесного тела во Внешней части Солнечной системы.
Несмотря на свои значительные размеры и массу, плотность Сатурна примерно в 9.1 раза меньше плотности Земли. Поэтому, ускорение свободного падения на экваторе — всего 10,44 м/с². То есть, совершив там посадку, мы бы не почувствовали возросшей силы тяжести.

Уран — ледяной гигант.

Атмосфера Урана состоит из водорода и гелия, а недра — изо льда и твёрдых горных пород. Уран выглядит довольно спокойной планетой, в отличие от буйного Юпитера, но всё-же в его атмосфере были замечены вихри. Если Юпитер и Сатурн называют газовыми гигантами, то Уран и Нептун — ледяные гиганты, поскольку в их недрах отсутствует металлический водород, а вместо него много льда в различных высокотемпературных состояниях.
Уран выделяет очень мало внутреннего тепла и поэтому является самой холодной из планет Солнечной системы — на нём зарегистрирована темперутура -224°С. Даже на Нептупне, который находится дальше от Солнца — и то теплее.
У Урана есть спутники, но они не очень крупные. Самый большой из них, Титания, в диаметре более чем в два раза меньше нашей Луны.

Уран с кольцами Нет, я не забыл повернуть фотографию 🙂

>

В отличие от других планет Солнечной системы, Уран как бы лежит на боку — его собственная ось вращения лежит почти в плоскости вращения Урана вокруг Солнца. Поэтому, он поворачивается к Солнцу то Южным, то Северным полюсами. То есть, солнечный день на полюсе длится 42 года, а потом сменяется на 42 года «полярной ночи», во время которой освещён противоположный полюс.

Этот снимок сделан телескопом Хаббл в 2005 году. Видны кольца Урана, светло окрашенный южный полюс и яркое облако в северных широтах.

Оказывается, не только Сатурн украсил себя кольцами!

Любопытно, что все планеты носят имена римских богов. И только Уран назван именем бога из древнегреческой мифологии.
Ускорение свободного падения на экваторе Урана — 0,886 g. То есть, сила тяжести на этой планете-гиганте даже меньше чем на Земле! И это несмотря на его огромную массу… Виной этому — опять же малая плотность ледяного гиганта Урана.

Космические аппараты пролетали мимо Урана, делая попутно снимки, но детальных исследований пока не проводилось. Правда, NASA планирует отправить к Урану исследовательскую станцию в 2020-ых годах. Есть планы и у Европейского космического агентства.

Источник: kosmoved.ru

48.Малые планеты-астероиды

АСТЕРОИД — небольшое планетоподобное тело Солнечной системы (малая планета).


мый большой из них Церера, имеющий размеры 970х930 км. Астероиды по размерам сильно различаются, самые маленькие из них не отличаются от частиц пыли. Несколько тысяч астероидов известно под собственными именами. Полагают, что насчитывается до полумиллиона астероидов с диаметром более полутора километров. Однако общая масса всех астероидов меньше одной тысячной массы Земли. Большинство орбит астероидов сконцентрировано в поясе астероидов между орбитами Марса и Юпитера на расстояниях от 2,0 до 3,3 а.е. от Солнца. Имеются, однако, и астероиды, чьи орбиты лежат ближе к Солнцу, типа группы Амура, группы Аполлона и группы Атена. Кроме того, имеются и более далекие от Солнца, типа центавров. На орбите Юпитера находятся троянцы. Астероиды могут быть классифицированы по спектру отраженного солнечного света: 75% из них очень темные углистые астероиды типа С, 15% — сероватые кремнистые астероиды типа S, а оставшиеся 10% включают астероиды типа М (металлические) и ряд других редких типов. Классы астероидов связаны с известными типами метеоритов. Имеется много доказательств, что астероиды и метеориты имеют сходный состав, так что астероиды могут быть теми телами, из которых образуются метеориты. Самые темные астероиды отражают 3 — 4% падающего на них солнечного света, а самые яркие — до 40%. Многие астероиды регулярно меняют яркость при вращении. Вообще говоря, астероиды имеют неправильную форму. Самые маленькие астероиды вращаются наиболее быстро и очень сильно различаются по форме. Столкновения астероидов, происходящие на больших скоростях, постепенно приводят к тому, что они разбиваются на мелкие части.


