Клетка давно определена как структурная единица всего живого. И это действительно так. Ведь миллиарды этих структур, словно кирпичики, образуют растения и животных, бактерий и микроорганизмов, человека. Каждый орган, ткань, система организма — все выстроено из клеток.

Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.

Органеллы клетки

Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:

  1. Плазматическая мембрана.
  2. Ядро и ядрышки с хромосомным материалом.
  3. Цитоплазма с включениями.
  4. Лизосомы.
  5. Митохондрии.
  6. ЭПС (эндоплазматический ретикулум).
  7. Комплекс Гольджи.
  8. Рибосомы.
  9. Вакуоли и хлоропласты, если клетка растительная.

Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.

Общее строение мембраны

Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.

Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС:

  • белки;
  • липиды;
  • углеводы.

Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).

Жидкостно-мозаичная модель строения

Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).


Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно «гулять» по мембране, меняя местоположение.

Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое — 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной — до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки — растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное — фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:


  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также «заякоренными» белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур — формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное — один раз;
  • политопное — в нескольких местах.
iv>

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный — над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Липиды плазмалеммы

Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке — «флип-флоп». Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы.


Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:

  • фосфолипиды;
  • сфингофосполипиды;
  • гликолипиды;
  • холестерол.

К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные — наружу. Примеры соединений:

  • фосфатидилхолин;
  • фосфатидилсерин;
  • кардиолипин;
  • фосфатидилинозитол;
  • сфингомиелин;
  • фосфатидилглицерин;
  • фосфатидилэтаноламин.

Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой — специальным ферментом, катализирующим процесс распада фосфолипидов.

Функции перечисленных соединений следующие:

  1. Обеспечивают общую структуру и строение бислоя плазмалеммы.
  2. Соприкасаются с белками на поверхности и внутри слоя.
  3. Определяют агрегатное состояние, которое будет иметь плазматическая мембрана клетки при различных температурных условиях.
  4. Участвуют в ограниченной проницаемости плазмолеммы для разных молекул.
  5. Формируют разные типы взаимодействий клеточных мембран друг с другом (десмосома, щелевидное пространство, плотный контакт).
>

Сфингофосфолипиды и гликолипиды мембраны

Сфингомиелины или сфингофосфолипиды по своей химической природе — производные аминоспирта сфингозина. Наравне с фосфолипидами принимают участие в образовании билипидного слоя мембраны.

К гликолипидам относится гликокаликс — вещество, во многом определяющее свойства плазматической мембраны. Это желеподобное соединение, состоящее в основном из олигосахаридов. Гликокаликс занимает 10% от общей массы плазмалеммы. С этим веществом напрямую связана плазматическая мембрана, строение и функции, которые она выполняет. Так, например, гликокаликс осуществляет:

  • маркерную функцию мембраны;
  • рецепторную;
  • процессы пристеночного переваривания частиц внутри клетки.

Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.

Холестерол (стерин мембраны)

Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.


Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.

В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний.

Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.

Углеводы мембраны

Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.

Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.

Основные функции плазмалеммы

Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее.

  1. Отграничивает содержимое клетки от окружающей среды и защищает его от внешних воздействий. Благодаря наличию мембраны поддерживается на постоянном уровне химический состав цитоплазмы, ее содержимое.

  2. Плазмалемма содержит ряд белков, углеводов и липидов, которые придают и поддерживают определенную форму клетки.
  3. Мембрану имеет каждая клеточная органелла, которая называется мембранной везикулой (пузырьком).
  4. Компонентный состав плазмалеммы позволяет ей исполнять роль «стражника» клетки, осуществляя выборочный транспорт внутрь нее.
  5. Рецепторы, ферменты, биологически активные вещества функционируют в клетке и проникают в нее, сотрудничают с ее поверхностной оболочкой только благодаря белкам и липидам мембраны.
  6. Через плазмалемму осуществляется транспортировка не только соединений различной природы, но и ионов, важных для жизнедеятельности (натрий, калий, кальций и другие).
  7. Мембрана поддерживает осмотическое равновесие вне и внутри клетки.
  8. При помощи плазмалеммы осуществляется перенос ионов и соединений различной природы, электронов, гормонов из цитоплазмы в органеллы.
  9. Через нее же происходит поглощение солнечного света в виде квантов и пробуждение сигналов внутри клетки.
  10. Именно данной структурой осуществляется генерация импульсов действия и покоя.
  11. Механическая защита клетки и ее структур от небольших деформаций и физических воздействий.
  12. Адгезия клеток, то есть сцепление, и удержание их рядом друг с другом также осуществляется благодаря мембране.

Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде. Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.

Типы транспорта через клеточный барьер


Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность — закон диффузии веществ.

  1. Пассивный транспорт или диффузия и осмос. Подразумевает свободное перемещение ионов и растворителя через мембрану по градиенту из области с высокой концентрацией в область с низкой. Не требует расхода энергии, так как протекает сам по себе. Так происходит действие натрий-калиевого насоса, смена кислорода и углекислого газа при дыхании, выход глюкозы в кровь и так далее. Очень распространено такое явление, как облегченная диффузия. Данный процесс подразумевает наличие какого-либо вещества-помощника, которое цепляет нужное соединение и протаскивает за собой по белковому каналу или через липидный слой внутрь клетки.
  2. Активный транспорт подразумевает затраты энергии на процессы поглощения и выведения через мембрану. Есть два основных способа: экзоцитоз — выведение молекул и ионов наружу. Эндоцитоз — захватывание и проведение внутрь клетки твердых и жидких частиц. В свою очередь, второй способ активного транспорта включает в себя две разновидности процесса. Фагоцитоз, который заключается в заглатывании везикулой мембраны твердых молекул, веществ, соединений и ионов и проведение их внутрь клетки. При протекании данного процесса образуются крупные везикулы. Пиноцитоз, напротив, заключается в поглощении капелек жидкостей, растворителей и других веществ и проведении их внутрь клетки. Он подразумевает формирование пузырьков малых размеров.

Оба процесса — пиноцитоз и фагоцитоз — играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.

Источник: www.syl.ru

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1 — учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт.. — 3-е издание, исправленное и дополненное. — Москва: издательство Московского университета, 2004. — ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — Москва: Мир, 1997. — ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. — Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. — Москва: Наука, 1994.

Источник: dvc.academic.ru

Плазматическая мембрана

Плазмалемма — это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Основные сведения

Состав плазмалеммы — это фосфолипиды или же, как их еще называют, сложные липиды. Фосфолипиды имеют несколько частей: хвост и головку. Специалисты называют гидрофобные и гидрофильные части: в зависимости от строения животной или растительной клетки. Участки, которые именуются головкой — обращены внутрь клетки, а хвосты — наружу. Плазмалеммы по структуре являются инвариабельными и очень похожи у различных организмов; чаще всего исключение могут составить археи, у которых перегородки состоят из различных спиртов и глицерина.

Толщина плазмалеммы приблизительно 10 нм.

В малом содержании в состав биологической мембраны входят некоторые виды белков. Например, белки которые пронизывают всю мембрану насквозь, их называют интегральными. Мембраны, которые входят в состав и внешнего, и во внутреннего слоя (слой чаще всего бывает липидным), называются полуинтегральными.

Строение клетки

Существуют перегородки, которые находятся на внешней стороне или же снаружи части, вплотную прилегающей к мембране — их называют поверхностными. Некоторые виды белка могут быть своеобразными контактными точками для клеточной мембраны и оболочки. Внутри клетки находится цитоскелет и наружная стенка. Определенные виды интегрального белка могут быть использованы как каналы в ионных транспортных рецепторах (параллельно с нервными окончаниями).

Если использовать электронный микроскоп, то можно получить данные, на основе которых можно построить схему строения всех частей клетки, а также основных составляющих и оболочек. Верхний аппарат будет состоять из трех субсистем:

  • комплексное надмембранное включение;
  • плазматическая мембрана;
  • опорно-сократительный аппарат цитоплазмы, который будет иметь субмембранную часть.

