Все живые организмы на Земле состоят из клеток. Это может быть и как самостоятельная единица жизни, и как составляющая более сложных по своей организации организмов. Многое из того, что имеют клетки высших организмов, клетки бактерий (прокариотов) не имеют.

клетка эукариот

Основное отличие ─ отсутствие оформленного ядра


Основное отличие клеток бактерий от клеток эукариотов (растения, животные и грибы) состоит в том, что они не имеют четко оформленного ядра. Вся генетическая информация у бактерий находится в особом белковом комплексе, называемом нуклеоидом. Несмотря на примитивное строение, нуклеоид способен точно и четко передавать генетические данные от одного поколения к другому. ДНК микроорганизмов является высокополимерным соединением, которое состоит из определенного числа нуклеоидов, находящихся между собой в точной последовательности. При нарушениях этой последовательности происходит мутация вида, что приводит либо к образованию новой формы, либо к приобретению или утрате каких-либо свойств.

сходство и отличия клеток бактерии и растения

Особенности в передаче наследственной информации


У животных и растений для каждого вида есть четко оформленное ядро и определенное количество хромосом, которые отвечают за передачу наследственной информации. Бактерии же, не имея четко оформленного ядра и имея только одну хромосому, лишены признаков такого явления, как доминантность. Хромосома имеет вид свернутой в кольцо спирали и прикреплена к мембране цитоплазмы в одной точке. Встречаются виды с наличием 2 или 4 хромосом, но они одинаковы. Помимо хромосом, генотип микроорганизмов включает в себя и такие функциональные единицы:

  • плазмиды (содержат малое количество генов, их состав непостоянен);
  • IS-последовательности не несут в себе генов, ответственных за информацию, способны передвигаться по хромосоме и вклиниваться в любой ее участок;
  • транспозоны (содержат структурный ген, который отвечает за тот или иной наследственный признак).

молекула ДНК

Высокая скорость размножения (за сутки происходит смена десятков поколений) позволяет изучать и выявлять мутационные процессы и изменения в видах.

Бактерии не имеют производной хромосом ─ ядрышек, которые есть у животных, растений, простейших и грибов. В них образуются рибосомы и РНК. Число ядрышек зависит от баланса генов.

Каких органоидов нет у микроорганизмов


В отличие от клеток животных, растений и грибов клетки бактерий (прокариотов) не имеют следующих органелл:

  • лизосомы;
  • пластиды;
  • митохондрии;
  • комплекс Гольджи;
  • эндоплазматическая сеть.

Строение бактерильной клетки

Лизосомы

Клеточный органоид, который содержит ферменты, способствующие расщеплению белков, полисахаридов и нуклеиновых кислот. Основная их функция заключается в том, что они участвуют во внутриклеточном расщеплении.

Пластиды

Этих органоидов нет у животных, а их наличие у растений обуславливает их окраску. Основное их предназначение – участие в процессах фотосинтеза.

Митохондрии

Наличие этих органоидов в клетках растений и животных позволяет обеспечивать необходимой энергией за счет окислительно-восстановительных процессов. Также они способны передавать генетическую информацию.


Митохондрии

Комплекс Гольджи

Функция этих органоидов заключается в накоплении, изменении и последующем выведении веществ из клеток растений и животных.

Эндоплазматическая сеть

Является клеточным органоидом, состоящим из системы канальцев и пузырьков. Находится в цитоплазме и ограничена мембраной. Она участвует в метаболических процессах, обеспечивая транспортировку веществ извне в цитоплазму.

У микроорганизмов многие функции этих органоидов выполняет мезосома. Эта структура образуется в результате втягивания внутрь клеточной мембраны. Она участвует в репликации ДНК, в создании клеточных перегородок и в ряде других процессов жизнедеятельности.

Отличия в жизнедеятельности клеток прокариотов и эукариотов

Клетки микроорганизмов отличаются от клеток животных, растений и грибов не только по своему строению, они имеют свои особенности в жизнедеятельности.

Движение цитоплазмы


цитоплазма

Этот процесс называется циклозом. Он присущ всем эукариотам. Движение цитоплазмы необходимо для таких процессов, как:

  • получение питательных веществ;
  • метаболизм;
  • передача генетических данных;
  • равномерное распределение питательных веществ.

Циклоз может быть постоянным, спонтанным либо спровоцированным внешними факторами (температурой, уровнем освещения, механическим или химическим воздействием). У бактерий такое понятие, как движение цитоплазмы, полностью отсутствует.

Дыхание

Бактерии – уникальные микроорганизмы, способные существовать как при наличии кислорода, так и без него. Многим из них, так же как растениям и животным, для метаболических процессов необходим кислород. Разница в том, что у эукариотов дыхание происходит в митохондриях, а у бактерий задействованы мезосомы. У цианобактерий дыхание происходит в цитоплазматических мембранах.


дыхание бактерий

Процесс фотосинтеза

Сине-зеленые микроорганизмы способны, так же как и растения, аккумулировать солнечную энергию и вырабатывать кислород, необходимый для жизни других организмов. Разница в том, что у бактерий процесс фотосинтеза происходит на мембранах, а у растений в хлоропластах.

Фагоцитоз и пиноцитоз

У бактерий нет плотной клеточной стенки, поэтому такие физиологические процессы, как фагоцитоз и пиноцитоз, у них полностью отсутствуют. Фагоцитоз – это способность захватывать твердые частицы путем втягивания их внутрь. Пиноцитоз является схожим процессом, только внутрь клетки попадают жидкие вещества.

