1. Химический состав прокариотной клетки.

  2. Пищевые потребности прокариот.

  3. Факторы роста. Ауксотрофы, прототрофы.

  4. Типы питания и группы микроорганизмов по типу питания.

  5. Бактериальный фотосинтез и его типы. Отличие бактериального фотосинтеза от фотосинтеза растений.

Химический состав клеток прокариот близок к таковому (в принципе) эукариот. 70–80 % состава клеток прокариот составляет вода. На остальные вещества приходится 10–30 % сухого вещества клетки. Сухое вещество клетки составляют белки, липиды, полисахариды, НК, низкомолекулярные вещества органического происхождения, минеральные соли. На долю белков приходится 50–80% сухой массы, встречаются специфические аминокислоты – мезо-ДАП, дипиколиновая кислота и др.

В прокариотной клетке – 60 типов т-РНК, около 600 видов и-РНК, ДНК представлена одним видом, но может быть несколько копий. В клетке может быть около 1 млн молекул метаболитов, 2000–2500 видов белков.

Элементарный состав представлен 50% – углерод, 20% – кислород, 10–15% – азот, 10 – водород, 2–6% – фосфор, доли процента составляет наличие других элементов.

Пищевые потребности прокариот.


Прокариоты нуждаются в питательных веществах. Пища, поступающая в клетку, служит источником энергии для поддержания жизни и строительным материалом для синтеза клеточных структур. Чем больше готовых соединений для поддержания жизни должен получить микроорганизм из внешней среды, тем соответственно ниже уровень его собственных биосинтетических способностей. Для биосинтеза основных макромолекул клетка в качестве источников питания должна получать углерод, кислород, водород, азот, фосфор, серу и другие элементы в виде более или менее сложных соединений.

Пищевые потребности источники биогенных элементов. Углерод – наиболее важный элемент клетки. По отношению к источнику углерода для конструктивного обмена все прокариоты делятся на две группы: автотрофы, потребляющие в качестве главного источника углерода углекислый газ, и гетеротрофы, усваивающие углерод из органических соединений. Для большинства гетеротрофов оптимальным и наиболее доступным источником углерода служат углеводы. В форме углеводов одновременно с углеродом в клетку поступают кислород и водород.


Помимо углеводов, хорошим источником углерода для многих бактерий являются многоатомные спирты и аминокислоты. Некоторые виды прокариот способны усваивать углерод из органических кислот.

Ограниченное число бактерий потребляет восстановленные соединения углерода. Так, использование углеводородов характерно для коринебактерий, микобактерий и псевдомонад. Общее число органических соединений, потребляемых в качестве источника углерода различными гетеротрофными микроорганизмами, чрезвычайно велико. Этим и объясняется главенствующая роль прокариот в круговороте углерода.

Для синтеза аминокислот, пуриновых и пиримидиновых нуклеотидов бактериям необходим азот. В природе азот встречается в форме окисленных и восстановленных соединений, а также в виде молекулярного азота атмосферы.

Большинство прокариот потребляют азот в восстановленной форме в виде солей аммония и аммиака (NH3). Многие бактерии используют органические азотсодержащие вещества – белки, аминокислоты, мочевину, разрушая их с выделением аммиака. Окисленные формы азота – нитриты, нитраты – также усваиваются различными группами бактерий. Среди прокариот известно большое число организмов – бактерий, актиномицетов, цианобактерий, способных фиксировать молекулярный азот атмосферы для построения всех необходимых компонентов клетки.

Фосфор в клетках прокариот входит в состав важнейших органических соединений – нуклеиновых кислот, фосфолипидов, коферментов. Такие соединения фосфора, как АДФ и АТФ, являются аккумуляторами энергии клетки и играют важную роль в метаболизме. Источником фосфора для бактерий в основном служат фосфаты калия или натрия, а из органических соединений нуклеиновые кислоты.


Сера в клетке прокариот в основном встречается в восстановленной форме и входит в состав аминокислот, витаминов и кофакторов (биотин, кофермент А и др.). Наиболее важным компонентом, содержащим серу, является цистеин. Атомы серы в большинстве других содержащих серу соединений клетки (метионин, биотин, тиамин) происходят из SH-группы цистеина. Источником серы для большинства микроорганизмов служат сульфаты, которые в клетке восстанавливаются в сульфиды. Некоторые бактерии нуждаются в соединениях, содержащих серу в восстановленной форме, таких, как сероводород, тиосульфат, цистеин и метионин.