К данному аппарату можно отнести цитоскелет клетки. Цитоплазма с органоидами и ядром называется — ядерный аппарат. Цитоплазматическая или, по-другому, плазматическая клеточная мембрана, находится под клеточной оболочкой.

Слово «мембрана» произошло от латинского слова membrum, которое можно перевести как «кожа» или «оболочка». Термин предложили более 200 лет назад и им чаще называли края клетки, но в период, когда началось использование различного электронного оборудования, установили, что плазматические цитолеммы составляют множество различных элементов оболочки.

Элементы чаще всего структурные, такие как:

  • митохондрии;
  • лизосомы;
  • пластиды;
  • перегородки.

плазматическая мембрана

Одна из первых гипотез относительно молекулярного состава плазмалеммы была выдвинута в 1940 году научным институтом Великобритании. Уже в 1960 году Уильям Робертс предложил миру гипотезу «Об элементарной мембране». Она предполагала, что все плазмалеммы клетки состоят из определенных частей, по сути, являются сформированными по общему принципу для всех царств организмов.

В начале семидесятых годов XX века было открыто множество данных,  на основании которых в 1972 году ученые из Австралии предложили новую мозаично-жидкостную модель строения клеток.

Строение плазматической мембраны

Модель 1972-го года является общепризнанной и по сей день. То есть в современной науке, различные ученые, работающие с оболочкой, опираются на теоретический труд «Строение биологической мембраны жидкостно-мозаичной модели».

Молекулы белков связаны с липидным бислоем и пронизывают всю мембрану полностью — интегральные белки (одно из общепринятых названий — это трансмембранные белки).

Оболочка в составе имеет различные углеводные компоненты, которые будут выглядеть как полисахаридная или сахаридная цепь. Цепь, в свою очередь, будет соединена липидами и белком. Соединенные молекулами белка цепи называются гликопротеинами, а молекулами липидов — гликозидами. Углеводы находятся на внешней стороне мембраны и выполняют функции рецепторов в клетках животного происхождения.

Гликопротеин — представляют собой комплекс надмембранных функций. Его еще называют гликокаликс (от греческих слов глик и каликс, что в переводе означает «сладкий» и «чашка»). Комплекс способствует адгезии клеток.

плазматическая мембрана

Функции плазматической мембраны

Барьерная

Помогает отделить внутренние составляющие клеточной массы от тех веществ, которые находятся извне. Предохраняет организм от попадания различных веществ, которые будут являться для него чужеродными, и помогает поддерживать внутриклеточный баланс.

Транспортная

Клетка имеет свой «пассивный транспорт» и использует его для уменьшения расхода энергии. Транспортная функция работает в следующих процессах:

  • эндоцитоз;
  • экзоцитоз;
  • натриевый и калиевый обмен.

На внешней стороне мембраны находится рецептор, на участке которого происходит смешивание гормонов и различных регуляторных молекул.

Строение клетки

Пассивный транспорт — процесс, при котором вещество проходит через мембрану, при этом энергия не затрачивается. Иными словами, вещество  доставляется из области клетки с высокой концентрацией, в ту сторону, где концентрация будет более низкая.

Существует два вида:

  • Простая диффузия — присуща маленьким нейтральным молекулам H2O, CO2 и О2 и некоторыми гидрофобным органическим веществам с низкой молекулярной массой и соответственно без проблем проходят через фосфолипиды мембраны. Эти молекулы могут проникать через мембрану вплоть до того времени, пока градиент концентрации будет стабилен и неизменен.
  • Облегченная диффузия — характерна для различных молекул гидрофильного типа. Они также могут проходить через мембрану согласно градиенту концентрации. Однако, процесс будет осуществляться с помощью различных белков, которые будут образовывать специфические каналы ионных соединений в мембране.

Активный транспорт — это перемещение различных составляющих через стенку мембраны в противовес градиенту. Такое перенесение требует значительных затрат энергетических ресурсов в клетке. Чаще всего именно активный транспорт является основным источником потребления энергии.