Спорообразование

споры бактерий


Растения и грибы способны образовывать споры как один из способов размножения. Бактерии же образуют споры, когда возникают неблагоприятные условия для их жизни и развития. Эта особенность свойственна не всем видам. В состоянии спор микроорганизмы способны находиться долгое время, выдерживая кипячение, заморозку и другие негативные воздействия.

Источник: probakterii.ru

ФАГОЦИТОЗ

ФАГОЦИТОЗ (от греч. phagos — пожирающий и kytos — вместилище, клетка) — явление активного захватывания клетками животных организмов инородных частиц с последующим их внутриклеточным перевариванием.

Явление фагоцитоза широко распространено в природе.

Термин «Фагоцитоз» предложен русским ученым И. И. Мечниковым (в 1883 г.), наиболее разносторонне изучившим это явление.

Фагоцитоза — одно из первичных свойств животной клетки у одноклеточных животных — амеб, инфузорий, а у низших многоклеточных (губки, плоские черви) — основная форма питания.

У высших клеточных животных и человека явление фагоцитоза свойственно определенным клеткам — фагоцитам, и играет важную роль в физиологических реакциях животного организма: фагоцитоз служит целям выведения продуктов конечного обмена или очищения организма от постоянно отмирающих и самообновляющихся тканей, а у личинок насекомых, у головастиков — рассасыванию тканей при метаморфозе.


Наряду с этим фагоцитоз служит основным защитным механизмом.

При попадании в организм болезнетворных микробов фагоциты захватывают их и подвергают внутриклеточному перевариванию.

Свойством фагоцитировать (т. е. поглощать) у всех позвоночных и человека обладают определенные клетки.

Система фагоцитирующих клеток (эндотелий кровеносных сосудов и лимфатических путей, особые т. наз. ретикулярные клетки костного мозга, ткани селезенки, лимфатических узлов, определенные клетки печени и др.) в покое составляет единую т. наз. ретикуло-эндотелиальную систему, играющую важную роль в защитных и обменных процессах животного организма.

Некоторые тканевые клетки, обладающие способностью к фагоцитозу, могут переходить из неподвижного состояния в подвижное и поступать в кровоток (так называемые Блуждающие клетки, лейкоциты).

Некоторые фагоциты (так называемые микрофаги) фагоцитируют по преимуществу бактерии; другие (т. наз. макрофаги) — разнообразные частицы (обломки тканей, инородные тела и т. д.).

В процессе фагоцитоза важным фактором являются вещества нормальной сыворотки крови человека и животных, которые усиливают процесс фагоцитоза, — так называемые опсонины.

Действие опсонинов связано с их способностью оказывать влияние на поверхность бактерий, микроорганизмов и делать их более легко поглотимыми фагоцитами.


На основании явлений фагоцитоза И. И. Мечников создал теорию иммунитета (невосприимчивости).

Он установил, что при попадании болезнетворного микроба в ткань происходит массовое выхождение лейкоцитов из кровеносных сосудов и быстрое пожирание ими попавшего в ткани микроба.

Фагоцитоз — один из факторов, обеспечивающих невосприимчивость животного к болезнетворному началу.

Источник: encemedic.liferus.ru

ФАГОЦИТОЗ (phagocytosis, греческий phagos пожирающий -j- kytos вместилище, здесь — клетка + -osis) — процесс узнавания, активного захвата и поглощения микроорганизмов, разрушенных клеток и инородных частиц специализированными клетками иммунной системы.

Объектом фагоцитоза являются микробы, чужеродные и измененные собственные клетки или их фрагменты, комплексы антиген — антитело и др. Неотъемлемую часть фагоцитоза составляет направленное движение — хемотаксис (см. Таксисы) — фагоцитов к месту локализации чужеродной частицы.

Определение эффективности фагоцитоза проводится для оценки состояния иммунобиологической реактивности организма, а также при различных медико-биологических исследованиях.

Явление фагоцитоза как биологической универсальной реакции одноклеточных, многоклеточных и высших организмов было открыто И. И. Мечниковым, который в 1883 году сформулировал теорию фагоцитоза. И. И.
чников рассматривал фагоцитоз как одну из форм питания клеток (начиная с простейших). У высокоорганизованных организмов эта форма питания свойственна особым мезенхимальным клеткам-фагоцитам поглощающим и убивающим патогенные микробы и таким образом выполняющим защитную функцию. Именно с функцией этих клеток И. И. Мечников связывал иммунитет к возбудителям инфекционных болезней. Им были описаны фазы фагоцитарного процесса и состояние активации фагоцитов, характеризующееся их новыми свойствами и усиленной способностью поглощать и уничтожать бактерии. Ключевая роль фагоцитов была доказана им в иммунитете, при воспалении, удалении поврежденных клеток, регенерации, атрофии, старении.

К фагоцитам относятся гранулоциты, в основном нейтрофильные лейкоциты (см.), и мононуклеарные фагоцитирующие клетки (см. Система мононуклеарных фагоцитов), например, моноциты, макрофаги и др. В процессе узнавания фагоцитами микробов, веществ и частиц большую роль играют особые компоненты сыворотки крови, которые являются молекулярными посредниками при взаимодействии микробов с фагоцитами и обусловливают усиление фагоцитоза. Эти компоненты называются опсонинами (см.), к ним относятся антитела IgGl, IgG3, IgM, агрегированные IgAl и IgA2 (см. Иммуноглобулины), и термолабильные субкомпоненты комплемента, в основном СЗЬ (см. Комплемент), а также а-1 и р-глобулины, сывороточный а2— HS-гликопротеид. Указывают на опсонизирующие свойства С-реактивного белка (см.) и др. Антитела IgG и IgM специфически связываются с антигенами соответствующих бактерий и через Fc-рецепторы фиксируют их к рецепторам фагоцитов. Фагоциты могут соединяться с объектом фагоцитоза и неспецифически — через гидрофобные связи Ван-дер-Ваальса. Субкомпоненты комплемента, возникающие при классическом или альтернативном пути его активации, сорбируются на объектах фагоцитоза , прикрепление которых к поверхности фагоцита осуществляется через СЗЬ-и С4Ь-рецепторы.