Для нормального роста и развития прокариот необходимы ионы металлов, представленные макроэлементами, такими, как калий, кальций, магний, железо, и микроэлементами. К микроэлементам относятся марганец, молибден, цинк, медь, кобальт, никель, магний и др.

Ионы металлов входят в состав жизненно важных метаболитов бактериальной клетки. Так, кобальт является активатором ферментов транспорта электронов в окислительно-восстановительных реакциях цикла Кребса. Железо и молибден необходимы бактериям для синтеза ферментов, участвующих в процессе азотфиксации.


Существует антагонистическое действие некоторых ионов. Например, ионы натрия угнетают рост молочнокислых микробов. Галофильные бактерии, наоборот, нуждаются в ионах натрия.

Факторы роста. Факторами роста называются органические соединения, которые не синтезируются многими прокариотными организмами, но без которых жизнь клетки оказывается невозможна. К таким соединениям относятся аминокислоты, пурины, пиримидины, витамины и др. Эти соединения прокариоты должны получать из среды.

Бактерии, нуждающиеся в каком-либо факторе роста, называются ауксотрофными по отношению к этому соединению. Прототрофные организмы способны синтезировать данное вещество в клетке.

Прокариоты существенно различаются по потребностям в факторах роста. Например, молочнокислые бактерии ауксотрофны ко многим аминокислотам, пуринам, пиримидинам и 5–6 витаминам, в то время как различные штаммы Escherichia coli проявляют ауксотрофность к какому-либо одному, но разному фактору роста.

Особенно часто микроорганизмы ауксотрофны к аминокислотам. Так, для роста бактерии Leuconostoc mesenteroides необходимо не менее 17 аминокислот. Глутаминовая кислота является фактором роста для гемолитических стрептококков, гонококков и бацилл сибирской язвы.

Многие микроорганизмы проявляют ауксотрофность к витаминам, в частности к витаминам группы В. Витамины этой группы входят в состав жизненно важных ферментов. Ростовым фактором для многих патогенных бактерий – пневмококков, гонококков, возбудителей дизентерии является парааминобензойная кислота. Она необходима микробной клетке для синтеза пуриновых оснований и ряда аминокислот (серии, гистидин, тирозин, метионин).

Источник: StudFiles.net

Особенности строения клеток прокариот


Прокариотами называют все живые организмы, клетки которых не содержат ядра. Из представителей пяти современных Царств живой природы к ним принадлежат только одно — Бактерии. Прокариоты, строение которых мы рассматриваем, также включают представителей сине-зеленых водорослей и архей.

Несмотря на отсутствие в их клетках оформленного ядра, генетический материал они содержат. Это позволяет хранить и передавать наследственную информацию, но ограничивает разнообразие способов размножение. Воспроизведение всех прокариот происходит путем деления их клетки надвое. К митозу и мейозу они не способны.

Строение прокариот и эукариот

Особенности строения прокариот и эукариот, которые их отличают, достаточно существенны. Кроме структуры генетического материала, это касается и многих органелл. Эукариоты, к которым относятся растения, грибы и животные, содержат в цитоплазме митохондрии, комплекс Гольджи, эндоплазматический ретикулум, многие пластиды. У прокариот они отсутствуют. Клеточная стенка, которая есть и у тех, и у других, отличается химическим составом. У бактерий в ее состав входят сложные углеводы пектин или муреин, в то время как у растений ее основу составляет целлюлоза, а у грибов — хитин.

История открытия


Особенности строения и жизнедеятельности прокариот стали известны ученым только в 17 веке. И это несмотря на то, что эти существа существовали на планете с момента ее зарождения. В 1676 году их впервые рассмотрел в оптический микроскоп его создатель Антони ван Левенгук. Как и всех микроскопических организмов, ученый назвал их «анималикулами». Термин «бактерии» появился только в начале 19 столетия. Его предложил известный немецкий естествоиспытатель Христиан Эренберг. Понятие «прокариоты» возникло позже, в эпоху создания электронного микроскопа. Причем сначала ученые установили факт различия в строении генетического аппарата клеток разных существ. Э. Чаттон в 1937 году предложил объединить по этому признаку организмы в две группы: про- и эукариоты. Это деление существует и по сегодняшний день. Во второй половине 20 века было открыто различие среди самих прокариот: архей и бактерий.

