«Атмосфера»

Атмосфера — газовая оболочка, окружающая планету Земля и вращающаяся вместе с ней. Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата — климатология.

атмосфера

Толщина атмосферы 1500 км от поверхности Земли. Суммарная масса воздуха, то есть смеси газов, составляющих атмосферу: около 5,3 * 1015 т. Молекулярная масса чистого сухого воздуха составляет 29. Давление при 0°С на уровне моря 101 325 Па, или 760 мм. рт. ст.; критическая температура  140,7 °С; критическое давление 3,7 МПа. Растворимость воздуха в воде при 0 °С — 0,036 %, при 25 °С — 0,22 %.


Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и земную поверхность. Нормальным атмосферным давлением является показатель в 760 мм рт. ст. (101 325 Па). При повышении высоты на каждый километр давление падает на 100 мм.

Строение атмосферы.

Физическое состояние атмосферы определяется погодой и климатом. Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т.д.

строение атмосферы


 

Тропосфера — нижний, основной, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90 % всей массы атмосферы и почти все водяные пары. При подъеме через каждые 100 м температура в тропосфере понижается в среднем на 0,65 °С и достигает —53 °С в верхней части. Этот верхний слой тропосферы называют тропопаузой. В тропосфере сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны.

Стратосфера — слой атмосферы, располагающийся на высоте 11—50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение ее в слое 25—40 км от —56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения 273 К (0 °С), температура остается постоянной до высоты 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Именно в стратосфере располагается слой озоносферы («озоновый слой», на высоте от 15—20 до 55— 60 км), который определяет верхний предел жизни в биосфере. Важный компонент стратосферы и мезосферы — озон, образующийся в результате фотохимических реакций наиболее интенсивно на высоте равной 30 км.


щая масса озона составила бы при нормальном давлении слой толщиной 1,7—4 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Озон (О3) — аллотропия кислорода, образуется в результате следующей химической реакции, обычно после дождя, когда полученное соединение поднимается в верхние слои тропосферы; озон имеет специфический запах.

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и других свечений. В стратосфере почти нет водяного пара.

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до 88 °С. Верхней границей мезосферы является мезопауза.

Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идет утечка его частиц в межпланетное пространство (диссипация).

iv>
изменение температуры и давления

Структура атмосферы

До высоты 100 км атмосфера представляет собой гомогенную (однофазную), хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжелых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °С в стратосфере до -110 °С в мезосфере.

На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.


В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, т.к. их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже ее лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

строение атмосферы

Состав атмосферы

Атмосфера Земли — воздушная оболочка Земли, состоящая в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения), количество которых непостоянно. Основным газами являются азот (78 %), кислород (21 %) и аргон (0,93 %). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением углекислого газа CO2 (0,03 %).

>

Также в атмосфере содержатся SO2, СН4, N, СО, углеводороды, НСl, НF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твердых и жидких частиц (аэрозоль).

Таблица «Атмосфера»

атмосфера таблица

атмосфера таблица 2


Конспект урока «Атмосфера». Следующая тема: «Погода и климат»

Источник: uchitel.pro

Строение атмосферы схема

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м


Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Мезосфера

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.


Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

 

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.


На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Источник: meteoinfo.ru

Атмосфера неоднородна как в вертикальном, так и в гори­зонтальном направлении.


