Реферат на тему: Доядерные организмы

Содержание

ВВЕДЕНИЕ

1.  НАДЦАРСТВО ДОЯДЕРНОЕ ИЛИ ЦАРСТВО ПРОКАРИОТ

2. СТРОЕНИЕ  ПРОКАРИОТ                                                                                                                                                 


2.1. Клетка                                                                                                                                                                             

2.2. Жгутики

2.3.  Пили и фимбрии

2.4.  Плазматическая мембрана,  мезосомы и фотосинтетические мембраны

2.5.  Генетический материал

3. РАЗМНОЖЕНИЕ ПРОКАРИОТ

4. ОБРАЗ ЖИЗНИ ПРОКАРИОТ


5. ОСНОВНЫЕ ГРУППЫ ПРОКАРИОТ

5.1. Бактерии – фототрофы

5.2. Бактерии – хемоавтотрофы

5.3  Бактерии – органотрофы

5.4. Бактерии – паразиты

6. СИНЕ-ЗЕЛЕНЫЕ ВОДОРОСЛИ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

 

ВВЕДЕНИЕ

К доядерным организмам – прокариотам относятся простейшие одноклеточные  организмы. В обиходе их называют бактериями или микробами.

Так же к прокариотам  относятся синезеленые водоросли. В этой работе я постараюсь описать строение прокариот, их размножение, образ жизни, основные группы прокариот.

Эти микроорганизмы играют большую роль в нашей с вами жизни, поэтому мне интересна эта тема.

Прокариоты могут быть использованы в медицине. До второй половины прошлого века медицина практически не могла лечить болезни, вызываемые бактериями.  Сейчас медики с большинством из них успешно справляются. Поэтому, я считаю, что эта тема актуальна и на сегодняшний день.

1.  НАДЦАРСТВО ДОЯДЕРНОЕ  ИЛИ ЦАРСТВО ПРОКАРИОТ

Все известные  одноклеточные  и многоклеточные организмы вполне естественно делятся на две большие группы – прокариоты и эукариоты.


Все прокариоты принадлежат к одному царству Дробняки, представленному бактериями и сине-зелеными водорослями.

Клетки прокариот (от греч. pro — до, karion —  ядро) не имеют оформленного ядра. Иными словами генетический материал (ДНК) прокариот  находится прямо в цитоплазме и не окружен ядерной мембраной. Выделяют две группы бактерий:  архебактерии (от греч. архаиос – древнейший)  и  эубактерии.

2. СТРОЕНИЕ  ПРОКАРИОТ

Прокариоты значительно крупнее вирусов (в среднем 0,5 – 5 мкм),  самые мелкие из них могут быть мельче вируса оспы. Самые крупные бактерии можно увидеть невооруженным глазом в виде точек и палочек, но  это исключения. Обычно прокариотные клетки рассмативаются под оптическим микроскопом. Впервые бактерии заметил в конце XVII  века голландский  натуралист А. ван Левенгук  в простейший микроскоп – лупу из одной крошечной каплевидной линзы.

2.1. Клетка

Прокариотная клетка обычно покрыта оболочкой (клеточной стенкой),  как клетка растений. Но состоит эта упругая, как автомобильная шина, оболочка не из целлюлозы, а из близкого к ней вещества муреина (от лат. «мура» — стенка).  Некоторые бактерии (те же микоплазмы) потеряли оболочки вторично.


2.2. Жгутики

 Многие бактерии имеют жгутики. Жгутики состоят из одинаковых сферических субъединиц белка флагеллина (похожего на мышечный актин), которые расположены по спирали и образуют полый цилиндр диаметром около 10 – 20 нм. Несмотря на волнистую форму жгутиков, они довольно жестки.

Жгутики приводятся в движение посредством уникального механизма. Основание жгутика вращается, по-видимому, так, что жгутик как бы ввинчивается в среду, не совершая беспорядочных биений и,  таким образом,  продвигает клетку вперед. Это, очевидно,  единственная известная в природе структура,  где используется  принцип  колеса.

Другая интересная особенность жгутиков – это способность отдельных субъединиц флагеллина спонтанно собираться в растворе в спиральные нити. Спонтанная самосборка – очень важное свойство многих сложных биологических структур. В данном случае самосборка обусловлена аминокислотной  последовательностью (первичной структурой)  флагеллина. Подвижные  бактерии могут передвигаться в ответ на определенные раздражители, то есть они способны к таксису.

Жгутики легче всего рассмотреть электронный микроскоп, применив технику напыления металлом. Жгутиков может быть до нескольких десятков.


2.3.  Пили и фимбрии                                 

На клеточной стенке некоторых грамотрицательных бактерий видны тонкие выросты (палочковидные белковые выступы), которые называются пили или фимбрии. Они короче и тоньше жгутиков и служат для прикрепления клеток друг к другу или к какой-нибудь поверхности, придавая специфическую  «липкость» тем штаммам, которые ими обладают. Пили, бывают разного типа. Наиболее интересны так называемые F-пили,  которые кодируются специальной плазмидой и связаны с  половым размножением бактерий.

2.4.  Плазматическая мембрана, мезосомы и фотосинтетические мембраны

Как у всех клеток,  протоплазма  бактерий окружена полунепроницаемой мембраной. У некоторых бактерий плазматическая мембрана втягивается  внутрь клетки и образует мезосомы или фотосинтетические мембраны.

Мезосомы – складчатые мембранные структуры, на поверхности которых находятся ферменты, участвующие в процессе дыхания. Следовательно, мезосомы можно назвать примитивными органеллами. Во время клеточного деления мезосомы связываются с ДНК, что, по-видимому, облегчает разделение двух дочерних молекул ДНК после репликации и способствует образованию  перегородки между дочерними клетками.


2.5.  Генетический материал

ДНК бактерий представлены одиночными кольцевыми молекулами,  длиной  около 1 мм. Каждая такая молекула состоит из 5-100  пар нуклеотидов. Суммарное содержание ДНК (геном)  в бактериальной клетке намного меньше, чем в эукариотической, а, следовательно, меньше и объем закодированной в ней информации. В среднем такая ДНК содержит несколько тысяч генов.