49.Кометы.Метеоры. Метеориты. Кометы — тела Солнечной системы, имеющие вид туманных объектов, обычно со светлым сгустком-ядром в центре и хвостом. Вдали от Солнца у комет нет никаких атмосфер и они ничем не отличаются от обычных астероидов. При сближении с Солнцем на расстояния примерно 11 а.е. у них сначала появляется газовая оболочка неправильной формы (кома). Кома вместе с ядром (телом) называется головой кометы. В телескоп такая комета наблюдается как туманное пятнышко. Затем, на расстояниях 3-4 а.е. от Солнца у кометы, под действием солнечного ветра, начинает развиваться хвост

Хвосты могут иметь разную форму, которая зависит от природы частиц, его составляющих: на частицы действует сила гравитационного притяжения, зависящая от массы частицы, и сила давления света, зависящая от площади поперечного сечения частиц. Практически вся масса вещества кометы заключена в ее ядре.

Метеоры — явления в верхней атмосфере, возникающие при вторжении в неё твёрдых частиц — метеорных тел. Вследствие взаимодействия с атмосферой метеорные тела частично или практически полностью теряют свою начальную массу; при этом возбуждается свечение и образуются ионизованные следы метеорного тела. Остатки метеорных тел, порождающих очень яркие болиды, могут выпадать на поверхность Земли в виде метеоритов.

Метеоритами называют камни или куски железа, упавшие на Землю, из межпланетного пространства. Метеориты имеют невзрачный вид: серые, черные или черно-бурые куски камней или железа. Однако метеориты — единственные внеземные тела, доступные для непосредственного изучения.

Источник: StudFiles.net

Спутники планет – гигантов и геологическая активность


На Земле исследователи обнаружили сообщества живых существ, живущих в полной темноте возле геологических объектов на дне океана. Если объединить два этих открытия, можно легко увлечься мечтами об инопланетном морском дне, кишащем микробами.

Однако новое исследование смотрит глубже. И предполагает, что эти миры могут быть мертвы внутри – не только биологически, но и геологически.

На морском дне Европы астробиологи надеются найти нагретую, заполненную минералами морскую воду. Она должна извергаться в океан подобно гидротермальным жерлам и черным курильщикам на Земле. В наших океанах эти явления поддерживают жизнь микробных сообществ, которые могут питаться химическими веществами. Они образуются в местах, где постоянно вступают в контакт горячие камни и морская вода. Если подобные структуры будут обнаружены в инопланетных океанах, перспектива обнаружения жизни в мирах, сильно удаленных от Солнца, станет чуть более высокой.

«Я надеялся, что мы сможем понять, как будет выглядеть цепь вулканов, как будут выглядеть рифтовые зоны. И вдруг мы поняли – их там не будет», – заявил ведущий автор новой работы Пол Бирн, планетарный геолог из Университета штата Северная Каролина.

Поверхность


Команда сфокусировалась на определении свойств твердой поверхности спутника, имеющего океан. Она хотела определить, какая сила потребуется для разрушения целостности поверхности двумя способами, которые мы видим на Земле. Это обычные разломы, возникающие при разрыве породы. И разломы, возникающие при высоком давлении на породы, требующие гораздо больших энергий. Чем больше усилий требуется для разрушения породы, тем меньше происходит геологической активности. А это означает меньшее количество взаимодействий между выброшенными новыми породами и морской водой. Именно эти процессы теоретически могут поддерживать жизнь.

