Деление прокариотических клеток — процесс образования дочерних прокариотических клеток из материнской. Ключевыми событиями клеточного цикла как прокариот, так и эукариот являются репликация ДНК и деление клетки. Отличительной чертой деления прокариотических клеток является непосредственное участие реплицированной ДНК в процессе деления[1]. В подавляющем большинстве случаев прокариотические клетки делятся с образованием двух одинаковых по размеру дочерних клеток, поэтому этот процесс ещё иногда называют бинарным делением. Так как чаще всего прокариотические клетки имеют клеточную стенку, бинарное деление сопровождается образованием септы — перегородки между дочерними клетками, которая затем расслаивается посередине. Процесс деления прокариотической клетки подробно изучен на примере Escherichia coli[2].

Деление грамотрицательных бактерий[ | ]

Раскрытию механизма деления грамотрицательных бактерий способствовало изучение мутантных штаммов E. coli, у которых этот механизм нарушен. В результате мутаций, которые затрагивают гены, участвующие в делении клетки, могут формироваться следующие фенотипы:


  • филаменты — длинные клетки, которые формируются, если септа по тем или иным причинам не образуется. Филаменты бывают нескольких типов:
    • содержащие многочисленные нуклеоиды, равномерно распределённые по длине клетки. В таких штаммах сегрегация ДНК проходит нормально, но септа тем не менее не формируется; их называют Fts (от англ. filamentation temperature-sensitive)[3];
    • содержащие единственный нуклеоид примерно посередине клетки. В данном случае причиной образования филаментов являются нарушения в синтезе ДНК, соответственно штаммы называют Dna[4];
    • содержащие многочисленные нуклеоиды посередине клетки. В дальнейшем ближе к концам таких клеток могут формироваться септы, и вследствие этого образовываться безъядерные клетки (см. ниже). Эти события являются результатом нарушений в механизме сегрегации ДНК, соответствующие штаммы чаще всего называются Par (от англ. partition)[4];

  • миниклетки — маленькие, лишённые ДНК клетки. Миниклетки образуются, когда при делении формируется больше одной септы или она находится в неправильном месте. Штаммы с такими нарушениями называют Min (от англ. miniature)[5];
  • безъядерные клетки — клетки нормального размера, лишённые ДНК. Как было сказано выше, безъядерные клетки могут образовываться из филаментов типа Par. В то же время при некоторых мутациях, например Muk(от яп. mukaku — безъядерный), в популяции клеток могут обнаруживаться только безъядерные клетки при отсутствии филаментов. Тем не менее такой фенотип также связан с нарушением сегрегации ДНК[6].

Молекулярный механизм деления[ | ]

Центральную роль в делении клеток грамотрицательных бактерий играет септальное кольцо — кольцевая органелла, расположенная примерно посередине клетки и способная сокращаться, образуя перетяжку между двумя новыми дочерними клетками. Зрелое септальное кольцо представляет собой сложный белковый комплекс, состоящий более чем из дюжины разных белков. Десять из них (FtsA, B, I, K, L, N, Q, W, Z и ZipA) абсолютно необходимы для формирования септы, и нарушение в их работе приводит к формированию филаментов типа Fts[2]. Остальные компоненты не являются строго необходимыми, их функции могут частично перекрываться. Формирование септального кольца происходит в несколько этапов, новые белки присоединяются по одному в таком порядке: FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN[7].

Белки, входящие в состав септального кольца, помимо FtsZ, можно разделить на несколько классов по функциям:


  • модулирующие сборку филаментов FtsZ (FtsA, ZipA, ZapA, ZapB);
  • связывающие Z-кольцо с мембраной (FtsA, ZipA);
  • координирующие образование септы с сегрегацией ДНК (FtsK);
  • синтезирующие (модулирующие) пептидогликан (FtsI, FtsW);
  • гидролизующие пептидогликан для расхождения дочерних клеток (AmiC, EnvC).

Однако для многих белков септального кольца точная функция до сих пор не известна[8].

Формирование Z-кольца[ | ]

Незрелую форму септального кольца называют Z-кольцом, по имени белка FtsZ, который играет ключевую роль в его формировании. Однако стоит отметить, что часто термины септальное кольцо и Z-кольцо используют как синонимы, поэтому в каждом отдельном случае это нужно оговаривать особо[2]. Белок FtsZ имеет тенденцию формировать длинные фибриллярные структуры. После деления FtsZ формирует прилегающую ко внутренней мембране спираль, закрученную вдоль оси клетки. Эта спираль постоянно меняет своё положение и быстро осциллирует от одного полюса клетки к другому[9][10].

iv>
имерно ко времени завершения репликации ДНК спираль FtsZ схлопывается, в результате чего формируется Z-кольцо посередине клетки[11]. Есть все основания предполагать, что Z-кольцо на самом деле также представляет собой короткую плотную спираль[10].