Особенности поверхностного аппарата

Поверхностный аппарат прокариот состоит из мембраны и клеточной стенки. Каждая из этих частей имеет свои особенности. Их мембрана образована двойным слоем липидов и белков. Прокариоты, строение которых достаточно примитивно, имеют два типа строения клеточной стенки.
к, у граммположительных бактерий она состоит в основном из пептидогликана, имеет толщину до 80 нм и плотно прилегает к мембране. Характерной чертой этой структуры является и наличие в ней пор, через которые проникает ряд молекул. Клеточная стенка граммотрицательных бактерий очень тонкая — максимум до 3 нм. Она прилегает к мембране не плотно. У некоторых представителей прокариот снаружи находится еще и слизистая капсула. Она защищает организмы от высыхания, механических повреждений, создает дополнительный осмотический барьер.

Органеллы прокариот

Строение клетки прокариот и эукариот имеет свои существенные отличия, которые прежде всего заключаются в наличии определенных органелл. Эти постоянные структуры определяют уровень развития организмов в целом. У прокариот большинство из них отсутствует. Синтез белка в данных клетках происходит рибосомах. У водных прокариот содержатся аэросомы. Это газовые полости, которые обеспечивают плавучесть и регулируют степень погружения организмов. Только в клетках прокариот содержатся мезосомы. Эти складки цитоплазматической мембраны возникают только во время использования химических методов фиксации во время подготовки прокариотических клеток к микроскопии. Органеллами движения бактерий и архей являются реснички или жгутики. А прикрепление к субстрату осуществляют пили. Эти структуры, образованные белковыми цилиндрами, еще называют ворсинками и фимбриями.

Что такое нуклеоид

Но самое существенное отличие имеет строение гена прокариот и эукариот. Наследственной информацией обладают все эти организмы. У эукариот она находится внутри оформленного ядра. Эта двумембранная органелла имеет собственный матрикс, который называется нуклеоплазма, оболочку и хроматин. Здесь осуществляется не только хранение генетической информации, но и синтез молекул РНК. В ядрышках из них в последующем формируются субъединицы рибосом — органелл, отвечающих за синтез белка.


Строение генов прокариот проще. Их наследственный материал представлен нуклеоидом или ядерной областью. ДНК у прокариот не упакованы в хромосомы, а имеют кольцевую замкнутую структуру. В состав нуклеоида также входят молекулы РНК и белка. Последние по функциям напоминают гистоны эукариот. Они участвуют в удвоении ДНК, синтезе РНК, восстановлении химической структуры и разрывов нуклеиновых кислот.

Особенности жизнедеятельности

Прокариоты, строение которых не отличается сложностью, осуществляют довольно сложные процессы жизнедеятельности. Это питание, дыхание, воспроизведение себе подобных, движение, обмен веществ… И на все это способна лишь одна микроскопическая клетка, размеры которой колеблются в пределах от до 250 мкм! Так что говорить о примитивности можно только относительно.

Особенности строения прокариот обусловливают и механизмы их физиологии. К примеру, они способны получать энергию тремя способами. Первым является брожение. Его осуществляют некоторые бактерии.
основе этого процесса лежат окислительно-восстановительные реакции, в ходе которых синтезируются молекулы АТФ. Это химическое соединение, при расщеплении которого в несколько этапов выделяется энергия. Поэтому его не зря называют «клеточным аккумулятором». Следующим способом является дыхание. Суть этого процесса заключается в окислении органических веществ. Некоторые прокариоты способны к фотосинтезу. Их примерами являются сине-зеленые водоросли и пурпурные бактерии, которые содержат в клетках пластиды. А вот археи способны к бесхлорофильному фотосинтезу. В ходе этого процесса не происходит фиксация углекислого газа, а непосредственно образуются молекулы АТФ. Поэтому, по сути, это настоящее фотофосфорилирование.

Тип питания

Бактерии и археи — это прокариоты, строение которых позволяет им осуществлять и разные способы питания. Часть из них является автотрофами. Эти организмы сами синтезируют органические вещества в ходе фотосинтеза. В клетках таких прокариот находится хлорофилл. Некоторые бактерии получают энергию за счет расщепления некоторых органических соединений. Их тип питания называется хемотрофным. Представителями этой группы являются железо — и серобактерии. Другие же поглощают только готовые соединения. Их называют гетеротрофами. Большинство из них ведет паразитический образ жизни и обитают только внутри клеток других существ. Разновидностью этой группы являются и сапротрофы. Они питаются продуктами жизнедеятельности или разлагающейся органикой. Как видите, способы питания прокариот достаточно разнообразны. Этот факт и способствовал их широкому распространению во всех средах обитания.

