Мы начнем гистологию с изучения эукариотической клетки, являющейся самой простой системой, наделенной жизнью. При исследовании клетки в световом микроскопе мы получаем информацию о ее размере, форме, и эта информация связана с наличием у клеток ограниченных мембраной границ. С развитием электронной микроскопии (ЭМ) наши представления о мембране, как о четко ограниченной линии раздела между клеткой и окружающей средой изменились, ибо оказалось, что на поверхности клетки имеется сложная структура, состоящая из следующих 3-х компонентов:

1. Надмембранный компонент (гликокаликс) (5 — 100 нм);

2. Плазматическая мембрана (8 — 10 нм);

3. Подмембранный компонент (20 – 40 нм).

При этом 1 и 3 компоненты вариабельны и зависят от типа клеток, наиболее статичным представляется строение плазматической мембраны, которую мы и рассмотрим.

Плазматическая мембрана. Изучение плазмолеммы в условиях ЭМ привело к заключению об однотипности ее структурной организации, при которой она имеет вид триламинарной линии, где внутренний и наружный слои электронноплотные, а расположенный между ними – более широкий слой представляется электроннопрозрачным.
кой тип структурной организации мембраны свидетельствует об ее химической гетерогенности. Не касаясь дискуссии по этому вопросу, оговорим, что плазмолемма состоит из трех типов веществ: липидов, белков и углеводов.

Липиды, входящие в состав мембран, обладают амфифильными свойствами за счет присутствия в их составе как гидрофильных, так и гидрофобных групп. Амфипатический характер липидов мембраны способствует образованию липидного бислоя. При этом в фосфолипидах мембраны выделяют два домена:

а) фосфатная– голова молекулы, химические свойства этого домена определяют его растворимость в воде и его называют гидрофильным;

б) ацильные цепи, представляющие собой этерифицированные жирные кислоты – это гидрофобный домен.

Типы мембранных липидов: основным классом липидов биологических мембран являются фосфолипиды, они формируют каркас биологической мембраны. См. рис.1

Особенности строения плазматической мембраны 

Рис. 1: Типы мембранных липидов

 

Биомембраны – это двойной слой амфифильных липидов(липидный бислой). В водной среде такие амфифильные молекулы самопроизвольно образуют бислой, в котором гидрофобные части молекул ориентированы друг к другу, а гидрофильные к воде. См. рис. 2


Особенности строения плазматической мембраны

Рис. 2: Схема строения биомембраны

В состав мембран входят липиды следующих типов:

1. Фосфолипиды;

2. Сфинголипиды — “головки” + 2 гидрофобных “хвоста”;

3. Гликолипиды.

Холестерин (ХЛ)– находится в мембране в основном в срединной зоне бислоя, он амфифилен и гидрофобный (за исключением одной гидроксигруппы). Липидный состав влияет на свойства мембран: отношение белок/липиды близок 1:1, однако миелиновые оболочки обогащены липидами, а внутренние мембраны – белками.

Способы упаковки амфифильных липидов:

1. Бислои (липидная мембрана);

2. Липосомы — это пузырек с двумя слоями липидов, при этом как внутренняя, так и наружная поверхности являются полярны;

3. Мицеллы – третий вариант организации амфифильных липидов – пузырек, стенка которого образована одним слоем липидов, при этом их гидрофобные концы обращены к центру мицеллы и их внутренняя среда является не водной, агидрофобной.


Наиболее распространенной формой упаковки молекул липидов является образование ими плоского бислоя мембран. Липосомы и мицеллы – это скорые транспортные формы, обеспечивающие перенос веществ в клетку и из нее. В медицине липосомы используют для переноса водорастворимых, а мицеллы – для переноса жирорастворимых веществ.

Белки мембраны

1. Интегральные (включены в липидные слои);

2. Периферические. См. рис. 3

Интегральные (трансмембранные белки):

1. Монотопные– (например, гликофорин. Они пересекают мембрану 1 раз), и являются рецепторами, при этом их наружный – внеклеточный домен – относится к распознающей части молекулы;

2.Политопные– многократно пронизывают мембрану – это тоже рецепторные белки, но они активизируют путь передачи сигнала внутрь клетки;

3.Мембранные белки, связанные с липидами;

4. Мембранные белки, связанные с углеводами.