Выделяют несколько разновидностей активного транспорта при участии белков-переносчиков:

  • Натриево-калиевый насос. Получение клеткой необходимых минералов и микроэлементов.
  • Эндоцитоз — процесс, при котором происходит захват клеткой твердых частиц (фагоцитоз) или же различных капель любой жидкости (пиноцитоз).
  • Экзоцитоз — процесс, при котором происходит выделение из клетки определенных частиц во внешнюю окружающую среду. Процесс является противовесом эндоцитоза.

Термин «эндоцитоз» произошел от греческих слов «энда» (изнутри) и «кетоз» (чаша, вместилище). Процесс характеризует захват внешнего состава клеткой и осуществляется при производстве мембранных пузырьков. Этот термин был предложен в 1965 году профессором цитологии из Бельгии Кристианом Бэйлсом, он изучал поглощение различных веществ клетками млекопитающих, а также фагоцитоз и пиноцитоз.

Как протекает процесс

Фагоцитоз

Происходит при захвате клеткой определенных твердых частиц или же живых клеток. А пиноцитоз — это процесс, при котором капли жидкости захватываются клеткой. Фагоцитоз (от греческих слов «пожиратель» и «вместилище») — процесс при котором очень маленькие объекты живой природы захватываются и поглощаются, так же как и твердые части различных одноклеточных организмов.

Открытие процесса принадлежит физиологу из России — Вячеславу Ивановичу Мечникову, который определил непосредственно процесс, при этом он проводил различные испытания с морскими звездами и крошечными дафниями.

В основе питания одноклеточных гетеротрофных организмов лежит их способность переваривать, а также захватывать различные частицы.

Мечников описал алгоритм поглощения бактерии амебой и общий принцип фагоцитоза:

  • адгезия — прилипание бактерий к мембране клетки;
  • поглощение;
  • образование пузырька с бактериальной клеткой;
  • откупоривание пузырька.

Исходя из этого, процесс фагоцитоза состоит из таких этапов:

  1. Поглощаемая частица крепится к мембране.
  2. Окружение поглощаемой частицы мембраной.
  3. Образование мембранного пузырька (фагосома).
  4. Открепление мембранного пузырька (фагосомы) во внутреннюю часть клетки.
  5. Объединение фагосомы и лизосомы (переваривание), а также внутреннее перемещение частиц.

Как выгляди клетка под микроскопом

Можно наблюдать полное или частичное переваривание.

В случае частичного переваривания чаще всего образуется остаточное тельце, которое будет находиться внутри клетки некоторое время. Те остатки, которые будут непереварены, изымаются (эвакуируются) из клетки путем экзоцитоза. В процессе эволюции эта функция предрасположенности к фагоцитозу постепенно отделилась и перешла от различных одноклеточных к специализированным клеткам (таким как пищеварительная у кишечнополостных и губок), а после к особым клеткам у млекопитающих и человека.

К фагоцитозу предрасположены лимфоциты и лейкоциты в крови. Сам процесс фагоцитоза нуждается в больших затратах энергии и напрямую объединен с активностью внешней клеточной мембраны и лизосомы, при которых находятся пищеварительные ферменты.

Пиноцитоз

Пиноцитоз — это захват поверхностью клетки какой-либо жидкости, в которой находятся различные вещества. Открытие явления пиноцитоза принадлежит ученому Фицджеральду Льюису. Произошло это событие в 1932 году.

Пиноцитоз — это один из основных механизмов, при котором в клетку попадают высокомолекулярные соединения, например, различные гликопротеины или же растворимые белки. Пиноцитозная активность, в свою очередь, невозможна без физиологического состояния клетки и зависит от ее состава и состава окружающей среды. Самый активный пиноцитоз мы можем наблюдать у амебы.

У человека пиноцитоз наблюдается в клетках кишечника, в сосудах, почечных канальцах, а также в растущих ооцитах. Для того чтобы изобразить процесс пиноцитоза, которой будет осуществляться с помощью лейкоцитов человека, можно сделать выпячивание плазматической мембраны. При этом части будут отшнуровываться и отделяться. Процесс пиноцитоза нуждается в затрате энергии.