Формы клеток прокариот довольно просты: шарики (кокки), иногда объединенный по два ( двойные коки-диплококи);  образующие цепочки (стрептококки) или склеенные в некое подобие виноградной грозди (стафилококки / от греч. стафилус — виноград),  склеенные по  четыре (сарцины); палочки (бациллы), искривленные палочки (вибрионы); штопорообразные  (спириллы). Куда реже встречаются ветвящиеся формы клеток.

Простота формы делает невозможным  точное определение прокариот по внешнему виду. Наоборот, физиология их настолько разнообразна, что в микробиологии в описании нового вида или разновидности обязательно указывают, в чем нуждается микроорганизм и какие продукты производит,  то есть основные характеристики обмена с окружающей  средой.


3. РАЗМНОЖЕНИЕ  ПРОКАРИОТ

Размножаются прокариоты чаще всего простым делением клетки. Реже встречается почкование, когда отшнуровывающаяся молодая клетка много мельче материнской. Разделившиеся клетки часто остаются вместе, образуя нити, а иногда и более сложные  структуры. В благоприятных условиях  прокариоты растут очень быстро, по геометрической прогрессии. Захватив все ресурсы, популяция останавливает рост. Далее численность их может снижаться из-за отравления продуктами своего же обмена. В проточной среде скорость роста постоянна и зависит от температуры и количества пищи. Поэтому, в профильтрованной через почву ключевой воде бактерий нет – они не успевают размножаться  до того, как их выносит за пределы источника.

В неблагоприятных условиях некоторые бактерии образуют споры – покоящиеся стадии, покрытые плотной оболочкой. В виде спор они  выносят высокую температуру, порой даже выше 1000С и остаются жизнеспособными многие годы.  Наоборот,  растущие, делящиеся клетки большинства прокариот погибают уже при 800С.  Есть, однако, и любители высокой температуры – термофилы, живущие в горячих источниках.

Микробиологи часто выращивают бактерии на поверхности твердой среды в мясном отваре с желатином или агаром.  Клетка, попавшая на поверхность этого питательного студня, начинает делиться и образует колонию (пятно определенной формы и цвета), в которой все клетки – потомки одной, первоначальной. Это очень распространенный прием получения чистой линии микробов.


4. ОБРАЗ  ЖИЗНИ  ПРОКАРИОТ

Хотя микроорганизмы  незаметны в природе, они распространены в огромных количествах везде, особенно в почве. Фактически весь облик Земли  создан ими. Питаться они могут фактически всем, исключая созданные человеком пластмассы, стиральные порошки и яды. Все прочее может усваиваться всевозможными бактериями.  

Микроорганизмы характеризуют по природе трех необходимых компонентов жизни: энергии, углерода и водорода.

Водород  нужен  не  сам  по  себе,  а  как  источник  электронов:

Н2 → 2Н+ 2е¬,  поэтому он может быть заменен другими соединениями и элементами, легко отдающими электроны.

По источнику энергии  различают две категории организмов: фототрофы (использующие солнечный свет) и  химотрофы (использующие энергию химических связей в питательных веществах).

По источнику углерода выделяют автотрофы (СО2)  и гетеротрофы (органическое вещество).  Наконец, по источнику  водорода (электронов) различают  органотрофы (потребляющие органику) и  литотрофы (потребляющие необязательно камни /по греч.
aquo;литос» — камень), а производственные литосферы  — каменной оболочки  Земли; это могут быть  и сам Н2  и  NH3,  H2S,  S,  SO,  Fe2+   и так далее.

По  такой классификации земные растения – фотолитотрофы (светокамнееды),  животные – хемоорганотрофы (органоеды). В мире прокариот встречаются самые удивительные сочетания.

У прокариот есть еще одно замечательное свойство, которого лишены высшие организмы.  Хотя  азот  (N2)  по гречески означает «безжизненный», он необходим для жизни, поэтому он входит в состав основных ее слагающих – белков и нуклеиновых кислот. Но усваивать атмосферный азот ни растения, ни животные не в состоянии, это могут делать только некоторые прокариоты, сначала восстанавливая его до аммиака (NH3),   затем превращая в нитриты (NO2) и нитраты (NO3). До развития химической промышленности все мы жили за счет бактерий. Этот процесс идет в бескислородной среде, поэтому связывающие азот микроорганизмы выработали специальные устройства для защиты его от кислорода.


5.  ОСНОВНЫЕ  ГРУППЫ  ПРОКАРИОТ

5.1.  Бактерии – фототрофы

Многие бактерии используют свет,  как источник энергии. Все они окрашены в красный, оранжевый, зеленый или сине-зеленый  цвет; ведь для того, чтобы свет произвел какую-либо работу,  он должен быть поглощен красителем – пигментом. У бактерий это разнообразные хлорофиллы и каротиноиды.

Пурпурные серные бактерии получают водород (электроны) из сероводорода (H2S),  окисляя его  до  серы  и  сульфатов.  Пурпурные несерные бактерии получают его из растворенных органических веществ.

Земные бактерии также могут усваивать  H2S, молекулярный водород и органику. Большинство из них могут связывать молекулярный азот. Обитают они, чаще всего, в водоемах на  поверхности ила,  некоторые в горячих источниках.

Особенность бактериального фотосинтеза в том,  что при нем выделяется свободный кислород (О2). Такой фотосинтез называют аноксигенным (бескислородным).

Совсем по другому используют энергию солнечного излучения цианобактерии (их неточно называли сине-зелеными водорослями). Они расщепляют воду и используют водород,  а молекулярный кислород выделяется в атмосферу. Полагают, что именно цианобактерии со своим оксигенным фотосинтезом сделали  атмосферу нашей планеты кислородной.

Цианобактерии  устойчивые к бытовому и промышленному загрязнению, вызывают «цветение» и порчу в водоемах, озерах, водохранилищах. Они могут жить и на прибрежных камнях и скалах, в горах и пустынях  (им достаточно росы),  в горячих источниках.

Но неприятности, порой причиняемые  цианобактериями, можно «простить», и не  только за то, что они когда-то сделали атмосферу Земли пригодной для нашего дыхания, выделяя свободный кислород.

Эти организмы активно связывают атмосферный азот, обеспечивая урожай рисовых полей и  продуктивность всех других водоемов.