Формы размножения


Прокариоты, строение которых представлено одной клеткой, размножаются путем ее деления на две части или почкованием. Эта особенность обусловлена и структурой их генетического аппарата. Процессу бинарного деления предшествует удвоение, или репликация ДНК. При этом молекула нуклеиновой кислоты сначала раскручивается, после чего каждая нить дублируется по принципу комплементарности. Образовавшиеся в результате этого хромосомы расходятся к полюсам. Клетки увеличиваются в размерах, между ними образуется перетяжка и далее происходит их окончательное обособление. Некоторые бактерии также способны к образованию клеток бесполого размножения — спор.

Бактерии и археи: отличительные признаки

Долгое время археи вместе с бактериями являлись представителями Царства Дробянки. И действительно, у них много сходных черт строения. Это прежде всего размеры и форма их клеток. Однако биохимические исследования показали, что у них есть ряд сходных черт с эукариотами. Это природа ферментов, под действием которых происходят процессы синтеза РНК и белковых молекул.

По способу питания большинство из них является хемотрофами. Причем вещества, которые расщепляют в процессе получения энергии археи, более разнообразны. Это и сложные углеводы, и аммиак, и металлические соединения. Есть среди архей и автотрофы. Очень часто они вступают в симбиотические отношения. Паразитов среди архей нет. Чаще всего в природе встречаются комменсалы и мутуалисты. В первом случае археи питаются за счет веществ организма хозяина, но не приносят ему никакого вреда. В отличие от этого вида симбиоза, при мутуалистических взаимоотношениях выгоду получают оба организма. Некоторые из них являются метагенами. Такие археи обитают в пищеварительной системе человека и жвачных млекопитающих животных, вызывая избыточное образование газов в кишечнике. Размножаются эти организмы бинарным делением, почкованием или с помощью фрагментации.

Археи освоили практически все среды обитания. Особенно они разнообразны в составе планктона. Первоначально всех архей относили к группе экстремофилов, поскольку они способны обитать и в горячих источниках, и в водоемах с повышенной соленостью, и на глубинах со значительным давлением.

Значение прокариот в природе и жизни человека

Роль прокариот в природе значительна. Прежде всего они являются первыми живыми организмами, которые возникли на планете. Ученые установили,что бактерии и археи возникли около 3,5 млрд лет назад. Теория симбиогенеза предполагает, что от них произошли и некоторые органеллы эукариотических клеток. В частности, речь идет о пластидах и митохондриях.

Многие прокариоты находят свое применение в биотехнологии с целью получения лекарственных средств, антибиотиков, ферментов, гормонов, удобрений, гербицидов. Человек издавна использует полезные свойства молочнокислых бактерий для изготовления сыра, кефира, йогурта, квашеных продуктов. С помощью этих организмов осуществляется очистка водоемов и почв, обогащение руд различных металлов. Бактерии формируют микрофлору кишечника человека и многих животных. Наряду с археями они осуществляют круговорот многих веществ: азота, железа, серы, водорода.

С другой стороны, многие бактерии являются возбудителем опасных заболеваний, регулируя численность многих видов растений и животных. К ним относятся чума, сифилис, холера, сибирская язва, дифтерия.

Итак, прокариотами называют организмы, клетки которых лишены оформленного ядра. Их генетический материал представлен нуклеоидом, состоящим из кольцевой молекулы ДНК. Из современных организмов к прокариотам относятся бактерии и археи.

Источник: fb.ru

Прокариоты характеризуются многообразием типов питания в отличие от растений (автотрофы) и животных (ге- теротрофы). Для характеристики типов питания используют три критерия: источник углерода, источник энергии, донор электронов (водорода). По источнику углерода делят на ав- тотрофы и гетеротрофы, по источнику энергии – на фото- трофы (используют солнечный свет) и хемотрофы (получа- ют энергию за счет окислительно-восстановительных реак- ций), по донору – электроны (водорода) на литотрофы (неорганические соединения Н2, NH3, H2S, Fe2 + , CO и др.) и органотрофы (используют в качестве донора электрона ор- ганические соединения). Таким образом, выделяют 4 основных типа питания прокариот: фотолитоавтотрофы, фотоорганоавтотрофы, хемолитоавтотрофы, хемоорганоге- теротрофы.