Особенности строения плазматической мембраны 

Рис. 3: Белки мембраны

 

Периферические белки:

Не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются за счет ионных взаимодействий. Периферические белки ассоциированы с интегральными белками в мембране за счет взаимодействия — белок-белковые взаимодействия.


1. Спектрин, который расположен на внутренней поверхности клетки;

2.Фибронектин, локализован на наружной поверхности мембраны.

Белки – обычно составляют до 50% массы мембраны. При этом интегральные белкивыполняют следующие функции:

а) белки ионных каналов;

б) рецепторные белки.

А периферические мембранные белки (фибриллярные, глобулярные) выполняют следующие функции:

а) наружные (рецепторные и адгезионные белки);

б) внутренние – белки цитоскелета (спектрин, анкирин), белки системы вторых посредников.

Ионные каналы– это сформированные интегральными белками каналы, они формируют небольшую пору, через которую по электрохимическому градиенту проходят ионы. Наиболее известные каналы – это каналы для Nа, К, Са, Сl.

Существуют и водные каналы – это аквопорины (эритроциты, почка, глаз).

Надмембранный компонент – гликокаликс, толщина 50 нм. Это углеводные участки гликопротеинов и гликолипидов, обеспечивающие отрицательный заряд. Под ЭМ – это рыхлый слой умеренной плотности, покрывающий наружную поверхность плазмолеммы. В состав гликокаликса помимо углеводных компонентов входят периферические мембранные белки (полуинтегральные). Функциональные участки их находятся в надмембранной зоне — это иммуноглобулины. См. рис. 4


Функция гликокаликса:

1. Играют рольрецепторов;

2. Межклеточное узнавание;

3. Межклеточные взаимодействия (адгезивные взаимодействия);

4. Рецепторы гистосовместимости;

5. Зона адсорбции ферментов (пристеночное пищеварение);

6.Рецепторы гормонов.

Особенности строения плазматической мембраны

Рис. 4: Гликокаликс и подмембранные белки

Подмембранный компонент — самая наружная зона цитоплазмы, обычно обладает относительной жесткостью и эта зона особенно богата филаментами (d = 5-10 нм). Предполагают, что интегральные белки, входящие в состав клеточной мембраны, прямо или косвенно связаны с актиновыми филаментами, лежащими в подмембранной зоне. При этом экспериментально доказано, что при агрегации интегральных белков, находящийся в этой зоне актин и миозин также агрегируют, что указывает на участие актиновых филамент в регуляции формы клетки.

<== предыдущая лекция | следующая лекция ==>
РЫХЛАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ |  

Источник: helpiks.org

Лекция № 4.

Количество часов: 2

 

Плазматическая мембрана

 

1.     Строение плазматической мембраны

2.     Функции плазматической мембраны. Механизмы транспорта веществ через плазмолемму. Рецепторная функция плазмалеммы

3.     Межклеточные контакты.

 

1.     Строение плазматической мембраны

Плазматическая мембрана, или плазмалемма, представляет собой поверхностную периферическую структуру, ограничивающую клетку снаружи и обеспечивающую ее связь с другими клетками и внеклеточной средой. Она имеет толщину около 10 нм. Среди других клеточных мембран плазмалемма является самой толстой. В химическом отношении плазматическая мембрана представляет собой липопротеиновый комплекс. Основными компонентами являются липиды (около 40%), белки (более 60%) и углеводы (около 2-10%).


К липидам относится большая группа органических веществ, обладающих плохой растворимостью в воде (гидрофобность) и хорошей растворимостью в органических растворителях и жирах (липофильность). Характерными представителями липидов, встречающимися в плазматической мембране, являются фосфолипиды, сфингомиелины и холестерин. В растительных клетках холестерин замещается фитостерином. По биологической роли белки плазмалеммы можно разделить на белки-ферменты, рецепторные и структурные белки. Углеводы плазмалеммы входят в состав плазмалеммы в связанном состоянии (гликолипиды и гликопротеины).

В настоящее время общепринятой является жидкостно-мозаичная модель строения биологической мембраны. Согласно этой модели структурную основу мембраны образует двойной слой фосфолипидов, инкрустированный белками. Хвосты молекул обращены в двойном слое друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь на разную глубину (есть периферические белки, часть белков пронизывает мембрану насквозь, часть погружена в слой липидов). Большинство белков не связаны с липидами мембраны, т.е. они как бы плавают в «липидном озере». Поэтому молекулы белков способны перемещаться вдоль мембраны, собираться в группы или, наоборот, рассеиваться на поверхности мембраны. Это говорит о том, что плазматическая мембрана не является статичным, застывшим образованием.