5.2.  Бактерии – хемоавтотрофы

Многие бактерии получают энергию используя неорганические вещества: аммиак, нитриты, соединение серы, двухвалентное железо и ионы других металлов. Источником углерода для них является углекислый газ.  К ним  относятся бактерии, превращающие аммиак в нитриты – в нитраты. Другие бактерии получают энергию для своего роста, окисляя соединения серы:

Н2S →  S  →  SO32- →  SO42-

Так как сера и сероводород  часто встречаются в горячих вулканических источниках, эти бактерии там обычны. Металлурги древности, в том числе и на Руси,  высоко ценили железные болотные руды, залегавшие в болотах. Из них на древесном угле получалось высококачественное, чистейшее железо. Эти руды создают бактерии, окисляя двухвалентное железо до трехвалентного:

Fe2+ →  Fe3+   .

Некоторые из железобактерий могут окислять и серу, перерабатывая растворимые сульфаты не только сульфиды  железа, но и других металлов. Сейчас такие бактерии помогают металлургам, выщелачивая из бедных руд, цинк, сурьму, никель, марганец, молибден и уран. Проще всего через толстый слой измельченной породы пропускать воду с бактериями и собирать вытекающую воду с сульфатами соответствующих металлов. Все другие способы здесь оказываются  экономически не выгодными.

5.3  Бактерии – органотрофы

Теперь перейдем к бактериям, потребляющим органическое вещество. Еще в прошлом веке великий французский химик и микробиолог Л.Пастер понял, что без микроорганизмов гниение и брожение  превращающих органику в неорганические соединения NH3,  H2S,  CO2,  H2O жизнь на Земле стала бы невозможной. Именно они замыкают круговорот биогенных веществ на нашей планете, поставляя зеленым растениям – фитотрофам необходимое «сырье». «Не по зубам» микроорганизмам только  созданные человеком пластмассы, стиральные порошки и яды. Поэтому, они накапливаются в окружающей нас среде  и уже начинают угрожать существованию самого человека.

Из микроорганизмов – органотрофов, чаще всего, люди применяют в своей практике бактерии, использующие как источник энергии реакцию брожения.  Эти процессы идут без участия кислорода  микроорганизмы,  не нуждающиеся в Н2О,  называют  анаэробами.

Различают обязательных, облигатных анаэробов, для которых свободный кислород является ядом смертельным; и необязательных, факультативных, которые легко переходят от брожения к кислородному дыханию.

Бактерии молочнокислого брожения, получают энергию, превращая углеводы в молочную кислоту. Эта реакция идет и в мышцах, при очень напряженной работе, когда кровь не успевает доставлять кислород. Но в наших организмах она не может идти долго – образующаяся при этом молочная кислота, которую физиологи выразительно называют «токсином усталости»  утомляют мышцу. Молочнокислые бактерии превращают молоко в простоквашу, кефир и кумыс. Они же образуют кислое тесто, разные сорта сыра, квашение капусты и огурцов, силос.

Другие бактерии при брожении выделяют иные органические кислоты: пропионовую, муравьиную, уксусную, янтарную, а также другие соединения. Некоторые из них используют в химической промышленности.

Перейдем к прокариотам, которые приспособились к жизни на покровах и в кишечниках животных. Среди них есть полезные для своих хозяев. Коровы, овцы и все жвачные животные содержат в своих сложных желудках огромное количество бактерий, расщепляющих клетчатку (целлюлозу). Другие кишечные бактерии поставляют хозяевам витамины. Есть среди них и просто «нахлебники», не приносящие прямой пользы, но для хозяев не безразличны.

Человек не исключение, на нашей коже обретает не мало бактерий, потребляющих органические вещества пота. Мы периодически смываем их, но если эти бактерии исчезнут все,  например, при злоупотреблении антибиотиками освободившееся место займут дрожжеподобные грибки, которые могут вызвать кожные болезни.

Но несравненно больше бактерий в содержимом наших кишечников. Кал человека на 30% по массе состоит из бактерий. В основном, это строгие облигатные анаэробы из рода Bactericides. Гораздо меньше факультативных  анаэробов, которые могут размножаться в кислородной атмосфере. Из них наиболее известна кишечная палочка. Кишечную палочку легко выращивать и в лаборатории. Это самая изученная бактерия, потому что многие десятки лет служит любимыми объектом молекулярных биологов и генных инженеров.

5.4. Бактерии – паразиты

Это бактерии, вызывающие болезни. Широко распространена опасная болезнь дизентерия. Дизентерийная палочка, размножаясь в кишечнике, вызывает   его опасное расстройство («кровяной понос»). Близкими возбудителями вызывается сальмонеллез и брюшной тиф. Все они называются «болезнями грязных рук»,  но заразиться ими можно и через мух, загрязненную пищу и воду. Еще боле опасна холера, ее вызывает один из видов вибрионов – факультативный анаэроб, распространяющийся со сточными водами. Клетки ее выделяют опасный яд- токсин, от которого разрушаются клетки слизистой оболочки кишечника, организм теряет много воды, и от обезвоживания может наступить смерть.

Многие бактерии поражают дыхательные пути,  вследствие чего человек заболевает ангиной. Похожа на нее по симптомам, но несравненно более опасна дифтерия, вызываемая палочкой булавовидной своеобразной формы. Она поражает полость зева и миндалины. Опасна дифтерийная палочка не сама по себе, а лишь те ее разновидности, которые содержат  «прирученный»  вирус – «нахлебник». Этот вирус вырабатывает токсин, блокирующий синтез белка в клетках эукариот, в том числе  в сердечной мышце,  нервах и почках. Особенно опасна дифтерия для детей. Широко  распространены разные формы пневмонии (воспаление легких), вызываемой пневмококками.

Еще в начале века слово «туберкулез» вселяло ужас, как сейчас СПИД. В то время эта болезнь поражающая обычно легкие, была неизлечима. Но она может поражать и другие органы (костный туберкулез). Вызывается она так называемой «палочкой Коха»,  по имени описавшего ее Р.Коха, великого немецкого микробиолога. Относится палочка Коха к микробактериям. К ней близок возбудитель проказы – тяжелейшей и  трудноизлечимой  болезни.