Опсонизированные и неопсонизированные частицы прикрепляются к фагоцитам также с помощью специфических Fc-рецепторов для IgE, гликопротеидов и полисахаридов и неспецифических рецепторов для чужеродных веществ. Большинство нейтрофилов человека содержат Fc-рецепторы для агрегированного IgGl и IgG3, а возможно и для агрегированного I g А; моноциты — рецепторы для IgGl и IgG3. Рецепторы для комплемента высокоаффинны (обладают высокой прочностью соединения), они обеспечивают прилипание опсонизированных частиц к неактивированным макрофагам, поглощают же такие частицы только активированные клетки. На нейтрофилах найдены рецепторы для СЗЬ-, С4Ь- и С5а-субкомпонентов комплемента, на макрофагах — один рецептор для СЗЬ- и С4Ь-, другой — для СЗЬ- и СЗс1-субкомпонентов комплемента. Если частица опсонизирована иммуноглобулином и комплементом, связывание с фагоцитом осуществляется кооперативно через специфические к ним рецепторы, что значительно активирует ее поглощение. Имеются различия между классами рецепторов и опосредуемыми ими реакциями фагоцитоза. Посредством неспецифических и специфических для гликопротеидов и полисахаридов рецепторов осуществляется фагоцитоз бактерий без опсонинов. Известен фагоцитоз инертных частиц — кремнезема, угля и др.

Опсонины не только прикрепляют объект фагоцитоза к поверхности фагоцитов, но и активируют их, индуцируя сигналы, идущие от плазматической мембраны, опосредованно вызывают активацию разных гуморальных систем организма, усиливая фагоцитоз.

Процесс поглощения опсонизированной частицы начинается с взаимодействия рецепторов фагоцита с опсонинами, локализованными на поверхности частицы. В дальнейшем происходит взаимодействие соседних свободных рецепторов фагоцита с близлежащими свободными опсонинами частицы до тех пор, пока не будут связаны все опсонины, покрывающие частицу на периферии, и она полностью не погрузится в цитоплазму фагоцита вместе с окружающим участком плазматической мембраны, образуя фагосому. Взаимодействие частицы с плазматической мембраной фагоцита посредством образующихся комплексов опсонин-рецептор запускает сложный механизм фагоцитоза, основная роль в котором принадлежит работе сократительных белков. Процесс поглощения начинается с образования псевдоподии — вытягивания участка цитоплазмы фагоцита в направлении частицы. При формировании псевдоподии находящиеся в ней неориентированные актиновые нити (филаменты) становятся параллельными, что сопровождается преходящим изменением вязкости цитоплазмы. Сформулирована гипотеза жесткости (желатинизации) — сокращения цитоплазмы, изменяющего ее состояние и генерирующего механическую силу движения фагоцита, регулируемого ионами кальция. При желатинизации актиновые нити перекрестно связываются актинсвязывающим белком, превращающим цитоплазму в гель вследствие образования актиновой решетки. Этот процесс подавляется особЫхМ кальцийзависимым актин-регуляторным белком — гельсолином, являющимся физиол. регулятором желатинизации актина. Далее миозин образует перекрестные мостики с актином и гель начинает сокращаться, особенно в присутствии ионов магния, АТФ и кофактора, являющегося киназой, фосфорилирующей тяжелую цепь миозина. В месте контакта плазматической мембраны и частицы возрастает жесткость цитоплазматических структур (желатинизация участка цитоплазмы). Процесс идет непрерывно; постоянно из плазматической мембраны выделяется растворимый актинсвязывающий белок и мембрана движется по направлению к частице. В области прилипания частицы к плазматической мембране возрастает концентрация ионов кальция, которые «растворяют» актиновую решетку, снижают в этом участке жесткость цитоплазмы, и она движется в сторону повышенной жесткости на конце псевдоподии, т. к. нити миозина натягивают актиновые нити в направлении области наибольшей жесткости решетки.

В процессе фагоцитоза у нейтрофилов потребляется энергия, запасенная в виде АТФ, образованной в результате реакции гликолиза (см.). У альвеолярных макрофагов энергия для фагоцитоза в большей степени (возможно, в основном) извлекается из АТФ, образованной в процессе окислительного фосфорилирования (см. Окисление биологическое). Установлено, что метаболическим показателем в макрофагах является не абсолютное содержание АТФ, а скорость обновления. Количество АТФ в фагоцитирующих макрофагах частично поддерживается путем фосфорилирования АДФ за счет креатинфосфата (см. Креатин), которого в макрофагах в 3—5 раз больше, чем АТФ, и потребление существенно возрастает при фагоцитозе. Креатинфосфат в макрофагах служит, таким образом, важнейшим резервом и поставщиком химической энергии для фагоцитоза.