Снаружи от плазмолеммы располагается надмембранный слой — гликокаликс. Толщина этого слоя составляет около 3-4 нм. Гликокаликс обнаружен практически у всех животных клеток. Он представляет собой связанный с плазмолеммой гликопротеиновый комплекс. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами плазматической мембраны. В гликокаликсе могут располагаться белки-ферменты, участвующие во внеклеточном расщеплении различных веществ. Продукты ферментативной активности (аминокислоты, нуклеотиды, жирные кислоты и др.) транспортируются через плазматическую мембрану и усваиваются клетками.

Плазматическая мембрана постоянно обновляется. Это происходит путем отшнуровывания мелких пузырьков с ее поверхности внутрь клетки и встраивания в мембрану вакуолей, поступивших изнутри клетки. Таким образом, в клетке постоянно происходит поток мембранных элементов: от плазматической мембраны  внутрь цитоплазмы (эндоцитоз) и поток мембранных структур из цитоплазмы к поверхности клетки (экзоцитоз). В круговороте мембран ведущая роль отводится системе мембранных вакуолей комплекса Гольджи.


 

4.     Функции плазматической мембраны. Механизмы транспорта веществ через плазмолемму. Рецепторная функция плазмалеммы

Плазматическая мембрана выполняет ряд важнейших функций:

1)    Барьерная. Барьерная функция плазматической мембраны заключается в ог­раничении свободной диффузии веществ из клетки в клетку, предот­вращении утечки водорастворимого содержимого клетки. Но посколь­ку клетка должна получать необходимые питательные вещества, вы­делять конечные продукты метаболизма, регулировать внутриклеточ­ные концентрации ионов, то в ней образовались специальные меха­низмы переноса веществ через клеточную мембрану.

2)     Транспортная. К транспортной функции относится обеспечение поступления и выведения различных веществ в клетку и из клетки. Важное свойство мембраны — избирательная проницаемость, или полупроницаемость. Она легко пропускает воду и водораствори­мые газы и отталкивает полярные молекулы, такие как глюкоза или аминокислоты.


Существует несколько механизмов транспорта веществ через мем­брану:

пассивный транспорт;

активный транспорт;

транспорт в мембранной упаковке.

Пассивный транспорт. Диффузия — это движение частиц среды, приводящее к переносу ве­щества из зоны, где его концентрация высока в зону с низкой концентра­цией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше раз­меры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков пере­носчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряже­ны. Диффузия воды через клеточ­ную мембрану называется осмо­сом. Предполагается, что в клеточ­ной мембране для проникновения воды и некоторых ионов существу­ют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быст­ро диффундируют через мембра­ну легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молеку­лы небольшого диаметра (СО, мо­чевина).

Перенос полярных молекул (сахаров, аминокислот), осуще­ствляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обна­ружены во всех типах биологических мембран, и каждый конкрет­ный белок предназначен для переноса молекул определенного клас­са. Транспортные белки являются трансмембранными, их полипеп­тидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфичес­ких веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки-переносчики (транспортеры) и каналообразующие белки (бел­ки-каналы). Белки-переносчики переносят молекулы через мембра­ну, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) про­ходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента кон­центрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена от­рицательно по отношению к наружной. Мембранный потенциал об­легчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт. Активным транспортом называется перенос веществ против элек­трохимического градиента. Он всегда осуществляется белками-транспортерами и тесно свя­зан с источником энергии. В белках-перенос­чиках имеются участки связывания с транспор­тируемым веществом. Чем больше таких учас­тков связывается с веще­ством, тем выше ско­рость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котранспортные системы. Если перенос идет в одном направлении — это симпорт, если в противоположных – антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na4 из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осу­ществляется симпортно, а перенос С1~ и НСО’ антипортно. Предпо­лагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na++ насос, обнаруженный в плазматической мембране всех клеток. Na+-K насос работает по принципу антипорта, перекачи­вая Na" из клетки и Кт внутрь клетки против их электрохимических градиентов. Градиент Na+ создает осмотическое давление, поддер­живает клеточный объем и обеспечивает транспорт сахаров и ами­нокислот. На работу этого насоса тратится треть всей энергии не­обходимой для жизнедеятельности клеток. При изучении механизма действия Na+-K+ насоса было установ­лено, что он является ферментом АТФазой и трансмембранным ин­тегральным белком. В присутствии Na+ и АТФ под действием АТФа-зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фосфорилируется, изменяет свою конфигурацию и Na+ выводится из клетки. Вслед за выведением Na из клетки всегда происходит транс­порт К’ в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восста­навливает свою конфигурацию и К1 "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфорилироваться. Большая субъединица на цитоплазматической сторо­не имеет участки для связывания Na+ и АТФ, а на внешней стороне -участки для связывания К+ и уабаина. Малая субъединица является гликопротеином и функция его пока не известна.