Другие микробактерии обитают в почве, некоторые из них могут усваивать такие вещества, как нефть, парафин, нафталин. Сейчас туберкулез излечим, но по-прежнему считается серьезной болезнью.

С незапамятных времен  бичем человечества  была чума,  от которой  в средние века вымирали целые города. Эта болезнь вызывается чумной палочкой. Собственно чума – болезнь грызунов. От них к человеку она переносится блохами. Даже сейчас, несмотря на прививки  и лекарства, чума лечится трудно. Легче предупреждать ее вспышки.

Штопоровидно закрученные микроорганизмы – спирохеты – также могут быть возбудителями опасных болезней;  возвратного тифа, инфекционной желтухи, сифилиса.

Особняком стоят микроорганизмы облигатные, строгие анаэробы. К ним относятся возбудители опаснейших болезней: газовой гангрены, столбняка, ботулизма. Первыми двумя люди заболевают, когда в раны попадает земля. В таких случаях срочно нужно делать прививку. Бактерия ботулизма развивается в мясных и рыбных продуктах и бобовых консервах, богатых белком. Она выделяет смертельный токсин – ботулин, вызывающий паралич дыхания. Раньше его называли колбасным ядом.

6.  СИНЕ-ЗЕЛЕНЫЕ  ВОДОРОСЛИ

Сине-зеленые водоросли (цианеи)  — наиболее древние (возникли свыше 3-х млрд. лет назад)  водные  или реже почвенные автотрофные организмы. Клетки имеют толстые многочисленные стенки (состоят из полисахаридов, пектиновых веществ и целлюлозы), часто одеты слизистым чехлом. Их прокариотические клетки по строению сходны с бактериями. Фотосинтез осуществляется на свободно лежащих в цитоплазме мембранах, содержащих хлорофилл и другие пигменты.

У многих видов сине-зеленых водорослей встречаются  наполненные азотом вакуоли. Эти вакуоли регулируют плавучесть клетки, и позволяет ей парить в толще воды. Размножаются, обычно, сине-зеленые водоросли путем деления клетки надвое, колониальные или нитчатые – распадом колоний или нитей.  При неблагоприятных условиях могут образовываться споры.

Сине-зеленые водоросли широко распространены в биосфере, но основная масса видов населяет пресноводные водоемы, некоторые виды живут в морях и на суше. Другие живут в местах загрязнения органическими веществами, питаясь микотрофно. Они способны очищать воду, минерализуя продукты гниения.

Некоторые сине-зеленые водоросли способны к фиксации азота. Сине-зеленые водоросли встречаются в качестве симбионтов во многих лишайниках. Цианеи первыми осваивают следующие места обитания – вулканически острова,  лавовые потоки.

ЗАКЛЮЧЕНИЕ

Мы рассмотрели едва ли не сотую долю  болезнетворных бактерий, вызывающих болезни лишь у человека. А ведь от бактерий страдают и животные и растения.

В современной медицине разработали два основных пути лечения и предупреждения  такого рода болезней.

Первый из них – своевременные прививки и вакцины.

Второй  путь – великое достижение медицины – антибиотики,  первые из которых появились во время второй мировой войны и сразу после нее.

В заключении, обобщая все вышесказанное, охарактеризовать прокариоты можно используя  следующую таблицу:

Таблица 1

Общая характеристика  прокариот

Характеристика

Прокариоты

Размеры клеток

 

Диаметр в среднем 0.5-5 мкм

Форма

 

Одноклеточные или нитчатые

Генетический материал

Кольцевая ДНК находится в цитоплазме и ничем не защищена. Нет истинного ядра или хромосом. Нет ядрышка.

Органеллы

Органелл очень мало. Ни одна из них не имеет оболочки (двойной мембраны)

Клеточные стенки

Жесткие, содержат полисахариды и аминокислоты. Основной упрочняющий компонент – муреин.

Жгутики

Простые микротрубочки отсутствуют. Находятся вне клетки

Дыхание

Происходит в мезосомах.
У сине-зеленых водорослей – в цитоплазматических мембранах.

Фотосинтез

Хлоропластов нет. Происходит в мембранах, не имеющих специфической упаковки.

Фиксация азота

 

Некоторые обладают этой способностью


СПИСОК   ЛИТЕРАТУРЫ

  1. Гильберт С. Биология развития. т.1, 1993.
  2. Голиченков В.А. Биология развития. 1991.
  3. Грин Н. и др. Биология. т.1, 1993.
  4. Иванова Т.В. Биология. 2002.
  5. Кемп, Памела Армс, Карен. Введение в биологию, 1998.
  6. Мамонтов С.Г. Биология, 1991.
  7. Медников Б. Биология формы и уровня жизни,  1994.
  8. Мустафин и др. Биология для  поступающих в вуз,  1995.
  9. Павлов И.Ю. и др. Биология, 1996.
  10.  Чебышев Н.В.,  Кузнецов.  Биология  для  поступающих в вуз. т.1. 2000.

Источник: referati-besplatno.ru

Прокариоты

Прокариоты — организмы, состоящие из клеток, которые не имеют клеточного ядра или любых мембранных органелл. Это означает, что генетический материал ДНК у прокариот не связан в ядре. Кроме того, ДНК прокариот менее структурирована, чем у эукариот. В прокариотах ДНК одноконтурная. ДНК эукариот организована в хромосомы. Большинство прокариот состоят только из одной клетки (одноклеточные), но есть несколько и многоклеточных. Ученые разделяют прокариот на две группы: бактерии и археи.

Типичная клетка прокариота включает:

  • клеточную стенку;
  • плазматическую (клеточную) мембрану;
  • цитоплазму;
  • рибосомы;
  • жгутики и пили;
  • нуклеоид;
  • плазмиды;

Эукариоты

Эукариоты — живые организмы, клетки которых содержат ядро и мембранные органеллы. Генетический материал у эукариот находится в ядре, а ДНК организована в хромосомы. Эукариотические организмы могут быть одноклеточными и многоклеточными. Все животные являются эукариотами. Также эукариоты включают растения, грибы и простейших.