Бирн и его коллеги сосредоточились на четырех океанских мирах. Это спутники Юпитера Европа и Ганимед. И спутники Сатурна Энцелад и Титан. Для каждого из этих миров команда рассчитала прочность их пород. Хотя существует множество нерешенных вопросов об этих мирах, оказалось, что расчеты прочности породы, которые обычно производятся на Земле для добычи полезных ископаемых, вполне применимы и здесь.

Результаты работы

По результатам работы Бирн заявил, что плотность и прочность поверхностей исследуемых спутников настолько велика, что мы не знаем силы на этих объектах, способных ее расколоть. И все это происходит из-за огромного веса воды и льда, находящихся над поверхностью.

Каждый спутник, который изучала команда, показывал различную прочность породы. И результаты не были обнадеживающими для геологов и потенциального существования инопланетян. «В случае с Европой кажется, что там очень трудно сломать поверхность. Но если посмотреть на Титан и Ганимед, где полученные цифры слишком большие – в этих мирах вообще ничего не должно происходить», – сказал Бирн.

Значение прочности для Энцелада не так мрачно. Так как этот спутник намного меньше, чем три других. Это уменьшает вес воды и льда над его каменистой поверхностью. На Энцеладе картина выглядит немного иначе, потому что его скалистое ядро ​​более пористое. Если эти поры выстроятся в линию, они могут позволить воде попасть под поверхность.

У ученых есть доказательства, что камни и вода взаимодействуют на Энцеладе. Они были получены в ходе выполнения миссии «Кассини». Были зафиксированы выбросы воды, проникающей сквозь ледяную кору в космос. В них были обнаружены органические соединения.

Это открытие обнадеживает ученых. Поскольку наличие органики может говорить о существовании в океане Энцелада живых организмов.

Источник: alivespace.ru

Близко мы познакомились с «Прекраснейшей» в 1979 г. , когда американские «Вояджеры» передали на Землю снимки этого спутника Юпитера. Нельзя сказать, что мы о ней ничего не знали. О ее существовании стало известно еще в 1610 г. Считается, что ее вместе с еще тремя спутниками Юпитера обнаружил Галилео Галилей, однако «прекраснейшей» (по-гречески «Каллисто») ее назвал Симон Марий, немецкий врач и астроном, работавший в Ансбахе и оспаривавший приоритет Галилея в открытии спутников Юпитера.

О Каллисто и до снимков с «Вояджеров» было известно довольно много. Знали, что это пятый (по расстоянию) спутник Юпитера, что радиус Каллисто (2400 км) близок к радиусу Меркурия, что период обращения относительно Юпитера составляет 16,7 сут. , и вращение, как и у остальных галилеевых спутников Юпитера, синхронно, т. е. Каллисто всегда обращена к Юпитеру одним и тем же полушарием.

Однако полеты американских космических аппаратов обрушили на нас лавину новой информации. Прежде всего, по гравитационным возмущениям их орбит были определены массы спутников, и поскольку радиусы их были известны, можно было оценить их среднюю плотность. Оказалось, что, как и подобает «Прекраснейшей», в отличие от вулканической. Ио, если не сердце, то уж во всяком случае, мантия Каллисто — ледяная, 40 % ее массы составляет лед. Но особенно удивительны были снимки. На Ио обнаружились вулканы, на Ганимеде — поля параллельных борозд, а на Каллисто — удивительное образование, которое сначала называли «Глаз быка», а позже оно получило имя Вальхалла (по названию дворца верховного бога скандинавской мифологии Одина) На снимках это образование действительно очень похоже на коровий глаз, так что Прекраснейшая оказалась еще и волоокой. Вальхалла имеет характерную для космических тел, лишенных атмосферы, округлую форму и простирается на расстояние около 4 тыс. км. , (напомним, что диаметр Каллисто — 4800 км). К тому же, в отличие от обычных кратерных структур, здесь не выражен рельеф отсутствует депрессия и вместо характерной системы нескольких кольцевых валов, у Вальхаллы существует система слабо выраженных в рельефе почти концентрических извилистых хребтов, высота которых не превосходит 1 км В этой системе можно насчитать несколько десятков концентрических колец. Позже кратерные системы со сглаженным рельефом стали называть палимпсестами (как известно, в палеографии палимпсестами называют древние пергаменты, на которых поверх старого, смытого текста записан новый).