Na+-K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Naf из клетки и вносит в нее два иона К В результате через мембрану течет ток, образующий элект­рический потенциал с отрицательным значением во внутренней час­ти клетки по отношению к ее наружной поверхности. Na"-K+ насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.

Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кис­лот, полисахаридов, липопротеидов) и других частиц осуществляет­ся посредством последовательного образования и слияния окружен­ных мембраной пузырьков (везикул). Процесс везикулярного транспор­та проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необхо­димо чтобы молекулы воды были вы­теснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считает­ся, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность — поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромоле­кулами или органеллами клетки. Пу­зырьки могут сливаться со специфи­ческими мембранами, что и обеспе­чивает обмен макромолекулами меж­ду внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндоцитозом. При этом транспортируемые вещества обволакиваются ча­стью плазматической мембраны, образуется пузырек (вакуоль), ко­торый перемещается внутрь клетки. В зависимости от размера обра­зующихся пузырьков различают два вида эндоцитоза — пиноцитоз и фагоцитоз.

Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d=150 нм). Фагоцитоз — это поглощение больших частиц, микроорганизов или обломков органелл, клеток. При этом образуют­ся крупные пузырьки, фагосомы или вакуоли (d-250 нм и более). У простейших фагоцитарная функция — форма питания. У млекопита­ющих фагоцитарная функция осуществляется макрофагами и нейтрофилами, защищающими организм от инфекции путем поглоще­ния вторгшихся микробов. Макрофаги участвуют также в утилиза­ции старых или поврежденных клеток и их обломков (в организме человека макрофаги ежедневно поглощают более 100 старых эрит­роцитов). Фагоцитоз начинается только тогда, когда поглощаемая частица свяжется с поверхностью фагоцита и активирует специализирован­ные рецепторные клетки. Связывание частиц со специфическими ре­цепторами мембраны вызывает образование псевдоподии, кото­рые обволакивают частицу и, сливаясь краями, образуют пузырек —фагосому. Образование фагосомы и собственно фагоцитоз проис­ходит лишь в том случае, если в процессе обволакивания частица постоянно контактирует с рецепторами плазмалеммы, как бы "засте­гивая молнию".

Значительная часть материала, поглощенного клеткой путем эн­доцитоза, заканчивает свой путь в лизосомах. Большие частицы вклю­чаются в фагосомы, которые затем сливаются с лизосомами и обра­зуют фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в эндосомы, которые так­же сливаются с лизосомами, образуя эндолизосомы. Присутствую­щие в лизосомах разнообразные гидролитические ферменты быст­ро разрушают макромолекулы. Продукты гидролиза (аминокис­лоты, сахара, нуклеотиды) транспортируются из лизосом в цитозоль, где используются клеткой. Большинство мембранных компонентов эндоцитозных пузырьков из фагосом и эндосом возвращаются с по­мощью экзоцитоза к плазматической мембране и там повторно ути­лизируются. Основным биологическим значением эндоцитоза явля­ется получение строительных блоков за счет внутриклеточного пе­реваривания макромолекул в лизосомах.

Поглощение веществ в эукариотических клетках начинается в спе­циализированных областях плазматической мембраны, так называе­мых окаймленных ямках. На электронных микрофотографиях ямки выглядят как впячивания плазматической мембраны, цитоплазматическая сторона которых покрыта волокнистым слоем. Слой как бы окаймляет небольшие ямки плазмалеммы. Ямки занимают около 2% об­щей поверхности клеточной мебраны эукариотов. В течении минуты ямки растут, все глубже впячивают­ся, втягиваются в клетку и затем, сужаясь у основания, отщепляются, образуя окаймленные пузырьки. Установлено, что из плаз­матической мембраны фибробластов в течении одной минуты отщеп­ляется примерно четвертая часть мембраны в виде окаймленных пу­зырьков. Пузырьки быстро теряют свою кайму и приобретают способ­ность сливаться с лизосомой.