Типичная клетка эукариота включает:

  • плазматическую (клеточную) мембрану;
  • ядрышко;
  • ядро;
  • хромосомы;
  • рибосомы;
  • эндоплазматический ретикулум;
  • аппарат (комплекс) Гольджи;
  • цитоскелет;
  • цитоплазму;
  • лизосомы;
  • центриоль;
  • митохондрии.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Эукариот и прокариот отличаются также по ряду других признаков:

Признак

Прокариот

Эукариот

Размер

Диаметр 0.5-5 мкм.

Диаметр до 40 мкм. Объем в 1000-10000 раз больше, чем у прокариот.

Формы

Одноклеточные, нитчатые.

Одноклеточные, нитчатые, истинно многоклеточные.

Органеллы

Мало. Ни одна не имеет двойной мембраны.

Много. Имеются огражденные как двойной, так и одиночной мембраной.

Ядро

Нет

Есть

Ядерная оболочка

Нет

Есть

ДНК

Замкнута в кольцо (условно называется бактериальная хромосома).

Ядерная ДНК представляет собой линейную структуру и находиться в хромосомах.

Хромосомы

Нет

Есть

Митоз

Нет

Есть

Мейоз

Нет

Есть

Гаметы

Нет

Есть

Митохондрии

Нет

Есть

Пластиды у автотрофов

Нет

Есть

Способ поглощения пищи

Адсорбция через клеточную мембрану

Фагоцитоз и пиноцитоз

Пищеварительные вакуоли

Нет

Есть

Жгутики

Есть

Есть

Прокариоты (лат. Procaryota, от греч. προ «перед» и κάρυον «ядро»), или доядерные — одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром. Прокариоты разделяют на два таксона в ранге домена (надцарства): Бактерии (Bacteria) и Археи (Archaea)

Прокариоты:

-Наличие жгутиков, плазмид и газовых вакуолей

-Структуры, в которых происходит фотосинтез — хлоропласты

-Формы размножения — бесполый способ, имеется псевдосексуальный процесс, в результате которого происходит лишь обмен генетической информацией, без увеличения числа клеток.

-Для клеток прокариот характерно отсутствие ядерной оболочки, ДНК упакована без участия гистонов. Тип питания — осмотрофный.

-Генетический материал прокариот представлен одной молекулой ДНК, замкнутой в кольцо, имеется только один репликон. В клетках отсутствуют органоиды, имеющие мембранное строение.

-способны к азотфиксации.

Имеют: капсулу (предохраняет бактерии от повреждений, высыхания, она препятствует фагоцитозу бактерий); клеточную стенку, плазмолемму, цитоплазму, рибосомы, пили (поверхностные структуры, присутствующие у многих бактериальных клеток и представляющие собой прямые белковые цилиндры длиной 1—1,5 мкм и диаметром 7—10 нм); жгутики, нуклеотид (подобный ядру); плазмиды ( дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.)

6. Клетка — элементарная, генетическая и структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.

Клетка — элементарная единица живой системы. Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки (свойства) живого. Известно, что организмы бывают одноклеточными (например, бактерии, простейшие, некоторые водоросли) или многоклеточными.

Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами.

Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др. У многоклеточных организмов разные клетки (например, нервные, мышечные, клетки крови у животных или клетки стебля, листьев, корня у растений) выполняют разные функции и поэтому различаются по структуре. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях.

Все организмы, имеющие клеточное строение, делятся на две группы: предъядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

Прокариоты делятся на

Для растительной клетки характерно наличие различных пластид, крупной центральной вакуоли, которая иногда отодвигает ядро к периферии, а также расположенной снаружи плазматической мембраны клеточной стенки, состоящей из целлюлозы. В клетках высших растений в клеточном центре отсутствует центриоль, встречающаяся только у водорослей. Резервным питательным углеводом в клетках растений является крахмал.

В клетках представителей царства грибов клеточная стенка обычно состоит из хитина — вещества, из которого построен наружный скелет членистоногих животных. Имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Запасным углеводом в клетках грибов является гликоген.

В клетках животных отсутствует плотная клеточная стенка, нет пластид. Нет в животной клетке и центральной вакуоли. Центриоль характерна для клеточного центра животных клеток. Резервным углеводом в клетках животных также является гликоген.

Источник: StudFiles.net

ОБЩАЯ БИОЛОГЯ

О.Д. ЛОПИНА

По строению клетки живые организмы делят на прокариот и эукариот. Клетки и тех и других окружены плазматической мембраной, снаружи от которой во многих случаях имеется клеточная стенка. Внутри клетки находится полужидкая цитоплазма. Однако клетки прокариот устроены значительно проще, чем клетки эукариот.

Рис. 1. Строение клетки прокариот

Рис. 1. Строение клетки прокариот

Основной генетический материал прокариот (от греч. про – до и карион – ядро) находится в цитоплазме в виде кольцевой молекулы ДНК. Эта молекула (нуклеоид) не окружена ядерной оболочкой, характерной для эукариот, и прикрепляется к плазматической мембране (рис.1). Таким образом, прокариоты не имеют оформленного ядра. Кроме нуклеоида в прокариотической клетке часто встречается небольшая кольцевая молекула ДНК, называемая плазмидой. Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.

Некоторые прокариоты имеют выросты плазматической мембраны: мезосомы, ламеллярные тилакоиды, хроматофоры. В них сосредоточены ферменты, участвующие в фотосинтезе и в процессах дыхания. Кроме того, мезосомы ассоциированы с синтезом ДНК и секрецией белка.

Клетки прокариот имеют небольшие размеры, их диаметр составляет 0,3–5 мкм. С наружной стороны плазматической мембраны всех прокариот (за исключением микоплазм) находится клеточная стенка. Она состоит из комплексов белков и олигосахаридов, уложенных слоями, защищает клетку и поддерживает ее форму. От плазматической мембраны она отделена небольшим межмембранным пространством.

В цитоплазме прокариот обнаруживаются только немембранные органоиды рибосомы. По структуре рибосомы прокариот и эукариот сходны, однако рибосомы прокариот имеют меньшие размеры и не прикрепляются к мембране, а располагаются прямо в цитоплазме.

Рис. 2. Строение клеток эукариот

Рис. 2. Строение клеток эукариот

Многие прокариоты подвижны и могут плавать или скользить с помощью жгутиков.

Размножаются прокариоты обычно путем деления надвое (бинарным). Делению предшествует очень короткая стадия удвоения, или репликации, хромосом. Так что прокариоты – гаплоидные организмы.