Белок FtsZ — прокариотический гомолог тубулина с похожей третичной структурой[1]. Это позволяет предполагать, что ассоциация FtsZ в Z-кольцо может напоминать сборку микротрубочек эукариот. FtsZ, как и тубулин, обладает ГТФазной активностью, гидролиз ГТФ обеспечивает полимеризацию FtsZ с образованием линейных протофиламентов. Z-кольцо — динамичная структура: молекулы FtsZ в составе кольца постоянно заменяются молекулами из цитоплазматического пула[12][13].

FtsZ сам по себе не имеет сродства к мембране, формирование кольцевой структуры из протофиламентов, их закрепление во внутренней мембране и стабилизацию Z-кольца обеспечивают белки FtsA и ZipA, которые взаимодействуют с FtsZ прямо и независимо.


pA — интегральный белок внутренней мембраны, FtsA — цитоплазматический белок, который тем не менее может связываться с мембраной за счёт особой аминокислотной последовательности на C-конце. ZipA, по-видимому, характерен только для γ-протеобактерий, в то время как FtsA более универсален[2]. Z-кольцо у E. coli может формироваться при отсутствии одного из этих белков, но не двух сразу, что указывает на их перекрывающиеся функции[14][15].

Ещё два белка — ZapA и ZapB — включаются в состав Z-кольца на ранней стадии, однако их присутствие не строго обязательно для его формирования[2][7][16]. ZapA — универсальный для многих прокариот белок, а вот ZapB, по всей вероятности, есть только у γ-протеобактерий. ZapA связывается с FtsZ непосредственно, а ZapB связывается с ZapA. Интересно, что ZapB формирует ещё одну кольцевую структуру, которая находиться дальше от мембраны, чем Z-кольцо. Функции этих белков ещё до конца не установлены, однако предполагается, что они принимают участие в превращении спирали FtsZ в Z-кольцо, а также в последующей стабилизации Z-кольца[7].

>

Созревание септального кольца[ | ]

Z-кольцо существует в описанном виде 14—21 минуту (в зависимости от скорости деления), и только после этого к нему присоединяются все остальные ключевые белки, начиная с FtsQ[17]. В какое время присоединяется FtsK, пока точно не установлено. Оставшиеся белки включаются в состав септального кольца практически одновременно в течение 1—3 минут. До того момента, как начинает собираться септальное кольцо, Z-кольцо стимулирует синтез пептидогликана в центре клетки таким образом, что клетка начинает удлиняться. Молекулярный механизм этого процесса, однако, до сих пор не установлен[2][17].

Одними из последних в септальное кольцо включаются белки, ответственные за синтез полярного пептидогликана (FtsW, FtsI), и белки, обеспечивающие частичный гидролиз пептидогликана на границе раздела между двумя клетками (AmiA, B, C, EnvC, NlpD)[2].

Формирование перетяжки[ | ]

Завершающим этапом деления прокариотической клетки является формирование перетяжки и конечное разделение двух новых клеток. Образование перетяжки затрагивает все компоненты клеточной оболочки (внутреннюю мембрану, слой пептидогликана и внешнюю мембрану).


ть основания полагать, что за инвагинацию внутренней мембраны отвечает Z-кольцо, однако как именно оно передаёт напряжение на мембрану, пока не известно. Параллельно с этим процессом ферменты септального кольца синтезируют (или модифицируют особым образом предсуществующий) пептидогликан септы[2][17]. После формирования септы в работу вступают пептидогликангидролазы, которые отделяют будущие клетки друг от друга. Завершается процесс деления инвагинацией и обособлением внешних мембран клеток.

Источник: ru-wiki.ru

Бинарное деление — процесс воспроизводства новых клеток у прокариот, которые генетически идентичны родительской клетке. Прокариоты, такие как бактерии, распространяются путем двойного деления. Для одноклеточных организмов деление является единственным методом, используемым для производства новых клеток. Как у прокариотических, так и эукариотических клетках результатом деления клеток является образование дочерних клеток, которые генетически идентичны родительской клетке. В одноклеточных организмах дочерние клетки являются индивидуумами.

Из-за относительной простоты прокариот, процесс деления клеток или бинарное деление считается менее сложным и гораздо более быстрым процессом, чем воспроизводство клеток у эукариот. Одиночная круговая хромосомная ДНК бактерий не заключена в ядро, а вместо этого занимает конкретное место (нуклеоид) внутри клетки.


Хотя ДНК нуклеоида ассоциируется с белками, помогающими упаковывать молекулу в компактный размер, гистоны и нуклеосомы у прокариот отсутствует. Однако упаковочные белки бактерий связаны с белками когезин и конденсин, участвующими в уплотнении хромосом эукариот.