Эндоцитоз может быть неспецифическим (конститутивным) и специфическим (рецепторным). При неспецифическом эндоцитозе клетка захватывает и поглощает совершенно чуждые ей вещества, например, частицы сажи, красители. Вначале происходит осаждение частиц на гликокаликсе плазмалеммы. Особенно хорошо осаждаются (адсорбируются) по­ложительно заряженные группы белков, так как гликокаликс несет отрицательный заряд. Затем изменяется морфология клеточной мембраны. Она может либо погружаться, образуя впячивания (инвагинации), либо, наоборот, формировать выросты, которые как бы складываются, отделяя небольшие объемы жидкой среды. Образование инвагинаций более характерно для клеток кишечного эпителия, амеб, а выростов — для фагоцитов и фибробластов. Заблокировать эти процессы можно ингибиторами дыхания. Образовавшиеся пузырьки — первичные эндосомы, могут сливать­ся между собой, увеличиваясь в размере. В дальнейшем они соеди­няются с лизосомами, превращаясь в эндолизосому — пищеваритель­ную вакуоль. Интенсивность жидкофазного неспецифического пиноцитоза до­вольно высока. Макрофаги образуют до 125, а клетки эпителия тонко­го кишечника до тысячи пиносом в минуту. Обилие пиносом приво­дит к тому, что плазмалемма быстро тратится на образование множе­ства мелких вакуолей. Восстановление мембраны идет довольно быс­тро при рециклизации в процессе экзоцитоза за счет возвращения ва­куолей и их встраивания в плазмалемму. У макрофагов вся плазмати­ческая мембрана замещается за 30 минут, а у фибробластов за 2 часа.

Более эффективным способом поглощения из внеклеточной жид­кости специфических макромолекул является специфический эндоцитоз (опосредуемый рецепторами). Макромолекулы при этом связываются с комплементарными рецепторами на поверхности клетки, накапливаются в окаймленной ямке, и затем, образуя эндосому, погружаются в цитозоль. Рецепторный эндоцитоз обеспечи­вает накопление специфических макромолекул у своего рецептора. Молекулы, которые связываются на поверхности плазмалеммы с рецеп­тором, называются лигандами. При помощи рецепторного эндоцитоза во многих живот­ных клетках идет поглощение холестерина из внеклеточной среды.

Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае вакуоли подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду. У некоторых простейших места на клеточной мембране для экзоцитоза заранее предопределены. Так, в плазматической мембране некоторых ресничных инфузорий есть определенные участки с пра­вильным расположением крупных глобул интегральных белков. У мукоцист и трихоцист инфузорий полностью готовых к секреции, на верхней части плазмалеммы имеется венчик из глобул интегральных белков. Этими участками мембраны мукоцист и трихоцист соприка­саются с поверхностью клетки. Своеобразный экзоцитоз наблюдается в нейтрофилах. Они спо­собны при определенных условиях выбрасывать в окружающую сре­ду свои лизосомы. При этом в одних случаях образуются небольшие выросты плазмалеммы, содержащие лизосомы, которые затем отры­ваются и переходят в среду. В других случаях наблюдается инваги­нация плазмалеммы вглубь клетки и захват ею лизосом, распложен­ных далеко от поверхности клетки.

Процессы эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы.

Рецепторная функция плазмалеммы. Это одна из главных, универсальных для всех клеток, является рецепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой..