Фагоцитоз сопровождается метаболическим, или дыхательным, взрывом, проявляющимся повышением потребления кислорода и окисления глюкозы через гексозомонофосфатный шунт (см. Углеводный обмен). При этом образуются основные продукты восстановления кислорода — супероксидный анион и перекись водорода за счет окисления никотин-амидаденин-динуклеотидов и никотинамидаденин-динуклеотидфосфатов с помощью соответствующих НАДН- и НАДФН-оксидаз; накапливающиеся окисленные коферменты вызывают усиление гексозомонофос-фатного шунта за счет их восстановления с помощью глюкозо-6-фосфат-II 6-фосфоглюконат-дегидрогеназ. Фагоциты имеют сложную систему для разрушения перекиси водорода. Эта система защищает компоненты клетки от разрушения и представлена каталазой, миелопероксидазой, глутатион-пероксидазой, восстановленным глутатионом. Дыхательный взрыв сопровождается усилением метаболизма углеводов, липидов, синтеза РНК, повышением уровня циклического гуанозинмонофосфата, снижением синтеза белка и транспорта аминокислот.

После завершения поглощения частицы возникшая фагосома и первичные лизосомы (см.), первичные азурофильные и вторичные специфические гранулы фагоцитов взаимно сближаются и сливаются, образуя фаголизосому. Этот процесс сопровождается исчезновением в фагоцитах изолированных гранул. Из лизосом в фагосому попадает большое количество гидролитических ферментов. Фагоцитоз также связан с секрецией из фагоцитов ряда ферментов — (З-глюкуронидазы, N-ацетил-Р-глюкозаминидазы, кислой и щелочной фосфатазы, катепсина, миелопероксидазы, лактоферрина, плазминогенного активатора. Подобная секреция сопряжена с активацией гексозомоно-фосфатного шунта и длится значительно дольше, чем непосредственно процесс фагоцитоза.

После проникновения бактерий внутрь фагоцитов начинает функционировать сложный микробоцидный механизм, представленный антимикробными системами, как требующими кислорода, так и не зависящими от него. Антимикробная система, требующая кислорода, функционирует в двух вариантах — с участием и без участия миелопероксидазы. Вариант с участием миелопероксидазы высокоактивен в отношении бактерий, грибков, мико-илазм и вирусов. Взаимодействие миелопероксидазы и перекиси водорода сопровождается образованием окислителей, окислением галоидов и галогенизацией, заключающейся в иодировании, хлорировании, бронировании различных бактериальных компонентов, что приводит к гибели бактерий. При описанных реакциях образуются бактерицидные ионы хлора, иода, хлорамины, нитриты, бактерицидные альдегиды, синглетный кислород, которые блокируют многие ферментные системы бактерий. Не зависящий от миелопероксидазы вариант аштшикробной системы фагоцитов вызывает образование токсичных для микробов промежуточных форм восстановленного кислорода — супероксидного аниона, перекиси водорода, гидроксильного радикала и синглетного кислорода. Наиболее активна из них перекись водорода.

К антимикробной системе фагоцитоза, не зависящей от кислорода, относят: лизоцим (см.), расщепляющий пептидогликаны клеточных стенок некоторых грамположительных бактерий до дисахаридов, состоящих из мураминовой кислоты и глюкозамина; лактоферрин, который в ненасыщенной железом форме оказывает микробостатическое действие в фагосомах за счет связывания железа, являющегося ростовым фактором для ряда из них; различные катионные белки. Определенное бактерицидное действие оказывает также формирующееся в фаголизосомах глубокое закисление до pH 6,5—3,75.

Закисление, кроме того, активирует лизосомальные гидролазы первичных лизосом, неактивные при слабощелочном pH.

Микробоцидные системы фагоцитов функционируют в кооперации. Они обладают различной потенцией, но все вместе оказывают взаимоперекрывающее действие, поэтому обладают высокой надежностью и эффективностью даже при дефектах фагоцитоза.

При нарушении хемотаксиса фагоцитоз бактерий подавлен, что способствует развитию и злокачественному течению ряда инфекционных болезней. Вещества, индуцирующие хемотаксис, называются хемоаттрактантами и подразделяются на несколько групп: 1) продукты специфических, в основном иммунологических реакций,— СЗа-, С5а-субкомпоненты комплемента, активированный комплекс G567, СЗ-конвертаза альтернативного пути активации комплемента, лимфокины (см. Медиаторы клеточного иммунитета), трансферфактор лимфоцитов, цитофильные антитела; 2) неспецифические эндогенные хемо-аттрактанты — продукты поврежденных клеток, калликреин (см. Кинины), плазминогенный активатор, фибринопептид В, гидролизованные или агрегированные IgG, коллаген, а- и Р-казеин молока, циклический аденозинмонофосфат и др.; 3) экзогенные хемоаттрактанты — фрагменты белка бактерий, содержащие N-формилметионин, пептиды, липиды или липопротеиды, выделяющиеся в процессе жизнедеятельности бактерий в организме.

На поверхности фагоцитов обнаружены специфические рецепторы для хемоаттрактантов — эйкозатетраеновой кислоты, синтетических формил-метионил-пептидов, С5а-субком-понента кохмплемента. По-видимому, число этих рецепторов неодинаково у разных типов фагоцитов, напр, циркулирующие нейтрофилы кролика в 8 раз слабее связывали хемотаксические пептиды, чем перитонеальные нейтрофилы. Доказана реакция сократительной системы клетки на действие хемоаттрактантов. Ее ориентация на градиент хемоаттрактантов обусловлена работой микротрубочек, выполняющих роль цитоскелета клетки,— они поддерживают поляризованную вытянутую на градиент хемоаттрактантов форму клетки. Однако непосредственно движение фагоцита осуществляет система микрофиламентов. Предполагают, что белки крови — альбумин и IgG являются регуляторами локомоторной функции фагоцитов. Активация фагоцитов хемоаттрактантами во многом сопровождается теми же изменениями, которые происходят при фагоцитозе — метаболическим взрывом, секрецией из клеток ферментов и др. Определенная регулирующая роль принадлежит циклическим нуклеотидам: циклический аденозинмонофосфат подавляет, а циклический гуанозинмоно-фосфат стимулирует хемотаксис.