Если бы Вальхалла располагалась на Земле, это была бы равнина в поперечнике равная Антарктиде (т. е. перекрывающая всю Европу) с очень «скучным» рельефом, регулярность которого легко обнаруживалась бы со спутника. Для человека на поверхности Земли этот рельеф представлялся бы однообразными грядами пологих холмов, поднимающихся на несколько градусов над горизонтом с двух противоположных сторон. Поднявшись на гряду, можно было бы увидеть, что дальше располагаются такие же гряды.

В начале 80-х годов автор вместе с А. Н. Сановичем занимались исследованием многокольцевых бассейнов Луны и, конечно, не могли не обратить внимание на такое удивительное образование как Вальхалла, однако вплотную смогли заняться им значительно позже. За это время в исследовании самого образования и Каллисто в целом был получен ряд новых результатов.

По снимкам, полученным «Вояджерами», в НАСА построена великолепная карта Каллисто. Изучение галилеевых спутников и развитие исследований по их космогонии (считается, что спутники образовались в результате аккреции вещества находившегося вблизи Юпитера) позволили рассчитать внутреннее строение Каллисто. По-видимому, достаточно уверенно можно считать, что в эпоху образования Вальхаллы спутник имел кору толщиной порядка 20 км, состоящую изо льда с примесью силикатов и лежащую на водяной мантии в несколько сот км.

Под мантией располагалось ядро с силикатной оболочкой, возникшей из материала, осаждавшегося из водяной мантии. Что касается палимпсеста Вальхалла, то хорошо видно, что это образование делится на три зоны: центральную (радиусом 300-400 км) яркую и лишенную деталей, внутреннюю, шириной 200- 300 км, с концентрическими кольцевыми хребтами, ширина которых 15 км, длина отдельных гряд достигает ~ 700 км, а расстояние между концентрическими хребтами составляет 20-30 км и, наконец, внешнюю, шириной более 600 км. Во внешней зоне ширина концентрических валов 15-20 км, а расстояние между ними около 70 км. По подсчетам малых кратеров был оценен и возраст Вальхаллы, он оказался близким к 3,9 млрд. лет.

Появился ряд гипотез о происхождении Вальхаллы. Часть из них связывала образование бассейна с внутренними тектоническими процессами, часть с падением огромного метеорного тела, создавшего гигантский кратер. Однако во всех гипотезах предполагалось, что наблюдаемая структура возникла в результате разрушений коры и последующих вязких процессов, которые и привели к образованию множества кольцевых валов. Нам показалось странным, что в ходе такого процесса возникали только круговые валы. Казалось, что в этом случае должны быть и радиальные образования, и мы решили подойти к проблеме несколько с другой стороны.

Действительно, наблюдается некоторая регулярная периодическая структура. Чаще всего такие структуры связаны с волновыми процессами. В нашем случае, явление как-то связано со свойствами вещества, может быть с его прочностными характеристиками (однако, тогда непонятно, почему проявляется такая строгая, да еще и «анизотропная» — нет радиальных разломов — периодичность), либо с процессом распространения каких-то механических колебаний. Если это механические колебания, то, по-видимому, мы имеем дело с установившейся системой стоячих волн, иначе не объяснить пространственную периодичность.