Все многообразие информационных межклеточных взаимодей­ствий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигналь­ные молекулы, которые вырабатываются в одних клетках и специ­фически влияют на другие, чувствительные к сигналу (клетки-ми­шени). Сигнальная молекула — первичный посредник связыва­ется с находящимися на клетках-мишенях рецепторами, реагирую­щими только на определенные сигналы. Сигнальные молекулы —лиганды- подходят к своему рецептору как ключ к замку. Лиганда-ми для мембранных рецепторов (рецепторов плазмалеммы) явля­ются гидрофильные молекулы, пептидные гормоны, нейромедиа-торы, цитокины, антитела, а для ядерных рецепторов — жирораство­римые молекулы, стероидные и тиреоидные гормоны, витамин Д В качестве рецепторов на поверх­ности клетки могут выступать белки мембраны или элементы гликокалик-са — полисахариды и гликопротеиды. Считается, что чувствительные к от­дельным веществам участки, разбро­саны по поверхности клетки или со­браны в небольшие зоны. Так, на по­верхности прокариотических клеток и клеток животных имеется ограни­ченное число мест с которыми могут связываться вирусные частицы. Мем­бранные белки (переносчики и кана­лы) узнают, взаимодействуют и пере­носят лишь определенные вещества. Клеточные рецепторы участвуют в пе­редаче сигналов с поверхности клет­ки внутрь ее. Разнообразие и специфичность набо­ров рецепторов на поверхности клеток ведет к созданию очень сложной систе­мы маркеров, позволяющих отличать свои клетки от чужих. Сходные клетки взаимодействуют друг с другом, поверх­ности их могут слипаться (конъюгация у простейших, образование тканей у мно­гоклеточных). Клетки не воспринимаю­щие маркеры, а также отличающиеся на­бором детерминантных маркеров унич­тожаются или отторгаются. При образовании комплекса рецептор-лиганд активируются трансмембранные белки: белок преобразователь, белок усилитель. В результате рецептор изменяет свою конформацию и взаимодейству­ет с находящимся в клетке предшественником вторичного посредни­ка — мессенджером. Мессенджерами могут быть ионизированный кальций, фосфолипаза С, аденилатциклаза, гуанилатциклаза. Под влиянием мессенджера происходит активация ферментов, участвующих в синтезе циклических монофосфатов — АМФ или ГМФ. Последние изменяют актив­ность двух типов ферментов протеинкиназ в цитоплазме клетки, веду­щих к фосфорилированию многочисленных внутриклеточных белков.

Наиболее распространено образование цАМФ, под действием ко­торого усиливается секреция ряда гормонов — тироксина, кортизона, прогестерона, увеличивается распад гликогена в печени и мышцах, частота и сила сердечных сокращений, остеодеструкция, обратное всасывание воды в канальцах нефрона.

Активность аденилатциклазной системы очень велика — синтез цАМФ приводит к десяти тысячному усилению сигнала.

Под действием цГМФ увеличивается секреция инсулина подже­лудочной железой, гистамина тучными клетками, серотонина тром­боцитами, сокращается гладкомышечная ткань.

Во многих случаях при образовании комплекса рецептор-лиганд происходит изменение мембранного потенциала, что в свою очередь приводит к изменению проницаемости плазмалеммы и метаболичес­ких процессов в клетке.

На плазматической мембране находятся специфические рецеп­торы, реагирующие на физические факторы. Так, у фотосинтезирующих бактерий на поверхности клетки располагаются хлорофиллы, реагирующие на свет. У светочувствительных животных в плазмати­ческой мембране находится целая система фогорецепторных белков-родопсинов, с помощью которых световой раздражитель трансфор­мируется в химический сигнал, а затем электрический импульс.

 

3.     Межклеточные контакты

У многоклеточных животных организмов плазмолемма принимает участие в образовании межклеточных соединений, обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур.

§ Простой котакт. Простой контакт встречается среди большинства прилежащих друг к другу клеток различного происхождения. Представляет собой сближение плазмолемм соседних клеток на расстояние 15-20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток.

§ Плотный (замыкающий) контакт. При таком соединении внешние слои двух плазмолемм максимально сближены. Сближение настолько плотное, что происходит как бы слияние участков плазмолемм двух соседних клеток. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Роль плотного контакта заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.

§  Пятно сцепления, или десмосома. Десмосома представляет собой небольшую площадку диаметром до 0,5 мкм.  В зоне десмосомы со стороны цитоплазмы находится область тонких фибрилл. Функциональная роль десмосом в основном заключается в механической связи между клетками.