Способы и методические подходы к оценке фагоцитоза разнообразны и зависят от конкретных задач исследования. Они позволяют определить эффективность процессов поглощения частиц, гибели и переваривания живых микроорганизмов и метаболические изменения фагоцитов. Важные данные о фагоцитозе могут быть также получены при исследовании хемотаксиса и опсонизации.

Для оценки фагоцитоза используют различные микроорганизмы — стафилококки (см.), эшерихии (см.), сальмонеллы (см. Сальмонелла) и др. Используют как живые, так и убитые микробы, но поскольку живые бактерии нередко выделяют токсические продукты, подавляющие фагоцитоз, лучше использовать убитые.

Фагоцитоз усиливается в присутствии сыворотки, опсонизирующей бактерии. Для усиления и стандартизации фагоцитоза используют предопсонизацию, то есть предварительную (до фагоцитоза) обработку микроба опсонинами — специфическими антителами — либо свежей сывороткой, в которой микробы активируют систему комплемента и адсорбируют появляющиеся субкомпоненты комплемента, облегчающие фагоцитоз. Однако в экспериментах с живыми микробами применяют лишь те, которые не убиваются опсонизирующей сывороткой. Скорость фагоцитоза анализируют при совместном инкубировании фагоцитов и живых бактерий. Через разные промежутки времени забирают пробы, с помощью дифференциального центрифугирования освобождаются от фагоцитов и надосадочную жидкость сеют на чашки с агаром, что позволяет определить уменьшение числа живых бактерий в процессе фагоцитоза. При работе с грибками рода Candida препарат просчитывают в камере Горяева, определяя при этом число внеклеточно расположенных грибков.

Для анализа фагоцитоза путем определения процента фагоцитов, поглотивших бактерии (фагоцитарный индекс Гамбургера), или среднего числа бактерий, поглощенных одним фагоцитом (фагоцитарное число Райга), скорости фагоцитоза используют частицы латекса, крахмала, зимозана, кармина, угля и др. Предложен метод исследования фагоцитоза, при котором используют капельки парафинового масла, содержащего специальный краситель и стабилизированного белком. Поглощенный материал определяют спектрофотометрически (см. С пектрофотометрия). Также используют частицы или микробы, меченные радиоактивными изотопами (см. Меченые соединения). Метод характеризуется быстротой выполнения, однако не позволяет полностью избавиться от прилипших бактерий, что завышает показатели фагоцитоза. Другой вариант состоит в добавлении к среде с фагоцитами и частицами меченых сывороточных белков, которые при фагоцитозе попадают в фагосому, что позволяет оценить количественно интенсивность фагоцитоза. Применяют также ксеногенные интактные или сингенные поврежденные или опсонизированные эритроциты, анализируя их поглощение визуально или по выходу гемоглобина.

При исследовании поглощения живых бактерий, особенно с последующим учетом количества убитых бактерий необходимо удалить с поверхности фагоцитов прилипшие микробы. Для этого применяют различные антибиотики, убивающие внеклеточные бактерии, но не проникающие в фагоциты, специальные препараты (фенилбутазан), прерывающие в определенные моменты фагоцитоза и внутриклеточную инактивацию микробов. Разработан метод, позволяющий различать прилипшие и поглощенные убитые грибки рода Candida по окраске препарата трипановым синим.

Гибель и переваривание поглощенных микробов выявляют путем инкубирования суспензии фагоцитов с микробами, последующего отмывания фагоцитов of прилипших микробных клеток, подсчета живых микробов, оставшихся в пробах фагоцитов, забираемых в различные сроки инкубации. Число живых бактерий определяют серийными посевами из проб фагоцитов на чашки Петри с агаром. Число живых грибков подсчитывают в лизате фагоцитов после инкубации с помощью окрашивания метиленовым синим. Внутриклеточное переваривание бактерий изучают также с помощью включения в них 3Н-уридина. Для этого культуру фагоцитов, поглотивших бактерии, обрабатывают актиномицином D, добавляя в среду 3Н-уридин. Метка, включаясь в живые внутриклеточные бактерии, не попадает в убитые и фагоциты.

Анализ повреждающего действия фагоцитов на микробы можно проводить по степени окрашивания поглощенных микробов красителями или по окраске метиленовым синим фаголизосом фагоцитов. Завершенность фагоцитоза оценивают по отношению среднего числа убитых микробов к живым или числа фагоцитов с переваренными микробами к общему числу фагоцитирующих фагоцитов, а также по проценту разрушенных микробов от числа фагоцитированных или по среднему числу убитых микробов на один фагоцит. Выраженность метаболических изменений при фагоцитозе анализируют по потреблению кислорода, хемилюминесценции, окислению глюкозы, иодированию и др.