Питание прокариот

Фотолитоавтотрофы. Бактериальный фотосинтез (фоторедукция). В 1931 г. К. ван Ниль впервые доказал способность бактерий к фотосинтезу. В основе бактериального фотосинтеза лежит превращение световой энергии, поглощаемой фотосинтетическим пигментом, в биохимическую энергию макроэргических связей (АТФ) и далее использо- вание этой энергии для восстановления углекислого газа в процессе биосинтеза. У этих организмов есть пигмент бак- териохлорофилл. В клетках всех фотосинтезирующих бактерий содержатся фотосинтетические пигменты. К ним относятся особые хлорофиллы, получившие название бактериохлорофиллов а, в, с, d, и каротиноиды. По строению бактерио- хлорофиллы близки к хлорофиллу а растений. Так, бакте- риохлорофилл а отличается от хлорофилла а растений тем, что в первом его пирольном кольце в положении 2 стоит ацетильная группа СН3-СО- вместо обычной винильной группы СН2=СН-, а второе пирольное кольцо восстановле- но и содержит на два атома водорода больше. Содержание в клетке фотосинтезирующих прокариот четырех видоизменений бактериохлорофилла обусловли- вает более широкую полосу спектра поглощения световой энергии по сравнению с хлорофиллом растений. Предел спектра поглощения хлорофилла растений лежит в области 700-780 нм, в то время как фотосинтезирующие бактерии используют световую энергию длинноволновой части спектра до 1100 нм. Разница в спектрах поглощения хлоро- филлов растений и бактериохлорофиллов фотосинтезиру- ющих бактерий расширяет экологические ниши последних и позволяет фотосинтезирующим бактериям развиваться в водоемах под слоем водорослей. Помимо бактериохлорофиллов, в клетках фотосинтезирующих бактерий открыты более 20 дополнительных каро- тиноидных пигментов. Особенно разнообразны каротинои- ды в клетках пурпурных бактерий. Каротиноиды фотосин- тезирующих бактерий поглощают световую энергию ко- ротковолновой видимой области спектра с длиной волны 400-550 нм и передают эту энергию на бактериохлоро- филл. В клетке прокариот фотосинтетические пигменты нахо- дятся на инвагинациях ЦПМ – хроматофорах, визикулах (пузырьках), трубочках, тиллакоидах, ламеллах. Ван Ниль назвал этот процесс бактериальным фотосин- тезом, или фоторедукцией.

Для восстановления одной молекулы углекислого газа требуется 1 молекула АТФ (у растений 4 АТФ). В том и другом случае идет восстановление углекислого газа до углеводов. В Определителе Берджи (1974) фотосинтезирующие бактерии представлены тремя семействами (см. выше).

Фотоорганоавтотрофы Фотоорганоавтотрофы представлены немногочисленным семейством Rhodospirillaceae, включающим три рода: Rhodospirillum, Rhodopseudomonas и Rhodomicrobium. Бактерии-фотоорганоавтотрофы способны перестраивать свой обмен и одинаково успешно развиваться как на свету, так и в темноте, переходя соответственно от ана- эробного образа жизни к аэробному. На свету они ведут себя как фотоорганоавтотрофы: усваивая углекислый газ, они восстанавливают его в процессе фотосинтеза до углевода. В качестве доноров электронов несерные пурпурные бактерии используют различные органические вещества — сахара, спирты, органические кислоты, аминокислоты. Характер использования органических веществ различными фотосинтезирующими бактериями существенно раз- личается. Чаще всего органическое вещество выполняет единственную функцию донора электронов при фотоасси- миляции углекислого газа. Однако в некоторых случаях органическое вещество используется фотосинтезирующими бактериями не только в качестве донора электронов, но одновременно и как источник углерода. Попадая в темноту, пурпурные бактерии переходят к хемоорганогетеротрофному типу питания. При этом энергию для процессов жизнедеятельности они получают за счет реакций окисления органического субстрата по циклу Кребса. Непосредственным источником углерода и донором электронов для них являются органические соедине- ния субстрата. В клетках бактерий этой группы имеется универсальный набор дыхательных ферментов (НАД- и ФАД-дегидрогеназы и цитохромы), обеспечивающих им возможность перехода от анаэробного образа жизни на свету к аэробному в темноте и, соответственно, от авто трофного типа питания к гетеротрофному. Таким образом, среди разных групп прокариот нет, да и не может быть, резкой границы между различными типами питания.