К прокариотам относятся бактерии и синезеленые водоросли, или цианобактерии. Прокариоты появились на Земле около 3,5 млрд лет назад и были, вероятно, первой клеточной формой жизни, дав начало современным прокариотам и эукариотам.

Эукариоты (от греч. эу – истинный, карион – ядро) в отличие от прокариот, имеют оформленное ядро, окруженное ядерной оболочкой – двуслойной мембраной. Молекулы ДНК, обнаруживаемые в ядре, незамкнуты (линейные молекулы). Кроме ядра часть генетической информации содержится в ДНК митохондрий и хлоропластов. Эукариоты появились на Земле примерно 1,5 млрд лет назад.

В отличие от прокариот, представленных одиночными организмами и колониальными формами, эукариоты могут быть одноклеточными (например, амеба), колониальными (вольвокс) и многоклеточными организмами. Их делят на три больших царства: Животные, Растения и Грибы.

Диаметр клеток эукариот составляет 5–80 мкм. Как и прокариотические клетки, клетки эукариот окружены плазматической мембраной, состоящей из белков и липидов. Эта мембрана работает как селективный барьер, проницаемый для одних соединений и непроницаемый для других. Снаружи от плазматической мембраны расположена прочная клеточная стенка, которая у растений состоит главным образом из волокон целлюлозы, а у грибов – из хитина. Основная функция клеточной стенки – обеспечение постоянной формы клеток. Поскольку плазматическая мембрана проницаема для воды, а клетки растений и грибов обычно соприкасаются с растворами меньшей ионной силы, чем ионная сила раствора внутри клетки, вода будет поступать внутрь клеток. За счет этого объем клеток будет увеличиваться, плазматическая мембрана начнет растягиваться и может разорваться. Клеточная стенка препятствует увеличению объема и разрушению клетки.

У животных клеточная стенка отсутствует, но наружный слой плазматической мембраны обогащен углеводными компонентами. Этот наружный слой плазматической мембраны клеток животных называют гликокаликсом. Клетки многоклеточных животных не нуждаются в прочной клеточной стенке, поскольку есть другие механизмы, обеспечивающие регуляцию клеточного объема. Так как клетки многоклеточных животных и одноклеточные организмы, живущие в море, находятся в среде, в которой суммарная концентрация ионов близка к внутриклеточной концентрации ионов, клетки не набухают и не лопаются. Одноклеточные животные, живущие в пресной воде (амеба, инфузория туфелька), имеют сократительные вакуоли, которые постоянно выводят наружу поступающую внутрь клетки воду.

Структурные компоненты эукариотической клетки

Внутри клетки под плазматической мембраной находятся цитоплазма. Основное вещество цитоплазмы (гиалоплазма) представляет собой концентрированный раствор неорганических и органических соединений, главными компонентами которого являются белки. Это коллоидная система, которая может переходить из жидкого в гелеобразное состояние и обратно. Значительная часть белков цитоплазмы является ферментами, осуществляющими различные химические реакции. В гиалоплазме располагаются органоиды, выполняющие в клетке различные функции. Органоиды могут быть мембранными (ядро, аппарат Гольджи, эндоплазматический ретикулум, лизосомы, митохондрии, хлоропласты) и немембранными (клеточный центр, рибосомы, цитоскелет).

Мембранные органоиды

сновным компонентом мембранных органоидов является мембрана. Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен. Все клеточные мембраны – это тонкие пленки (толщиной 7–10 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом (рис. 3). В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду. Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны – это липидные пленки, в которые встроены интегральные белки.

Рис. 3. Структура биологических мембран

Рис. 3. Структура биологических мембран

Одна из основных функций мембран – создание границы между клеткой и окружающей средой и различными отсеками клетки. Липидный бислой проницаем в основном для жирорастворимых соединений и газов, гидрофильные вещества переносятся через мембраны с помощью специальных механизмов: низкомолекулярные – с помощью разнообразных переносчиков (каналов, насосов и др.), а высокомолекулярные – с помощью процессов экзо- и эндоцитоза (рис. 4).

Рис. 4. Схема переноса веществ через мембрану

Рис. 4. Схема переноса веществ через мембрану

При эндоцитозе определенные вещества сорбируются на поверхности мембраны (за счет взаимодействия с белками мембраны). В этом месте образуется впячивание мембраны внутрь цитоплазмы. Затем от мембраны отделяется пузырек, внутри которого содержится переносимое соединение. Таким образом, эндоцитоз – это перенос в клетку высокомолекулярных соединений внешней среды, окруженных участком мембраны. Обратный процесс, то есть экзоцитоз – это перенос веществ из клетки наружу. Он происходит путем слияния с плазматической мембраной пузырька, заполненного транспортируемыми высокомолекулярными соединениями. Мембрана пузырька сливается с плазматической мембраной, а его содержимое изливается наружу.

Каналы, насосы и другие переносчики – это молекулы интегральных белков мембраны, обычно образующие в мембране пору.

Кроме функций разделения пространства и обеспечения избирательной проницаемости мембраны способны воспринимать сигналы. Эту функцию осуществляют белки-рецепторы, связывающие сигнальные молекулы. Отдельные белки мембраны являются ферментами, осуществляющими определенные химические реакции.

Ядро – крупный органоид клетки, окруженный ядерной оболочкой и имеющий обычно шаровидную форму. Ядро в клетке одно, и хотя встречаются многоядерные клетки (клетки скелетных мышц, некоторых грибов) или не имеющие ядра (эритроциты и тромбоциты млекопитающих), но эти клетки возникают из одноядерных клеток-предшественников.

Основная функция ядра – хранение, передача и реализация генетической информации. Здесь происходит удвоение молекул ДНК, в результате чего при делении дочерние клетки получают одинаковый генетический материал. В ядре с использованием в качестве матрицы отдельных участков молекул ДНК (генов) происходит синтез молекул РНК: информационных (иРНК), транспортных (тРНК) и рибосомальных (рРНК), необходимых для синтеза белка. В ядре осуществляется сборка субъединиц рибосом из молекул рРНК и белков, которые синтезируются в цитоплазме и переносятся в ядро.