Фагоциты играют ключевую роль в формировании противомикробного иммунитета (см. Иммунитет), обусловленного как специфическими, так и неспецифическими факторами защиты. Несмотря на то, что специфический иммунитет опосредуется специфическими Т-клетками, а также специфическими антителами, опсонизирующими бактерии и усиливающими фагоцитоз, элиминация патогенных бактерий осуществляется неспецифически — фагоцитами, активированными лимфокинами специфических Т-лимфоцитов. Активированные фагоциты значительно эффективнее убивают бактерии, что показал еще И. И. Мечников. Естественная невосприимчивость к возбудителям инфекционных болезней также обусловлена в основном фагоцитарными клетками. Ключевая роль принадлежит им и в детоксикации бактериальных токсинов, нейтрализованных антителами.

Макрофаги, перерабатывая антиген и представляя его лимфоцитам, участвуя в межклеточной кооперации, активации и супрессии пролиферации лимфоцитов, являются необходимым звеном в формировании иммунологической толерантности (см. Толерантность иммунологическая) и трансплантационного иммунитета (см. Иммунитет трансплантационный). Макрофаги участвуют в противоопухолевом иммунитете (см. Иммунитет противоопухолевый), оказывая цитостати-ческое и цитотоксическое действие на опухолевые клетки.

Повреждения фагоцитов различными иммуносупрессорами, бло-каторами (см. Иммунитет, Йммуподепрессивные вещества), ионизирующим излучением (см.) вызывают резкое подавление противомикробной устойчивости организма. При воздействии на животных большими дозами ионизирующего излучения фагоцитарная активность может практически исчезнуть. Нормализуется фагоцитарная активность у животных, как правило, после 20-го дня. У кроликов, облученных в дозе 600 рад (6 Гр), она восстанавливается только через 40 дней. Между дозой ионизирующего излучения и степенью подавления фагоцитоза существует корреляция. Дозы 10—75 рад (0,1 — 0,75 Гр) усиливают фагоцитоз гранулоцитов, а 350—600 рад (3,5—6 Гр)—резко его угнетают, причем снижается завершенность фагоцитоз, в 3—4 раза подавляется подвижность фагоцитов, а также уменьшается абсолютное их число. Эти же закономерности характерны для макрофагов, число и переваривающая способность которых при облучении также резко снижаются.

Выявлены болезни, сопровождающиеся первичными (врожденными) или вторичными (приобретенными) дефектами фагоцитоза. К ним относится так называемая хроническая гранулематозная болезнь, возникающая у детей, в фагоцитах которых из-за дефекта оксидаз нарушено образование перекисей и надперекпсей и, следовательно, процесс инактивации микробов. Сниженная способность к уничтожению бактерий выявлена у людей, нейтрофилы которых синтезируют недостаточное количество миелопероксидазы, глюкозо-б-фосфат-дегидрогеназы, пируваткиназы. Замедленная гибель микробов обнаружена у больных с синдромом Чедиака — Хигаси (см. Тромбоцитопатии), в нейтрофилах которых нарушено выделение в фагосому лизосомальных ферментов из-за дефекта системы микротрубочек. Описано нарушение процесса полимеризации актина, ведущее к замедлению поглощения частиц нейтрофилами и их подвижности. Больные с указанными дефектами фагоцитов часто страдают тяжелыми бактериальными и грибковыми инфекциями.

Первичные нарушения фагоцитоза наблюдаются и на уровне опсонинов, например, при врожденном дефиците СЗ- и С5-компонентов комплемента, который может привести к развитию рецидивирующих инфекций с поражением легких, костей, кожи.

Вторичные дефекты фагоцитоза описаны при заболеваниях соединительной ткани, почек, нарушении питания, вирусных и рецидивирующих бактериальных инфекциях.

Библиогр.: Берман В. М. и Слав-с к а я E. М, Завершенный фагоцитоз, Журн. микр., эпид. и иммун., № 3, с. 8, 1958; П о д о п р и г о р а Г. И. и Андреев В. Н. Современные методы изучения фагоцитарной активности лейкоцитов in vitro, там же, № 1, е. 19, 1976; X р а м-цов А. В. и Земсков В. М. Роль плазматической мембраны в активации лизосомальных ферментов, Докл. АН СССР, т. 271, № 1, с. 241, 1983; Handbook of experimental immunology, ed. by D. M. Weir, v. 2—3, Oxford a. o., 1979; Handbook of experimental pharmacology, ed. by J. R. Vane a. S. H. Ferreira, v. 50, pt 1, В. a. o., 1978; KlebanoffS. J. a. Clark R. A. The neutrophil, function and clinical disorders, Amsterdam a. o., 1978; Mononuclear phagocytes, Functional aspects, ed. by R. van Furth, pt 1 — 2, Hague a. o., 1980; The reticuloendothelial system, a comprehensive treatise, v. 1 — Morphology, ed. by H. Friedman a. o., N. Y.— L., 1980.

В. М. Земсков.

Источник: xn--90aw5c.xn--c1avg

Что такое фагоцитоз?

Фагоцитоз — это процесс, при котором клетка связывается с необходимой частицей на поверхности, а затем обволакивает и погружает ее в внутрь. Процесс фагоцитоза часто происходит, когда клетка пытается уничтожить что-то, например вирус или инфицированную клетку, и часто используется клетками иммунной системы.