Скорее всего, колебания происходили в коре, но толщина коры при формировании Вальхаллы составляла около 20 км, следовательно, процесс надо рассматривать в свете теории длинных гравитационных волн — приближенной гидродинамической теории волнового процесса, происходящего в бассейне, глубина которого мала по сравнению с длиной волны. Длинные гравитационные волны распространяются со скоростью, не зависящей от длины волны и равной (здесь g — ускорение силы тяжести на поверхности Каллисто, h — глубина бассейна). В нашем случае g известно, а про глубину бассейна мы ничего не знаем. Правда, если колебания возникли из-за распространения какого-то импульса с продолжительностью Т, то длина волны будет пропорциональна произведению Т на скорость распространения волны. Поскольку длина стоячей волны равна половине длины бегущей, это утверждение справедливо и для стоячих волн. Предполагая, что система валов связана с системой стоячих волн и принимая во внимание, что во внутренней зоне расстояние между валами вдвое меньше, чем во внешней, мы должны прийти к выводу: глубина предполагаемого бассейна во внутренней его части должна быть в 4 раза меньше внешней.

Если бы бассейн удалось «осушить», мы увидели бы гигантский кратер с центральной горкой. Но именно такие формы характерны для лунных кратеров больших (но не слишком больших) поперечников. Если поперечник лунного кратера превышает несколько сот километров, как правило, его дно залито базальтовой лавой, и собственный рельеф дна под слоем лавы фактически не известен. Такие кратеры, точнее бассейны, обычно представляют собой масконы — локальные положительные гравитационные аномалии, которые, как показывает моделирование, связаны с подъемом к поверхности и частичным излиянием более тяжелого вещества мантии.

Не может ли быть Вальхалла аналогом лунного маскона? Основное отличие здесь в том, что на Луне плотность вещества мантии выше плотности коры из-за их разного химического состава, в то время как на Каллисто вещество мантии, если она водяная, отличается от вещества коры только фазовым состоянием, поскольку плотность воды больше плотности обычного льда (заметим, что давление в коре и подкоровых слоях слишком мало, чтобы в этом случае появились экзотические фазы льда). И, конечно, вязкость льда, а тем более воды, намного порядков меньше вязкости скальных пород.

Как же образуются масконы на Луне? По-видимому, механизм таков: при столкновении с метеоритом прочность коры нарушается настолько, что она уже не может противостоять давлению мантии, вещество мантии перетекает в область пониженного давления, т. е уменьшенной толщины коры. При этом, если пластичность коры достаточно велика, возникают лишь отдельны трещины, через которые менее вязкое вещество мантии выдавливается на поверхность. Если кора на дне кратера раздроблена на свободно плавающие блоки, полностью или частично реализуется изостазия, т. е работает закон Архимеда. В действительности из-за вязкости мантийного вещества и увеличения вязкости при охлаждении с выходом на поверхность изостазия не может быть полной.

Этапы формирования палимпсеста Вальхалла :

а) На поверхность Каллисто выпал крупный метеороид, образовавший кратер радиусом около 2 тыс. км и глубиной, сравнимой с толщиной коры Каллисто б) Пластическая деформация коры в районе удара привела к образованию депрессии и подъему дна кратера в) В процессе деформации в центре кратера кора была разрушена и произошел выброс вещества мантии, в результате которого депрессия заполнилась водой. В ходе заполнения в бассейне образовалась система стоячих волн г) В узлах системы стоячих волн образовались скопления льда д) Рост ледяных скоплений в узлах привел к образованию валов, процесс прекратился после промерзания бассейна

Как же в аналогичной ситуации обстоят дела на ледяном спутнике? Для простоты будем считать кору и мантию не содержащими силикатных материалов. Их содержание и в действительности должно быть невелико, поскольку в жидкой водяной мантии быстро происходит гравитационная дифференциация (проще говоря, частицы более тяжелых скальных пород оседают, образуя силикатную оболочку ядра). Будем также считать, что формирование Вальхаллы не повлекло за собой существенных изменений мантии в целом. Это, вероятно, близко к истине, поскольку объем области, занятой бассейном, всего — 1 % объема мантии. События, вероятно, развивались так. В эпоху, когда толщина ледяной коры Каллисто составляла около 20 км, спутник столкнулся с космическим телом, образовавшим на поверхности кратер глубиной около 10 км. Скорее всего скорость соударения была не очень велика и тело до соударения существовало в окрестностях Юпитера (при большой скорости соударения поперечник кратера был бы соизмерим с его глубиной). Таким образом, на поверхности Каллисто в определенном месте толщина коры стала вдвое меньше и давление мантии на кору перестало уравновешиваться весом коры. Возникло избыточное давление мантии, равное (H — толщина коры, q — плотность вещества коры, g — ускорение силы тяжести на поверхности Каллисто, равное 124 см/с2). Оно должно было составлять около 100 атм.