Ядро состоит из ядерной оболочки, хроматина (хромосом), ядрышка и нуклеоплазмы (кариоплазмы).

Рис. 5. Структура хроматина: 1 – нуклеосома, 2 – ДНК

Рис. 5. Структура хроматина: 1 – нуклеосома, 2 – ДНК

Под микроскопом внутри ядра видны зоны плотного вещества – хроматина. В неделящихся клетках он равномерно заполняет объем ядра или конденсируется в отдельных местах в виде более плотных участков и хорошо окрашивается основными красителями. Хроматин представляет собой комплекс ДНК и белков (рис. 5), большей частью положительно заряженных гистонов.

Количество молекул ДНК в ядре равно числу хромосом. Количество и форма хромосом являются уникальной характеристикой вида. В состав каждой из хромосом входит одна молекула ДНК, состоящая из двух связанных между собой нитей и имеющая вид двойной спирали толщиной 2 нм. Длина ее значительно превышает диаметр клетки: она может достигать нескольких сантиметров. Молекула ДНК заряжена отрицательно, поэтому сворачиваться (конденсироваться) она может только после связывания с положительно заряженными белками-гистонами (рис. 6).

Сначала двойная нить ДНК закручивается вокруг отдельных блоков гистонов, в каждый из которых входит 8 молекул белка, образуя структуру в виде «бусин на нитке» толщиной около 10 нм. Бусины называются нуклеосомами. В результате формирования нуклеосом длина молекулы ДНК уменьшается примерно в 7 раз. Далее нить с нуклеосомами сворачивается, формируя структуру в виде каната толщиной около 30 нм. Затем такой канат, изогнутый в виде петель, прикрепляется к белкам, образующим основу хромосомы. В результате образуется структура с толщиной около 300 нм. Дальнейшая конденсация этой структуры приводит к образованию хромосомы.

В период между делениями хромосома частично разворачивается. В результате этого отдельные участки молекулы ДНК, которые должны экспрессироваться в данной клетке, освобождаются от белков и вытягиваются, что делает возможным считывание с них информации путем синтеза молекул РНК.

Ядрышко – это тип матричной ДНК, отвечающей за синтез рРНК и собранной в отдельных участках ядра. Ядрышко – наиболее плотная структура ядра, оно не является отдельным органоидом, а представляет собой один из локусов хромосомы. В нем образуется рРНК, которая затем образует комплекс с белками, формируя субъединицы рибосом, которые уходят в цитоплазму.

Негистоновые белки ядра образуют внутри ядра структурную сеть. Она представлена слоем фибрилл, подстилающим ядерную оболочку. К ней прикрепляется внутриядерная сеть фибрилл, к которой присоединены фибриллы хроматина.

Ядерная оболочка состоит из двух мембран: внешней и внутренней, разделенных межмембранным пространством. Внешняя мембрана соприкасается с цитоплазмой, на ней могут находиться полирибосомы, а сама она может переходить в мембраны эндоплазматического ретикулума. Внутренняя мембрана связана с хроматином. Таким образом, ядерная оболочка обеспечивает фиксацию хромосомного материала в трехмерном пространстве ядра.

Оболочка ядра имеет круглые отверстия – ядерные поры (рис. 7). В области поры внешняя и внутренняя мембраны смыкаются и образуют отверстия, заполненные фибриллами и гранулами. Внутри поры располагается сложная система из белков, обеспечивающих избирательное связывание и перенос макромолекул. Количество ядерных пор зависит от интенсивности метаболизма клетки.

Эндоплазматический ретикулум, или эндоплазматическая сеть (ЭПР), представляет собой причудливую сеть каналов, вакуолей, уплощенных мешков, соединенных между собой и отделенных от гиалоплазмы мембраной (рис. 8).

Различают шероховатый и гладкий ЭПР. На мембранах шероховатого ЭПР находятся рибосомы (рис. 9), которые синтезируют белки, экскретируемые из клетки или встраивающиеся в плазматическую мембрану. Вновь синтезированный белок сходит с рибосомы и проходит через специальный канал внутрь полости эндоплазматического ретикулума, где он подвергается посттрансляционной модификации, например связыванию с углеводами, протеолитическому отщеплению части полипептидной цепи, образованию S–S-связей между остатками цистеина в цепи. Далее эти белки транспортируются в комплекс Гольджи, где входят либо в состав лизосом, либо секреторных гранул. В обоих случаях эти белки оказываются внутри мембранного пузырька (везикулы).

Рис. 9. Схема синтеза белка в шероховатом ЭПР

Рис. 9. Схема синтеза белка в шероховатом ЭПР: 1 – малая и
2 – большая субъединицы рибосомы; 3 – молекула рРНК;
4 – шероховатый ЭПР; 5 – вновь синтезируемый белок

Гладкий ЭПР лишен рибосом. Его основная функция – синтез липидов и метаболизм углеводов. Он хорошо развит, например, в клетках коркового вещества надпочечников, где содержатся ферменты, обеспечивающие синтез стероидных гормонов. В гладком ЭПР в клетках печени находятся ферменты, осуществляющие окисление (детоксикацию) чужеродных для организма гидрофобных соединений, например лекарств.

Рис. 10. Аппарат Гольджи

Рис. 10. Аппарат Гольджи: 1 – пузырьки; 2 – цистерны

Комплекс Гольджи (рис. 10) состоит из 5–10 плоских ограниченных мембраной полостей, расположенных параллельно. Концевые части этих дискообразных структур имеют расширения. Таких образований в клетке может быть несколько. В зоне комплекса Гольджи находится большое количество мембранных пузырьков. Часть из них отшнуровывается от концевых частей основной структуры в виде секреторных гранул и лизосом. Часть мелких пузырьков (везикул), переносящих синтезированные в шероховатом ЭПР белки, перемещается к комплексу Гольджи и сливается с ним. Таким образом комплекс Гольджи участвует в накоплении и дальнейшей модификации продуктов, синтезированных в шероховатом ЭПР, и их сортировке.