Фагоцитоз не произойдет, если клетка не находится в физическом контакте с частицей, которую она хочет поглотить. Рецепторы клеточной поверхности, используемые для фагоцитоза, зависят от типа клетки. Это самые распространенные из них:

  • Рецепторы опсонинов: используются для связывания бактерий или других частиц, которые были покрыты иммуноглобулиновыми G (или IgG) антителами иммунной системой. Иммунная система покрывает потенциальные угрозы в антителах, чтобы другие клетки знали, что их нужно уничтожить. Также, иммунная система может использовать группу сложных белков для маркировки бактерий, называемых системой комплемента. Система комплемента — еще один способ иммунной системы уничтожать патогены и угрозы для организма.
  • Рецепторы мусорщики: связываются с молекулами, которые продуцируются бактериями. Большинство бактерий и клеток производят матрицу протеинов, окружающих себя (называемую «внеклеточным матриксом»). Матрикс является идеальным способом для иммунной системы идентифицировать чужеродные виды в организме, поскольку клетки человека не продуцируют одну и ту же белковую матрицу.
  • Толл-подобные рецепторы: рецепторы, названные в честь аналогичного рецептора у плодовых мух, кодируемых геном Toll, которые связываются с определенными молекулами, продуцируемыми бактериями. Толл-подобные рецепторы являются ключевой частью врожденной иммунной системы, так как будучи связанными с бактериальным возбудителем, они распознают специфические бактерии и активируют иммунный ответ. Существует множество различных типов Толл-подобных рецепторов, продуцируемых организмом, все из которых связывают разные молекулы.
  • Антитела: некоторые иммунные клетки образуют антитела, связывающие с конкретными антигенами. Это процесс, сходный тому, как подобные рецепторы распознают и идентифицируют, какой тип бактерий заражает хозяина. Антигены — это молекулы, действующие как патогенная «визитная карточка», потому что они помогают иммунной системе понять с какой угрозой она имеет дело.

Как происходит фагоцитоз?

Чтобы осуществить процесс фагоцитоза, клетки должны выполнить несколько последовательных действий. Имейте в виду, что различные типы клеток выполняют фагоцитоз по разному.

  • Вирус и клетка должны вступить в контакт друг с другом. Иногда иммунная клетка случайно попадает в вирус в кровотоке. В других случаях клетки перемещаются посредством процесса, называемого «хемотаксис». Хемотаксис означает движение микроорганизма или клетки в ответ на химический стимул. Многие клетки иммунной системы движутся в ответ на цитокины, небольшие белки, используемые специально для передачи сигналов в клетке. Цитокины сигнализируют клеткам перемещаться в определенную область тела, где обнаружена частица (в нашем случае, вирус). Это характерно для инфекций определенной области (например, рана кожи, пораженная бактериями).
  • Вирус связывается с рецепторами на клеточной поверхности макрофага. Помните, что разные типы клеток экспрессируют разные рецепторы. Некоторые рецепторы являются общими, а это означает, что они могут идентифицировать самопроизвольную молекулу по сравнению с потенциальной угрозой, в то время как, другие очень специфичны, например, схожие с подобными рецепторами или антителами. Макрофаг не инициирует фагоцитоз без успешного связывания рецепторов клеточной поверхности.
  • Вирусы также могут иметь поверхностные рецепторы, специфичные для вирусов на макрофаге. Вирусы должны получить доступ к цитоплазме или ядру клетки-хозяина, чтобы реплицировать и вызывать инфекцию, поэтому они применяют свои поверхностные рецепторы для взаимодействия с клетками иммунной системы и используют иммунный ответ для входа в клетку. Иногда, когда вирус и клетка-хозяин взаимодействуют, клетка-хозяин может успешно уничтожить вирус и остановить распространение инфекции. В других случаях клетка-хозяин поглощает вирус, который начинает реплицироватся. Как только это произойдет, инфицированная клетка идентифицируется и уничтожается другими клетками иммунной системы, чтобы остановить вирусную репликацию и распространение инфекции.

Фагоцитоз у растений

  • Макрофаг начинает вращаться вокруг вируса, поглощая его в карман. Вместо того, чтобы перемещать большой элемент через плазматическую мембрану, который может повредить ее, фагоцитоз использует инвагинацию, чтобы захватить частицу внутрь, обволакивая ее вокруг. Ингагинация — это действие сгибания внутрь себя, чтобы сформировать полость или мешочек. Клетка захватывает вирус внутрь, создавая карманное углубление без повреждения плазматической мембраны. Помните, что клетки являются достаточно гибкими и текучими.

Фагоцитоз у растений

  • Захваченный вирус полностью закрывается в виде пузырьковой структуры, называемой «фагосом», внутри цитоплазмы. Губы кармана, образованные в результате инвагинации, стягивают друг к другу, чтобы закрыть зазор. Это действие создает фагосому, где плазменная мембрана перемещается вокруг частицы, безопасно помещая ее внутри клетки.

Фагоцитоз у растений

  • Фагосомы сливаются с лизосомой, становясь «фаголисосомой». Лизосомы также являются пузырчатыми структурами, подобными фагосомам, которые обрабатывают отходы внутри клетки. Для лучшего понимание функций лизосомы, приставка «Лизис» означает разделение или растворение. Без слияния с лизосомой, фагосома не способна ничего сделать с содержимым внутри.
  • Фаголисосома понижает pH, чтобы разрушить свое содержимое. Лизосома или фаголисосома способны разрушать вещество внутри себя, резко снижая рН внутренней среды. Снижение рН делает окружающую среду в фаголисосоме очень кислой. Это эффективный способ убить или нейтрализовать все, что находится внутри фаголизосомы, чтобы не допустить заражение клетки. Некоторые вирусы фактически используют пониженный рН, чтобы вырваться из фаголисосомы и начать реплицировать внутри клетки. Например, грипп использует снижение рН для активации конформационного изменения, что позволяет ему выйти в цитоплазму.
  • После того, как содержимое было нейтрализовано, фаголизосома образует остаточное тело, которое содержит отходы из фаголисосомы. Остаточное тело в конечном итоге выводится из клетки.