Скорее всего, под действием этого давления дно кратера поднялось и деформировалось. Характерное время этого процесса (время, за которое дно поднимается на высоту, соизмеримую с его толщиной) равно отношению динамической вязкости материала дна к напряжению в этом материале, т. е. избыточному давлению. Если принять, что дно ледяное, а вязкость льда порядка 107, характерное время деформации дна составит несколько месяцев. Трудно представить себе, что при столь значительной деформации дно кратера останется целым. Вероятно, в нем образуются разрывы, через которые вещество мантии устремится на поверхность. При избыточном давлении в 100 атм, скорость истечения вещества мантии (воды) составит по закону Бернулли около 100 м/с. При такой скорости истечения водяная струя будет подниматься над поверхностью. спутника на высоту около 5 км и, падая обратно, заполнит депрессию кратера. Вес воды, заполнившей депрессию, уравновесит избыточное давление и истечение прекратится. Надо заметить, что кратерный вал, который должен был образоваться при столкновении, создаст избыточное давление на кору, направленное сверху вниз. Это может вызвать опускание коры и увеличение глубины кратерной депрессии в прилегающих к валу областях.

Сравним теперь эту картину с тем, что нам известно о Вальхалле. Глубина бассейна во внутренней зоне примерно в 4 раза меньше, чем во внешней. Это так и должно быть. Теперь мы можем оценить не только отношение глубин, но и сами глубины, и объем заполненного водой бассейна. По-видимому, в качестве разумной оценки можно принять глубину бассейна во внутренней зоне близкой к 2 км, а во внешней — к 8-10 км. В этом случае объем заполненного бассейна порядка 107-108 км3. Напомним, что объем Каспийского моря ~105 км3, Тихого океана порядка 107 км3, общее количество воды на Земле, включая лед, около 1,5 * 109 км3. Чтобы оценить время заполнения депрессии, а именно оно характеризует продолжительность импульса, который привел к образованию системы стоячих волн, надо знать поперечник жерла водяного вулкана, заполнившего бассейн. Соблазнительно принять за жерло центральную часть Вальхаллы. Как уже говорилось, она лишена кольцевых валов (как и должно быть, если глубина бассейна здесь очень велика) и имеет поперечник порядка 600 км. Если это действительно жерло, время заполнения бассейна будет порядка 2 000 с, и тогда за характерную продолжительность импульса разумно принять ‘половину этой величины. Скорость распространения волны в приближении длинных гравитационных волн мы знаем. Получается, что глубина бассейна во внешней зоне действительно должна составлять 8-10 км, а во внутренней (предполагаемой зоне поднятия) — порядка 2 км.

Таким образом, наши представления как будто согласуются с наблюдениями, но главная загадка все еще остается: сами по себе стоячие волны в жидкости рано или поздно затухнут, откуда же взялись детали рельефа, свидетельствующие о некогда существовавшей системе стоячих волн?