Бактериальная хромосома прикрепляется к плазматической мембране примерно в середине клетки. Начальная точка репликации близка к месту связывания хромосомы на клеточной мембране. Репликация ДНК двунаправленная, то есть она одновременно перемещается от изначального места расположения на обеих нитях. Когда образуются новые двойные нити, каждая точка происхождения удаляется от прикрепления клеточной стенки к противоположным концам клетки.

По мере удлинения клетки растущая мембрана помогает в переносе хромосом. После того как хромосомы очистили середину удлиненной клетки, начинается цитоплазматическое разделение. Образование кольца, состоящего из повторяющихся звеньев белка FtsZ, направляет разделение между нуклеоидами. Формирование кольца FtsZ вызывает накопление других белков, которые работают вместе, чтобы образовать материалы мембран и клеточных стенок. Между нуклеоидами образуется перегородка, постепенно распространяющаяся от периферии к центру клетки. Когда новые клеточные стенки находятся на своих местах, дочерние клетки разделяются.

Точный выбор времени и формирование митотического веретена имеет решающее значение для успеха деления эукариотических клеток. Прокариотические клетки, с другой стороны, не подвергаются митозу и, следовательно, не нуждаются в веретене деления. Однако белок FtsZ, который играет ​​важную роль в прокариотическом цитокинезе, структурно и функционально очень похож на тубулин, строительный белок микротрубочек, которые составляют веретено деления у эукариот.


Белки FtsZ могут образовывать нити, кольца и другие трехмерные структуры, подобные тубулину, который образует микротрубочки, центриоли и различные цитоскелетные компоненты. Кроме того, как FtsZ, так и тубулин используют один и тот же источник энергии (гуанозинтрифосфат), чтобы быстро собирать и разбирать сложные структуры. Хотя оба белка встречаются в современных организмах, тубулин развился и диверсифицировался в процессе эволюции из прокариотического FtsZ.

Ключевые моменты бинарного деления:

  • При репликации бактериальное ДНК прикрепляется к плазматической мембране примерно в середине клетки.
  • Происхождение или исходная точка репликации бактерий находится близко к месту связывания ДНК с плазматической мембраной.
  • Репликация бактериальной ДНК двунаправленная, а это означает, что она одновременно удаляется от начального координат на обеих нитях.
  • Формирование кольца FtsZ, состоящего из повторяющихся звеньев белка, которые вызывает накопление других белков, работающих вместе, чтобы сформировать и переместить на поверхность новые материалы плазматических мембран и клеточных стенок.
  • Когда новые клеточные стенки находятся на своих местах, из-за образования перегородки, дочерние клетки разделяются на две отдельные клетки.

Источник: natworld.info

Бинарное деление – основной способ размножения

Прокариоты размножаются преимущественно путем деления материнской бактериальной клетки на 2 идентичные дочерние. При благоприятных условиях бинарное деление происходит каждые 20 минут, а в случае ухудшения условий окружающей среды время, необходимое клетке для роста и деления, увеличивается. В случае неблагоприятных внешних условий прокариоты прекращают размножение на время или вовсе.

Непосредственно самому процессу разделения клетки пополам предшествует период роста цитоплазмы и репликации (удвоения) хромосомы бактерии, как на фото.

Увеличение клеточных размеров происходит вследствие целого ряда скоординированных процессов биосинтеза, которые жестко контролируются. Процесс роста бактерии не бесконечен – по достижению прокариотом заданных критических размеров происходит деление.

Механизм репликации бактериальной ДНК

При удвоении ДНК нуклеоида (аналог ядра в бактериальной клетке) реализуется следующая схема:

  • инициация – начало деления ДНК под действием репликона (ферментативного аппарата, участка ДНК, содержащего информацию о дублировании);
  • элонгация – удлинение, рост хромосомной цепи;
  • терминация – завершение роста цепи и спирализация ДНК при репликации.

Параллельно с репликацией ДНК происходит рост самой клетки, и расстояние между прикрепленными посредством мезосом к цитоплазматической мембране двумя новыми хромосомами постепенно увеличивается. Прокариотическая клетка начинает делиться спустя некоторое время после репликации. Очевидно, именно дублирование ДНК запускает процесс разделения.

Подобный процесс отсутствует для мейоза эукариотов. Процесс мейоза во многом отличается от размножения прокариотов. Кроме того, разделение материнской клетки на две части для грамположительных и грамотрицательных бактерий имеет свои особенности.

Размножение грамотрицательных бактерий

Грамотрицательные бактерии имеют сравнительно тонкую клеточную стенку, на которой приблизительно по центру расположена кольцевая органелла – септальное кольцо. Разделение бактерий происходит путем сокращения органеллы и формирования перетяжки между дочерними клетками, что видно на фото.