Фагоцитоз и иммунная система

Фагоцитоз является важной составляющей иммунной системы. Несколько типов клеток иммунной системы выполняют фагоцитоз, такие как нейтрофилы, макрофаги, дендритные клетки и В-лимфоциты. Действие фагоцитирующих патогенных или посторонних частиц позволяет клеткам иммунной системы знать, с чем они борются. Зная врага, клетки иммунной системы могут специально нацеливаться на похожие частицы, циркулирующие в организме.

Другой функцией фагоцитоза в иммунной системе является поглощение и уничтожение патогенов (таких как вирусы или бактерии) и инфицированных клеток. Уничтожая инфицированные клетки, иммунная система ограничивает скорость распространения и размножения инфекции. Ранее мы упоминали, что фаголисосома создает кислотную среду для уничтожения или нейтрализации своего содержимого. Клетки иммунной системы, которые выполняют фагоцитоз, могут также использовать другие механизмы для уничтожения патогенов внутри фаголисомы, таких как:

  • Кислородные радикалы: высокореактивные молекулы, которые реагируют с белками, липидами и другими биологическими молекулами. Во время физиологического стресса количество кислородных радикалов в клетке может резко увеличиваться, вызывая окислительный стресс, способный разрушать клеточные структуры.
  • Оксид азота: реакционноспособное вещество, подобное кислородным радикалам, которое реагирует с супероксидом, чтобы создать дополнительные молекулы, повреждающие различные типы биологических молекул.
  • Антимикробные белки: белки, которые специфически повреждают или убивают бактерии. Примеры антимикробных белков включают протеазы, убивающие различные бактерии, уничтожая основные белки и лизоцим, атакующий клеточные стенки грамположительных бактерий.
  • Антимикробные пептиды: схожи с антимикробными белками, поскольку также атакуют и убивают бактерии. Некоторые антимикробные пептиды, такие как дефенсины, атакуют мембраны бактериальных клеток.
  • Связывающие белки: являются важными игроками врожденной иммунной системы, так как конкурируют с белками или ионами, которые в противном случае могут оказаться полезны для бактерий или вирусной репликации. Лактоферрин — связывающий белок, обнаруженный в слизистых оболочках, и связывает ионы железа, необходимые для роста бактерий.

Источник: natworld.info

Это — один из видов белых кровяных телец, или лейкоцитов, — нейтро-филы. Именно они, привлекаемые ядовитыми веществами микробов, движутся к месту заражения (см. Таксисы). Вышедшие из сосудов, такие лейкоциты имеют выросты — ложноножки, или псевдоподии, с помощью которых они передвигаются так же, как амеба и блуждающие клетки личинок морских звезд. Такие способные к фагоцитозу лейкоциты Мечников назвал микрофагами.

Однако не только постоянно двигающиеся лейкоциты, но и некоторые оседлые клетки могут становится фагоцитами (сейчас все они объединены в единую систему фагоцитирующих мононуклеаров). Одни из них спешат к опасным участкам, например к месту воспаления, другие — остаются на своих обычных местах. И тех и других объединяет способность к фагоцитозу. Эти тканевые клетки (гис-тоциты, моноциты, ретикулярные и эндотелиальные клетки) почти вдвое крупнее микрофагов — их диаметр 12—20 мкм. Поэтому Мечников назвал их макрофагами. Особенно много их в селезенке, печени, лимфатических узлах, костном мозге и в стенках сосудов.

Микрофаги и блуждающие макрофаги сами активно нападают на «врагов», а неподвижные макрофаги ждут, пока «враг» проплывет мимо них в токе крови или лимфы. Фагоциты «охотятся» в организме за микробами. Бывает, что в неравной борьбе с ними они оказываются побежденными. Гной — это и есть скопление погибших фагоцитов. К нему подойдут другие фагоциты и начнут заниматься его ликвидацией, как они это делают со всякими посторонними частицами.

Фагоциты очищают ткани от постоянно отмирающих клеток и участвуют в различных перестройках организма. Например, при превращении головастика в лягушку, когда наряду с другими изменениями постепенно исчезает хвост, целые полчища фагоцитов уничтожают ткани хвоста головастика.

Как же попадают внутрь фагоцита частицы? Оказывается, с помощью псевдоподий, которые захватывают их, подобно ковшу экскаватора. Постепенно псевдоподии удлиняются и затем смыкаются над инородным телом. Иногда оно как бы вдавливается в фагоцит.

Мечников предполагал, что в фагоцитах должны содержаться специальные вещества, которые и переваривают захваченных ими микробов и другие частицы. И действительно, такие частицы — лизосдмы были обнаружены спустя 70 лет после открытия фагоцитоза. В них содержатся ферменты, способные расщеплять большие органические молекулы.

Теперь выяснено, что кроме фагоцитоза в обезвреживании чужеродных веществ участвуют преимущественно антитела (см. Антиген и антитело). Но чтобы начался процесс их выработки, необходимо участие макрофагов Они захватывают инородные белки (антигены), разрезают их на части и выставляют их куски (так называемые антигенные детерминанты) на своей поверхности. Тут с ними в контакт вступают те лимфоциты, которые способны вырабатывать антитела (иммуноглобулиновые белки), связывающие эти детерминанты. После этого такие лимфоциты размножаются и выделяют в кровь много антител, которые и инактивируют (связывают) чужеродные белки — антигены (см. Иммунитет). Этими вопросами занимается наука иммунология, одним из основоположников которой был И. И. Мечников.

Источник: alnam.ru