Видимо, дело в том, что температура на поверхности Каллисто не превышает 170 К, т. е. на сто с лишним градусов ниже температуры замерзания воды. Не могло ли случиться, что в процессе замерзания образовались ледяные торосы, которые и видны как ледяные валы? По существу, мы имеем дело с одной из задач математической физики — задачей о промерзании. Из ее решения следует, что толщина льда увеличивается пропорционально квадратному корню из времени, т. е. нарастает весьма медленно. Однако на начальных стадиях толщину нарастающего слоя льда надо оценивать из других соображений. В условиях Каллисто, пока толщина слоя льда настолько мала, что можно пренебречь поглощающимся в нем инфракрасным излучением, изменение толщины слоя будет определяться балансом энергий: освобождаемой при замерзании воды и излучаемой во внешнее пространство с поверхности льда. При температуре замерзания воды энергия излучения будет сосредоточена по закону Вина в основном в области длин волн около 10 мкм. Поглощение инфракрасного излучения на пути в 1 см для льда в этой области не превышает нескольких процентов. Следовательно, пока толщина слоя не превышает нескольких сантиметров, можно считать, что его толщина увеличивается пропорционально времени. Разумеется, эти соображения справедливы только для тел, не имеющих атмосферы. В противном случае отток тепла будет, вообще говоря, определяться теплопроводностью или конвекцией атмосферы.

Расчеты показывают, что в начальный период толщина слоя льда на Каллисто увеличивается на величину порядка 10~4 см/с, или, учитывая, что продолжительность колебания 103 с, на 1 мм за одно колебание.

Казалось бы, это ничего не дает: не все ли равно, с какой скоростью увеличивается толщина льда? Рано или поздно бассейн промерзнет. Однако дело в том, что в системе стоячих волн существуют узлы и пучности, причем, если в узлах уровень жидкости остается постоянным, в пучностях он то растет, то убывает. Поскольку лед плавает и на ранних стадиях не образует сплошного покрова, он будет сдвигаться к узлам и смерзаться там, образуя своеобразные торосы, рост которых еще более ускоряется за счет набрызгивания воды на их поверхность. В то же время смещение тороса к пучности, находящейся в ложбине, фактически не происходит, поскольку основная масса тороса находится под водой. По-видимому, разумно принять, что торосы растут со скоростью порядка сантиметра за колебание. Если учесть, что 9/10 массы тороса должно быть погружено в воду, то при глубине бассейна во внешней зоне около 10 км высота вала над поверхностью не должна превышать 1 км, а во внутренней зоне, где, по нашему мнению, глубина ~2 км, составлять около 200 м. Оценки показывают, что наиболее реальный механизм затухания стоячих волн — прорастание торосов до дна бассейна, что препятствует горизонтальному перетеканию воды от одной пучности к другой. За это время (порядка 100 лет) и возникнет система концентрических валов. Оставшаяся в бассейне вода будет промерзать «статически» (процесс описывается уравнением теплопроводности). Характерное время «статического» промерзания — порядка миллиарда лет.

Надо сказать еще о двух проблемах.

Во-первых, почему при высокой скорости истечения и больших масштабах турбулентность позволила сохраниться системе стоячих волн? Дело здесь в том, что турбулентность — явление существенно трехмерное и ее максимальные элементы (вихри) характеризуются в данном случае глубиной бассейна. Хотелось бы считать, что извилистость хребтов в значительной мере связана именно с турбулентностью.

Во-вторых, почему структуры типа Вальхалла сравнительно редки? Правда, наряду с Вальхаллой, на Каллисто существует еще один многокольцевой палимпсест Асгард с поперечником около 1600 км. Выявление аналогичных структур на Ганимеде затруднено условиями наблюдений. И, конечно, необходимо благоприятное стечение обстоятельств: в ледяной спутник с надлежащей толщиной коры и водяной мантией должен попасть подходящий метеороид. К тому же вращение спутника не должно быть слишком быстрым, иначе из-за сил Кориолиса в бассейне не будут развиваться радиальные течения, порождающие стоячие волны.

Если изложенные соображения верны, то после завершения всех процессов, через миллиард лет после столкновения, единственным свидетельством тяжелого ранения Прекраснейшей будут поверхностные кольцевые шрамы. На Луне возник бы маскон.

Источник: www.hintfox.com