ХемолитоавтотрофыХемолитоавтотрофы представлены микроорганизмами, способными в качестве основного источника углерода усваивать углекислый газ и синтезировать в клетке органические соединения, используя энергию реакций окисления неорганического субстрата. Для хемолитоавтотрофов неорганические вещества субстрата выступают донорами электронов в реакциях энергетического метаболизма и в процессе хемоассимиляции углекислого газа. Заслуга открытия процесса хемосинтеза принадлежит С. Н. Виноградскому. Он определил химизм как жизнь без органики. Им впервые была показана возможность образования органических веществ из неорганических в клетках бактерий, помимо процесса фотосинтеза. К хемолитоавтотрофам относится большинство видов нитрифицирующих, тионовых бактерий, некоторые виды из группы одноклеточных железобактерий и водородные бактерии. Хемолитоавтотрофные бактерии характеризуются специфичностью в отношении использования окисляемого субстрата. Нитрифицирующие бактерии для процесса хемоассимиляции углекислого газа получают энергию от окисления аммиака и нитритов. Процесс нитрификации проходит в две фазы. Первая фаза заключается в аэробном окислении аммиака до нитритов нитрозными бактериями родов Nitrosomonas, Nitrosococcus, Nitrosolobus, Nitrosospira: NН3 + 11 /202 = HN02 + Н2О + 274,7 кДж. Вторая фаза нитрификации предусматривает окисление нитритов в нитраты нитратными бактериями родов Nitrobacter, Nitrospina, Nitrococcus: HN02 + 11 /202 =НNО3 + 87,5 кДж. При процессах окисления неорганического субстрата выделяется сравнительно небольшое количество энергии, и усваивается она клеткой с низким КПД, всего 5-10%. Поэтому для получения энергии на процессы жизнедеятельности нитрифицирующим бактериям приходится перерабатывать огромное количество субстрата. К хемолитоав- тотрофам относится большинство видов тионовых бактерий: Thiobacillus denitrificans, Т. thiooxidans, Т. acidophilus, Thiomicrospira pelophila и др. Они ведут процесс хемоасси- миляции углекислого газа, получая энергию за счет окисления восстановленных или частично восстановленных соединений серы, сероводорода, элементарной серы, тиосульфата и сульфита. Конечным продуктом окисления обычно является сульфат.

Некоторые виды тионовых бактерий (Thiobacillus ferrooxidans) способны получать энергию за счет окисления не только соединений серы, но и закисного железа (Fe2+) (разрушение труб). Хемолитоавтотрофный тип питания характерен для некоторых одноклеточных ацидофильных железобактерий – Leptospirillum ferrooxidans, Thiobacillus ferrooxidans и представителей рода Sulfolobus. Оптимальный рост ацидофильных железобактерий наблюдается при рН ниже 4,5 (2-3). Они используют энергию окисления Fe2+ до Fе3+ для ассимиляции С02, который служит основным или единственным источником углерода. Реакции окисления железа сопровождаются незначительным выделением энергии, поэтому железобактерии перерабатывают большие количества субстрата: 2Fe2+ + 1/202 + 2Н+ = 2FеЗ+ + Н2О + 33 кДж. Хемолитоавтотрофные бактерии в природе являются геологическими агентами. Они принимают участие в процессах образования полезных ископаемых и осуществляют важнейшие звенья круговорота азота, серы, железа. К факультативным хемолитоавтотрофам относятся водородные бактерии, являющиеся представителями 20 различных родов – Рsеudоmоnаs, Аlcаligеnеs, Nocardia и др. Они способны осуществлять ферментативное окисление водорода кислородом воздуха с образованием воды. Водородные бактерии ферментом дегидрогеназой активируют молекулярный водород и далее используют его для получения энергии и в качестве донора электронов для восстановления углекислого газа до углевода: 6Н2 + 202 + С02 = (СН2О) + 5Н2О. Являясь факультативными хемолитоавтотрофами, водородные бактерии в качестве источника энергии и углеро- да способны использовать и различные органические со- единения (сахара, органические кислоты, спирты). Таким образом, водородные бактерии могут служить еще одним 87 примером возможного перехода микробной клетки от одного типа питания к другому – от хемолитоавтотрофного к хемоорганогетеротрофному. Бактерии, переходящие от одного типа питания к другому, получили название миксо- трофов.