Этапы процесса пиноцитоза:

  1. На наружной клеточной плазмалемме появляются тонкие наросты, которые окружают капли жидкости.
  2. Этот участок внешней оболочки становится тоньше.
  3. Образование мембранного пузырька.
  4. Стенка прорывается (проваливается).
  5. Пузырек перемещается в цитоплазме и может слиться с различными пузырьками и органоидами.

Схемa строения плaзмaтической мембраны

Экзоцитоз

Термин произошел от греческих слов «экзо» — наружный, внешний и «цитоз» — сосуд, чаша. Процесс заключается в выделении клеточной частью определенных частиц во внешнюю среду. Процесс экзоцитоза является противоположным пиноцитозу.

В процессе экоцитоза из клетки выходят пузырьки внутриклеточной жидкости и переходят на внешнюю мембрану клетки. Содержимое внутри пузырьков может выделяться наружу, а мембрана клетки сливается с оболочкой пузырьков. Таким образом, большинство макромолекулярных соединений будет происходить именно этим способом.

Экзоцитоз выполняет ряд задач:

  • доставка молекул на внешнюю клеточную мембрану;
  • транспортировка по всей клетке веществ, которые будут нужны для роста и увеличения площади мембраны, например, определенных белков или же фосфолипидов;
  • освобождение или соединение различных частей;
  • выведение вредных и токсических продуктов, которые появляются при метаболизме, например, соляной кислоты секретируемой клетками слизистой оболочки желудка;
  • транспортировка пепсиногена, а также сигнальных молекул, гормонов или нейромедиаторов.

Специфические функции биологических мембран:

  • генерация импульса, происходящего на нервном уровне, внутри мембраны нейрона;
  • синтез полипептидов, а также липидов и углеводов шероховатой и гладкой сети эндоплазматической сетки;
  • изменение световой энергии и ее преобразование в энергию химическую.

Источник: LivePosts.ru

   

Плазматическая мембрана строение и функции

 

 В Строения мембраны входят липиды. Они состоят  из гидрофильной группы, к которой прикреплены гидрофобные углеводородные цепи.

Главные функции мембраны:

 

Наша кожа является барьером защищающая клетки, это и есть клеточная мембрана. Она не позволяет цитоплазме вытечь наружу. А значит Главная функция мембраны – это удержать клетку в целости и сохранности, должна так же определить что может проникнуть внутрь, а что выйти.

От того что клеточная мембрана является полупроницаемой, то соответственно, некоторые виды молекул могут проникнуть внутрь клетки и так же наружу, через мембрану, это называют диффузией. А если мембрана не проницаема, то соответственно, маленькая молекула не сможет в нее проникнуть. Нужно учесть то что молекула сможет только перейти из переполненной области в более свободную. В пример можно взять аминокислоты, захотели они пробраться к клетки, нужно что бы концентрация аминокислоты была больше чем в самой клетки, в этом случаи клеточная мембрана будет открытой для нее.

функции клеточной мембраны:

 

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;

2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;

3) Специфику межклеточных контактов.

Строения  мембраны:

 

В строения мембраны входят множество рицептеров, они в свою очередь воспринимают активные биологические вещества. Так же к функциям клеточной мембраны относят ее специфику иммунных проявлений, благодаря тому, что она имеет в свою очередь антигены.

Так же В строения клеточной мембраны входят липидные би -слои, холестерол, гликолипиды и фосфолипиды. В водной среде такие липиды формируют  пленку примерно в 4-5 нм, в которых гидрофильные группы будут обращены к воде, а углеводородные цепи расположатся в два ряда, образуя липидную без водную фазу. Функциональными элементами мембраны являются белки, они составляет от 25 до 75% В соотношении 1 молекула белка на 50 молекул липидов. [см. классы липидов]

Строение мембран

1 — двойной слой амфифильных липидов;
2 — молекула липида и в ней:
2-а — гидрофобная часть (углеводородные «хвосты»),
2-6 — гидрофильная часть;
3 — интегральные белки: пронизывают мембрану насквозь;
4 — периферические белки: связаны лишь с одной стороны мембраны;
5 — углеводные компоненты: связаны с белками на внешней стороне мембраны;
6 — срединная (гидрофобная) часть липидного бислоя.

Источник: YouPedia.ru