Рис. 11. Образование и функции лизосом

Рис. 11. Образование и функции лизосом: 1 – фагосома; 2 – пиноцитозный пузырек; 3 – первичная лизосома; 4 – аппарат Гольджи; 5 – вторичная лизосома

Лизосомы – это вакуоли (рис. 11), ограниченные одной мембраной, которые отпочковываются от комплекса Гольджи. Внутри лизосом достаточно кислая среда (рН 4,9–5,2). Там располагаются гидролитические ферменты, расщепляющие различные полимеры при кислых рН (протеазы, нуклеазы, глюкозидазы, фосфатазы, липазы). Эти первичные лизосомы сливаются с эндоцитозными вакуолями, содержащими компоненты, которые должны расщепляться. Вещества, попавшие во вторичную лизосому, расщепляются до мономеров и переносятся через мембрану лизосомы в гиалоплазму. Таким образом, лизосомы участвуют в процессах внутриклеточного переваривания.

Митохондрии окружены двумя мембранами: наружной, отделяющей митохондрию от гиалоплазмы, и внутренней, отграничивающей ее внутреннее содержимое. Между ними располагается межмембранное пространство шириной 10–20 нм. Внутренняя мембрана образует многочисленные выросты (кристы). В этой мембране располагаются ферменты, обеспечивающие окисление образовавшихся за пределами митохондрий аминокислот, сахаров, глицерина и жирных кислот (цикл Кребса) и осуществляющие перенос электронов в дыхательной цепи (схема). За счет переноса электронов по дыхательной цепи с высокого на более низкий энергетический уровень часть освобождающейся свободной энергии запасается в виде АТФ – универсальной энергетической валюты клетки. Таким образом, основная функция митохондрий – это окисление различных субстратов и синтез молекул АТФ.

Схема переноса двух электронов по дыхательной цепи

Схема переноса двух электронов по дыхательной цепи

Внутри митохондрии находится кольцевая молекула ДНК, которая кодирует часть белков митохондрии. Во внутреннем пространстве митохондрий (матриксе) находятся рибосомы, похожие на рибосомы прокариот, которые и обеспечивают синтез этих белков.

Тот факт, что митохондрии имеют свою кольцевую ДНК и прокариотические рибосомы, привел к возникновению гипотезы, согласно которой митохондрия является потомком древней прокариотической клетки, когда-то попавшей внутрь эукариотической и в процессе эволюции взявшей на себя отдельные функции.

Рис. 12. Хлоропласты (А) и тилакоидные мембраны (Б)

Рис. 12. Хлоропласты (А) и тилакоидные мембраны (Б)

Пластиды – органоиды растительной клетки, которые содержат пигменты. В хлоропластах содержится хлорофилл и каротиноиды, в хромопластах – каротиноиды, в лейкопластах пигментов нет. Пластиды окружены двойной мембраной. Внутри них располагается система мембран, имеющая форму плоских пузырьков, называемых тилакоидами (рис. 12). Тилакоиды уложены в стопки, напоминающие стопки тарелок. Пигменты встроены в мембраны тилакоидов. Их основная функция – поглощение света, энергия которого с помощью ферментов, встроенных в мембрану тилакоида, преобразуется в градиент ионов Н+ на мембране тилакоида. Как и митохондрии, пластиды имеют собственную кольцевую ДНК и рибосомы прокариотического типа. По-видимому, пластиды также являются прокариотическим организмом, живущим в симбиозе с клетками эукариот.

Рибосомы это немембранные клеточные органоиды, встречающиеся как в клетках про-, так и эукариот. Рибосомы эукариот больше по размеру, чем прокариотические, их размер составляет 25х20х20 нм. Состоит рибосома из большой и малой субъединиц, прилегающих друг к другу. Между субъединицами в функционирующей рибосоме располагается нить иРНК.

Каждая субъединица рибосомы построена из рРНК, плотно упакованной и связанной с белками. Рибосомы могут располагаться в цитоплазме свободно или быть связанными с мембранами ЭПР. Свободные рибосомы могут быть единичными, но могут образовывать полисомы, когда на одной нити иРНК располагается последовательно несколько рибосом. Основная функция рибосом – синтез белка.

Цитоскелет – это опорно-двигательная система клетки, включающая белковые нитчатые (фибриллярные) образования, являющиеся каркасом клетки и выполняющие двигательную функцию. Структуры цитоскелета динамичны, они возникают и распадаются. Цитоскелет представлен тремя типами образований: промежуточными филаментами (нити диаметром 10 нм), микрофиламенты (нити диаметром 5–7 нм) и микротрубочками. Промежуточные филаменты – неветвящиеся белковые структуры в виде нитей, часто расположенные пучками. Их белковый состав различен в разных тканях: в эпителии они состоят из кератина, в фибробластах – из виментина, в мышечных клетках – из десмина. Промежуточные филаменты выполнят опорно-каркасную функцию.

Микрофиламенты – это фибриллярные структуры, расположенные непосредственно под плазматической мембраной в виде пучков или слоев. Они хорошо видны в ложноножках амебы, в движущихся отростках фибробластов, в микроворсинках кишечного эпителия (рис. 13). Микрофиламенты построены из сократительных белков актина и миозина и являются внутриклеточным сократительным аппаратом.

Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится веретено деления, элементы цитоскелета клеток между делениями, а к постоянным – реснички, жгутики и центриоли клеточного центра. Микротрубочки – это прямые полые цилиндры с диаметром около 24 нм, их стенки образованы округлыми молекулами белка тубулина. Под электронными микроскопом видно, что сечение микротрубочки образовано 13 субъединицами, соединенными в кольцо. Микротрубочки присутствуют в гиалоплазме всех эукариотических клеток. Одна из функций микротрубочек – создание каркаса внутри клеток. Кроме того, по микротрубочкам, как по рельсам, перемещаются мелкие везикулы.

Клеточный центр состоит из двух центриолей, расположенных под прямым углом друг к другу и связанных с ними микротрубочек. Эти органеллы в делящихся клетках принимают участие в формировании веретена деления. Основой центриоли являются расположенные по окружности 9 триплетов микротрубочек, образующих полый цилиндр, шириной 0,2 мкм и длиной 0,3–0,5 мкм. При подготовке клеток к делению центриоли расходятся и удваиваются. Перед митозом центриоли участвуют в образовании микротрубочек веретена деления. Клетки высших растений не имеют центриолей, но у них есть аналогичный центр организации микротрубочек.

 

Источник: bio.1sept.ru