к уже говорилось выше, по вер­тикали она делится на ряд сфер и слоев, отличающихся по своим физическим характеристикам. По горизонтали, особенно в своей нижней части, она расчленяется на неоднородные массы воздуха. Ближайший к поверхности земли слой воздуха называется тропосферой.
Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности. Нижней границей тропосферы является поверхность земли, а верхняя находится в среднем на высотах 8—17 км. Высота тропосферы зависит главным образом от географической ши­роты. Наибольшая ее высота наблюдается в экваториальной зоне: здесь она достигает 16—18 км. Над приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 9—10 км. В средних широтах высота тро­посферы колеблется от 6—8 до 14—16 км, составляя в сред­нем 10—12 км.
Верхняя граница тропосферы испытывает сезонные измене­ния: зимой она ниже, летом выше. Еще значительнее измене­ния высоты тропосферы, зависящие от характера атмосферных процессов. Нередко в течение суток высота верхней границы тропосферы над данным пунктом или районом изменяется даже на несколько километров. Наблюдения показывают, что изменения вертикальной протяженности тропосферы связаны с изменением температуры воздуха.
Тропосфера обладает рядом физических свойств, отличаю­щих ее от всех выше лежащих слоев воздуха. В тропосфере сосредоточена значительная часть массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от по­верхности земли до верхней границы тропосферы температура понижается в среднем на 0,6° на каждые 100 м поднятия. Воз­дух в тропосфере нагревается и охлаждается преимущественно от поверхности земли. В соответствии с притоком солнечной энергии температура понижается от экватора к полюсам. Так, средняя температура воздуха у поверхности земли на экваторе достигает 26° выше нуля, а в полярных областях 23° ниже нуля. В то же время над экватором в верхней тропосфере тем­пература равна —75, —80°, а в полярных областях —60, —65°,
Преобладающим горизонтальным переносом воздуха в тро­посфере является западный. Скорость ветра в тропосфере, как правило, с высотой возрастает, достигая максимума на уровне верхней ее границы. Горизонтальный перенос сопровождается вертикальными перемещениями воздуха и турбулентным дви­жением, обеспечивающими непрерывное перемешивание воз­духа во всей тропосфере. Вследствие подъема и опускания больших объемов воздуха образуются и рассеиваются облака, выпадают и прекращаются осадки. В тропосфере развиваются процессы, обусловливающие погоду и ее изменения.
Выше тропосферы расположена стратосфера. От тропо­сферы она отделена переходным слоем, который называется тропопаузой.
Так же как и высота верхней границы тропосферы, высота тропопаузы изменяется от сезона к сезону и ото дня ко дню в зависимости от процессов, развивающихся в тропосфере. Над холодными массами воздуха она располагается очень низко, а над теплыми — высоко. Даже в средних широтах зимой тропопауза нередко находится на высотах 8—9 км, а летом — на высотах 13—15 км. Колебания высоты тропопаузы вызваны рядом причин, среди которых большую роль играет перенос холодных или теплых масс воздуха и охлаждение или нагре­вание воздуха, обусловленное его вертикальными перемеще­ниями. При повышении температуры в тропосфере тропопауза повышается, при понижении температуры опускается.
Стратосфера. По вертикальному делению атмосферы под стратосферой подразумевается слой воздуха, ограниченный «снизу тропопаузой, а сверху уровнем 50—60 км.
По физическим свойствам стратосфера резко отличается от ниже лежащей сферы уже тем, что распределение температуры с высотой здесь иное, чем в тропосфере. Стратосфера очень бедна водяным паром. Здесь не происходят бурные процессы облакообразозания сопровождающиеся выпадением осадков.
Совсем еще недавно предполагали, что стратосфера является сравнительно спокойной средой и что здесь в верти­кальном направлении не происходит перемешивание воздуха. Считали также, что температура в стратосфере формируется под действием только лучистого равновесия, т. е. при равенстве поглощения и отражения солнечной радиации.
Новые данные, полученные с помощью радиометеорологи­ческих приборов и метеорологических ракет, показали, что в стратосфере, как и в верхней тропосфере, осуществляется интенсивная циркуляция воздуха со значительными измене­ниями температуры и ветра. Здесь, как и в тропосфере, наблюдаются значительные вертикальные перемещения, неупо­рядоченные (турбулентные) движения при сильных горизон­тальных воздушных течениях. Все это является результатом неоднородного распределения температуры.
В табл. 2 приведены данные о температуре в верхней тропосфере и стратосфере над различными широтами север­ного полушария.

T_2
Из данных табл. 2 следует, что в тропосфере на высотах 5 и 9 км разность температур между низкими и высокими широтами достигает 30—35°, причем от низких широт к высо­ким температура постепенно понижается. В стратосфере распределение температуры несколько иное. На уровне 16 км наиболее низкие температуры (—76, —80°) наблюдаются в экваториальной зоне, в средних широтах температура равна —51, —61°, а к высоким широтам она вновь понижается до —64, —68°. В стратосфере экваториальной зоны температура с высотой повышается, достигая на уровне 30 км —46, —50°, а в арктической зоне на этом же уровне наблюдаются темпе­ратуры около —67, —75°.
К лету распределение температуры претерпевает значитель­ные изменения. Как следует из табл. 3, в тропосфере на уров­нях 5 и 9 км температура от низких широт к высоким, как и зимой, понижается, однако разность ее составляет уже около 15°, что объясняется летним прогреванием воздуха в средних и особенно высоких широтах. На уровне 16 км от экваториальной зоны до 80° с. ш. температура повышается до —42, —43°, и даже на уровне 30 км в Арктике она выше, чем в экваториальной зоне.

T_3
Из приведенных данных о распределении температуры по высоте в различных широтных зонах следует, что в верхних слоях стратосферы экваториальной зоны температура воздуха от зимы к лету заметно не изменяется, а в арктической зоне, наоборот, эти изменения весьма значительны.
В табл. 4 приведены величины разностей температур между летом и зимой на разных уровнях в тропосфере и стратосфере и в разных широтных зонах северного полушария.

