митохондрия

Содержание:

  • Что такое митохондрии и их роль
  • Происхождение митохондрии
  • Строение митохондрии
  • Функции митохондрии
  • Ферменты митохондрий
  • Митохондрии, видео

    Еще в далеком XIX веке с интересом изучая посредством первых не совершенных еще тогда микроскопов, строение живой клетки, биологи заметили в ней некие продолговатые зигзагоподобные объекты, которые получили название «митохондрии». Сам термин «митохондрия» составлен из двух греческих слов: «митос» – нитка и «хондрос» – зернышко, крупинка.

    Что такое митохондрии и их роль

    Митохондрии представляют собой двумембранный органоид эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.


    Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.

    Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.

    митохондрия

    Примерно так выглядит митохондрия.

    Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току цитоплазмы), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.

    Происхождение митохондрии

    Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку. Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества. И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.

    Строение митохондрии

    Митохондрии состоят из:


    • двух мембран, одна из них внутренняя, другая внешняя,
    • межмембранного пространства,
    • матрикса – внутреннего содержимого митохондрии,
    • криста – это часть мембраны, которая выросла в матриксе,
    • белок синтезирующей системы: ДНК, рибосом, РНК,
    • других белков и их комплексов, среди которых большое число всевозможных ферментов,
    • других молекул

    Строение митохондрии

    Так выглядит строение митохондрии.

    Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.


    На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.

    У митохондрий, как впрочем, у и хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.

    Функции митохондрии

    Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием кислорода, а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.

    Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество химических реакций окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.

    Ферменты митохондрий


    Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот

    Источник: www.poznavayka.org

    Особенности строения

    Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

    Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

    Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

    Строение митохондрии


    Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

    Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

    Расположение в клетке и деление

    Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений.  В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.


    В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

    Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

    Функции в клетке

    1. Основная функция митохондрий – образование молекул АТФ.
    2. Депонирование ионов Кальция.
    3. Участие в обмене воды.
    4. Синтез предшественников стероидных гормонов.

    Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.


    Таблица: строение и функции митохондрий (кратко)
    Структурные элементы
    Строение
    Функции
    Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
    Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
    Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
    Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
    Рибосомы Объединённые две субъединицы Синтез белка

    Сходство митохондрий и хлоропластов

    Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

    Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

    И митохондрии и хлоропласты могут делиться с помощью перетяжки.

    Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

    Опишем кратко сходства и различия:

    • Являются двомембранными органеллами;
    • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
    • обладают собственным геномом;
    • способны синтезировать белки и энергию.

    Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

    Источник: animals-world.ru

    Митохондрии растительной клетки


    Существует гипотеза о том, что в известной степени автономные и несущие определенное количество собственной ДНК митохондрии и пластиды представляют собой видоизмененные прокариотические организмы, которые нашли "убежище" в более крупных гетеротрофных клетках-хозяевах — предшественниках эукариот . Все, или почти все, ныне живущие эукариоты содержат в своих клетках митохондрии, а все автотрофные эукариоты — также и пластиды . Возможно, они были приобретены в результате независимых случаев симбиоза , точнее — внутреннего симбиоза (эндосимбиоза). Более крупные гетеротрофные клетки, предшественницы эукариотических клеток , очевидно, защищали свои симбиотические органоиды от различных неблагоприятных условий окружающей среды. В свою очередь, прокариотические симбионты оказались полезными благодаря способности использовать энергию солнечного света ( фотосинтез ) и возможности использовать молекулярный кислород для окисления органических веществ. В результате эукариоты смогли заселить сушу, а также ту часть водной среды (обычно с высокой рН), где прокариоты относительно немногочисленны.

    Митохондрии — неотъемлемая часть всех живых эукариотических клеток. Форма, величина и их число постоянно меняются. Число митохондрий варьирует от нескольких десятков до сотен. Особенно их много в секреторных тканях растений.
    змеры этих органоидов не превышают 1 мкм. По форме они чаще всего эллиптические или округлые. Снаружи митохондрии окружены оболочкой, состоящей из двух мембран, которые не связаны с эндоплазматической сетью цитоплазмы ( рис. 9 ). Внутренняя мембрана образует выросты в полость митохондрии в виде пластин или трубок, называемых кристами . Кристы бывают различных типов. Пространство между кристами заполнено однородным прозрачным веществом — матриксом митохондрий. В матриксе встречаются рибосомы , подобные по величине рибосомам прокариотических клеток, и собственная митохондриальная ДНК , заметная под электронным микроскопом в виде тонких нитей.

    Митохондрии способны к независимому от ядра синтезу своих белков на собственных рибосомах под контролем митохондриальной ДНК . Митохондрии образуются только путем деления.

    Основная функция митохондрий состоит в обеспечении энергетических потребностей клетки путем дыхания. Богатые энергией молекулы АТФ синтезируются при реакции окислительного фосфорилирования. Энергия, запасаемая АТФ, получается в результате окисления в митохондриях различных энергетически богатых веществ, главным образом сахаров . Механизм окислительного фосфорилирования путем хемиосмотического сопряжения открыт в 1960 г. английским биохимиком П.Митчеллом.

    Источник: medbiol.ru