Хемоорганогетеротрофы. К хемоорганогетеротрофам относится большинство прокариот. Источником углерода для них являются самые разнообразные органические соединения. Энергию для жизнедеятельности они получают за счет окислительно- восстановительных реакций органического субстрата, и донором электронов в реакциях метаболизма также выступают различные органические вещества. Хемоорганогетеротрофы наиболее широко распространены в природе. Им принадлежит роль санитаров нашей планеты, так как они ведут процессы минерализации самых разнообразных, подчас сложных органических веществ. Помимо органических соединений как источника углерода, хемоорганогетеротрофы нуждаются в углекислом газе для реакций карбоксилирования промежуточного обмена. Хемоорганогетеротрофные микроорганизмы подразделяют на сапрофитов и паразитов. Сапрофиты потребляют органические вещества опада. Паразиты живут за счет органических веществ живой клетки. Выделяют факультативных и облигатных паразитов. Факультативные паразиты развиваются на обычных органических средах, но, попадая в клетку-хозяина, переходят к паразитическому образу жизни. К ним относится большинство патогенных бактерий, вызывающих заболевания человека, – возбудители пневмонии, менингита, гонореи, дизентерии, брюшного тифа, сибирской язвы, коклюша, туберкулеза и др. Облигатные (строгие) паразиты развиваются исключительно за 88 счет органических веществ клетки-хозяина. Типичным примером облигатных паразитов являются риккетсии и вирусы. В основе всех вышерассмотренных типов питания прокариот лежат различные сочетания их энергетического и конструктивного метаболизма. Всем типам питания соот- ветствуют определенные группы прокариотных организ- мов. Основной массе бактерий присущ один вполне определенный (облигатный) тип питания. Однако среди многообразного мира прокариот встречается много видов бактерий, способных переходить от одного типа питания к другому. Так, среди цианобактерий, зеленых и пурпурных бактерий имеются виды, переходящие от фотолитоавто- трофного типа питания к фотоорганогетеротрофному. Некоторые виды обширного рода Thiobacillus способны переходить от хемолитоавтотрофного типа питания к хемоорга- ногетеротрофному. Эта особенность питания прокариот обусловливает широкие возможности существования микроорганизмов в различных условиях среды и значительно расширяет их экологические ниши.

Источник: megaobuchalka.ru

В отличие от растительных и животных организмов, имеющих один вполне определенный тип питания – соответственно автотрофный и гетеротрофный, прокариоты характеризуются многообразием типов питания. Поэтому для характеристики типов питания трокариотных организмов используются одновременно три критерия: источник углерода, источник энергии и донор электронов (водорода).

По источнику углерода прокариоты являются автотрофами, если они получают углерод в результате фиксации углекислого газа, и гетеротрофами, если источником углерода для них служат органические соединения.

По источнику энергии прокариоты, использующие солнечный свет, называются фототрофами, а получающие энергию за счет окислительно-восстановительных реакций – хемотрофами.

И наконец, по донору электронов прокариоты подразделяются на литотрофы, обладающие способностью использовать неорганические вещества, органотрофы, использующие в качестве доноров электрона органические соединения.

По трем вышеуказанным критериям выделяют 4 основных типа питания прокариот: фотолитоавтотрофы, фотоорганоавтотрофы хемолитоавтотрофы и хемоорганогетеротрофы (таблица 1).

Различают следующие типы гетеротрофии: паразитизм облигатный внутриклеточный, паразитизм факультативный, сапрофитизм.

Организмы, которые могут жить только внутри других организмов, имеют редуцированный метаболизм, зависят от метаболизма хозяина, являются облигатными внутриклеточными паразитами.

Факультативные паразиты-организмы, способные расти вне клетки хозяина при подходящих условиях, на питательных средах.

Сапрофиты – гетеротрофные организмы, нуждаются в готовых органических веществах, непосредственно от организмов не зависят.

Сапрофиты нуждаются в разных концентрациях органических веществ. Олиготрофы – способны расти при низких концентрациях органического вещества (1–15 мг углерода в литре раствора). Копиотрофы – предпочитают высокие концентрации питательных веществ (10 грамм углерода в литре раствора).

Источник: helpiks.org