§  Щелевой контакт, или нексус. При таком типе контакта плазмолеммы соседних клеток на протяжении 0,5-3 мкм разделены промежутком в 2-3 нм. В структуре плазмолемм располагаются специальные белковые комплексы (коннексоны). Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки. В результате образуется канал из одной клетки в другую. Коннексоны могут сокращаться, изменяя диаметр внутреннего канала, и тем самым участвовать в регуляции транспорта молекул между клетками. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевого контакта заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

§  Синаптический контакт,или синапс. Синапсы — участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. Этот тип соединений характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом. Мембраны этих клеток разделены межклеточным пространством – синаптической щелью шириной около 20-30 нм. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой – постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей (синаптических пузырьков), содержащих медиатор. В момент прохождения нервного импульса синаптические пузырьки выбрасывают медиатор в синаптичекую щель. Медиатор взаимодействует с рецепторными участками постсинаптической мембраны, что в конечном итоге приводит к передаче нервного импульса. Кроме передачи нервного импульса синапсы обеспечивают жесткое соединение поверхностей двух взаимодействующих клеток.

§ Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые каналы, соединяющие две соседние клетки. Диаметр этих каналов составляет обычно 40-50 нм. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. В молодых клетках число плазмодесм может быть очень велико (до 1000 на клетку). При старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки. Функциональная роль плазмодесм заключается в обеспечении межклеточной циркуляции растворов, содержащих питательные вещества, ионы и другие соединения. Через плазмодесмы происходит заражение клеток растительными вирусами.

Специализированные структуры плазматической мембраны

Плазмолемма многих клеток животных образует выросты различной структуры (микроворсинки, реснички, жгутики). Наиболее часто на поверхности многих животных клеток встречаются микроворсинки. Эти выросты цитоплазмы, ограниченные плазмолеммой, имеющие форму цилиндра с закругленной вершиной. Микроворсинки характерны для клеток эпителиев, но обнаруживаются и у клеток других тканей. Диаметр микроворсинок составляет около 100 нм. Число и длина их различны у разных типов клеток. Значение микроворсинок заключается в значительном увеличении площади клеточной поверхности. Это особенно важно для клеток, участвующих во всасывании. Так, в кишечном эпителии на 1 мм2 поверхности насчитывается до 2х108 микроворсинок.

 

 

 

Источник: studizba.com

Функции плазматической мембраны

Основные функции плазмалеммы: трансмембранный транспорт веществ, эндоцитоз, экзоцитоз, межклеточные информационные взаимодействия.

Трансмембранный транспорт веществ. Транспорт веществ через плазматическую мембрану — это двустороннее движение веществ из цитоплазмы во внеклеточное пространство и обратно. Трансмембранный транспорт обеспечивает доставку в клетку питательных веществ, газообмен, выведение продуктов метаболизма. Перенос веществ через билипидный слой происходит путём диффузии (пассивная и облегчённая) и активного транспорта.

Эндоцитоз — поглощение (интернализация) клеткой воды, веществ, частиц и микроорганизмов. Эндоцитоз также происходит при перестройке или разрушении участков клеточной мембраны. К морфологически различаемым вариантам эндоцитоза относят пиноцитоз, фагоцитоз, опосредованный рецепторами эндоцитоз с образованием окаймлённых клатрином пузырьков иклатрин-независимыйэндоцитоз с участием кавеол.

Экзоцитоз (секреция) — процесс, когда внутриклеточные секреторные везикулы (одномембранные пузырьки) сливаются с плазмолеммой, а их содержимое освобождается из клетки. При конститутивной (спонтанной) секреции слияние секреторных пузырьков происходит по мере их образования и накопления под плазмолеммой. Регулируемый экзоцитоз запускается с помощьюопределённого сигнала, чаще всего вследствие увеличения концентрации ионов кальция в цитозоле.

Межклеточные информационные взаимодействия. Клетка, воспринимая различные сигналы, реагирует на изменения окружающей её среды изменением режима функционирования. Плазматическая мембрана — место приложения физических (например, кванты света в фоторецепторах), химических (например, вкусовые и обонятельные молекулы, рН), механических (например, давление или растяжение в механорецепторах) раздражителей внешней среды и сигнальных молекул информационного характера из внутренней среды организма. Сигнальные молекулы (лиганды) (гормоны, цитокины, хемокины) специфически связываются с рецептором

— высокомолекулярным веществом, встроенным в плазмолемму. Клетка-мишеньпри помощи рецептора способна узнавать лиганд и отвечать изменением режима функционирования при связывании этого лиганда с его рецептором. Рецепторы гормонов стероидной природы (например, глюкокортикоидов, тестостерона, эстрогенов), производных тирозина и ретиноевой кислоты локализуются в цитозоле.

11

Источник: StudFiles.net