Схема деления прокариотической клетки

Септальное кольцо представляет собой сложный белковый комплекс, куда входит более 12 различных белков. Оно формируется путем последовательного присоединения белков друг к другу в строгой последовательности.

Белки септального кольца выполняют следующие функции, необходимые для размножения:

  • моделируют присоединение филаментов (белков кольца) в определенной последовательности к Z-кольцу (незрелая форма кольцевой органеллы);
  • обеспечивают привязку Z-кольца к мембране;
  • координируют формирование кольцевой органеллы с сегрегацией (разъединением) хромосомы;
  • синтезируют пептидогликан – наиболее значимый компонент бактериальной клеточной стенки, который осуществляет осмотическую защиту;
  • осуществляют гидролиз пептидогликана для разделения новых клеток.

Перетяжка у грамотрицательных бактерий охватывает все оболочки клетки – цитоплазматическую (внутреннюю) и внешнюю мембраны, а также связанный с ними липопротеидом тонкий слой пептидогликана.

Во время мейоза эукариотов подобный метод разделения клетки перетяжкой не встречается.

Размножение грамположительных бактерий

Толщина стенки грамположительной бактерии более чем в два раза превышает толщину стенки у бактерий грамотрицательных.

Процесс размножения грамположительной бактерии не имеет сходства с митозом и отличается от мейоза эукариотов. По окончании процесса репликации ДНК грамположительные бактерии не создают перетяжку, а синтезируют поперечную перегородку, как на фото. В процессе синтеза, как и у грамотрицательных бактерий при образовании перетяжки, принимают участие мезосомы, формируя перегородку от края к центру клеточной структуры.

Схема деления грамположительных бактерий

Поперечное бинарное деление бактериальной прокариотической клетки всегда продольно и поперечно симметрично, что является еще одним отличием процесса от мейоза клеточной структуры эукариотов.

При благоприятных условиях прямое бинарное деление бактериальных клеток может осуществляться как одной, так и в нескольких плоскостях, что невозможно для мейоза. В случае, когда клетки после разделения не расходятся, происходит образование различных по форме объединений:

  • при сечении клетки в одной плоскости формируются цепочки шаровидных или палочковых клеток (сферические диплококки, цепочка палочковидных бактерий, как на фото);
  • при разделении в разных плоскостях наблюдаются клеточные скопления разнообразных форм (цепочки стрептококков, пакеты сарцин, грозди стафилококков).

Разнообразие форм прокариотов, которое видно на фото, совершенно не реализуемо для мейоза ядерных клеток.

Подобное поперечное разделение характерно не только для грамположительных бактерий, но и для нитчатых цианобактерий.

Множественное деление цианобактерий

Одной из разновидностей бинарного размножения прокариотов является множественное образование дочерних прокариотов из материнской клетки, типичное для цианобактерий, и совершенно не характерное для мейоза.

Первоначально происходит рост цитоплазмы и репликация хромосомы. Затем, как видно на видео, внутри дополнительного фибриллярного слоя материнского организма осуществляются последовательные бинарные деления, которые приводят к образованию баеоцитов (маленьких клеток). Их число может колебаться от 4 до 1000 единиц и связано с видом цианобактерии. Высвобождаются баеоциты после разрыва стенки материнского прокариота, что видно на видео.

Помимо равновеликого разделения, некоторые бактерии размножаются почкованием.

Почкование как частный случай бинарного деления

У фото- и хемотрофов, независимо от источника пищи (автотрофы или гетеротрофы), обнаруживается возможность размножения организма почкованием.

Механизм процесса выглядит следующим образом:

  • на полюсе материнской клетки формируется почка;
  • происходит рост почки до размеров материнского организма (это видно на фото), причем для почки синтезируется новая клеточная стенка;
  • полноценная дочерняя клетка отделяется от материнской.

Если процесс бинарного разделения не имеет ограничений, как в случае мейоза

для эукариотов, то почкование зависит от факта старения прокариота. В среднем материнская клетка отделяет не более 4 почек.

Почкование имеет свои специфические особенности:

  • сохраняется только продольная симметрия (хорошо видно на фото);
  • после почкования получаются материнская и дочерняя клетки, тогда как после бинарного разделения материнской клетки нет – есть две равноценные дочерние;
  • материнский и дочерний организмы не идентичны, различия между ними хорошо видны – наблюдается процесс старения.

При благоприятных физико-химических условиях прокариоты способны делиться в геометрической прогрессии и заполонить собой весь мир. Однако на деле такого не происходит, так как существуют факторы, сдерживающие бактериальное деление.

Источник: probakterii.ru