T_4
Как видно из данных табл. 4, величины разностей темпера­тур между летом и зимой возрастают от низких широт к высо­ким. На уровне 30 км над полюсом они достигают максимума (40°). То же происходит и в южном полушарии, с той лишь разницей, что в Антарктике на этом уровне величины разно­стей достигают 50—55°.
Мезосфера. Наблюдениями с помощью метеорологиче­ских ракет и косвенными способами установлено, что общее повышение температуры, наблюдающееся в стратосфере, про­должается до высот 50—60 км. На этих высотах температура воздуха повышается до 10—20° выше нуля. Выше этого слоя она вновь понижается и у верхней границы мезосферы (около 80 км) составляет —75, —90°. Далее вновь происходит повы­шение температуры с высотой.
На рис. 6 изображены кривые изменения средней темпера­туры воздуха с высотой между поверхностью земли и уровнем 90 км для трех широт: 80, 50 и 20°. Кривые показывают не­однородность строения атмосферы над указанными широтами не только в разные, но в одни и те же сезоны. Легко видеть, что даже в одном сезоне и на одном уровне разности темпе­ратур воздуха между различными широтами превышают 20—30°. При этом неоднородность особенно значительна в слое низких температур в стратосфере (18—30 км), в слое макси­мальных температур в средней мезосфере (50—60 км) и в слое низких температур в верхней мезосфере (75—85 км).

Сезонным распределением температуры обусловлена довольно сложная система воздушных течений в стратосфере и мезосфере.
На рис. 7 приведены кривые изменения средней скорости ветра с высотой между поверхностью земли и уровнем 90 км для тех же широтных зон, что и на рис. 6. Кривые показывают значительное различие в распределении скорости и направле­ния ветра в январе и июле. Как видно на рисунке, севернее 20° с. ш. в январе преобладают западные ветры со средними максимальными скоростями более 340 км/час. В июле запад­ные ветры господствуют в тропосфере и нижней стратосфере до высот 18—20 км, а выше они переходят в восточные (на рисунке скорости показаны со знаком минус). В нижней термо­сфере ветры вновь становятся западными. Наоборот, зимой выше уровня мезопаузы западные ветры переходят в восточные.

На тех высотах, где падение температуры с высотой сме­няется изотермией или инверсией, обнаружены облака.
В верхней стратосфере на высотах 20—26 км при опреде­ленных условиях (очевидно, при резко выраженных инверсиях) возникают тонкие и неплотные, так называемые перла­мутровые облака, состоящие из кристалликов льда и пере­охлажденных капелек воды (рис. 8).

Облака обнаружены и на высоте около 80 км, т. е. там, где понижение температуры воздуха с высотой прекращается и начинается ее повышение (см. рис. 6). Здесь под инверсион­ным слоем в сумерки летом при ясной погоде наблюдаются блестящие тонкие облака, ярко освещенные солнцем, находящимся за горизонтом. Эти облака названы серебристыми (рис. 9).

Предполагается, что серебристые облака состоят из ледяных кристаллов. Они, как и перламутровые облака, по-видимому, возникают благодаря скоплению водяного пара над слоем инверсии температуры (И. А. Хвостиков). Роль ядер конденса­ции здесь, вероятно, играет космическая пыль. Уровень рас­положения серебристых облаков, очевидно, определяется за­держивающим слоем, образующимся в связи с повышением температуры с высотой при переходе из мезосферы в выше лежащий слой — термосферу.
Наблюдениями за серебристыми облаками установлено, что летом на их уровне ветры обладают большой изменчивостью. Скорости ветра колеблются в больших пределах (от 50—60 до нескольких сотен километров в час).
Термосфера. Выше мезосферы расположена термосфера, для которой характерно повышение температуры с высотой. По данным, полученным с помощью ракет и косвенных мето­дов определения температуры, установлено, что в термосфере уже на уровне 150 км температура воздуха достигает 220—240°, а на уровне 200 км она превышает 500°. Выше тем­пература продолжает расти и на верхней границе термосферы, на уровне 700—800 км, превышает 1000°. Однако для высоких слоев атмосферы понятие «температура» приобретает иной смысл.
Известно, что температура газа определяется средней ско­ростью движения молекул. В нижней, плотной части атмо­сферы столкновение молекул происходит часто и кинетическая энергия их в среднем одна и та же. Если молекулы воздуха поглощают большое количество лучистой энергии, то они при­обретают большую кинетическую энергию и мгновенно проис­ходит обмен энергией между молекулами. Поэтому они обла­дают одинаковой кинетической энергией, а следовательно, и температурой.
В высоких слоях атмосферы, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, происходят реже. При поглощении энер­гии скорость молекул в промежутке между столкновениями их сильно изменяется; к тому же молекулы легких газов имеют большую скорость, чем молекулы тяжелых газов. Поэтому тем­пература этих газов может быть различной.
Чрезвычайно высокие температуры в термосфере свидетель­ствуют лишь о том, что в этой весьма неплотной среде редкие молекулы перемещаются с огромной скоростью. Тело, находя­щееся здесь, не ощущает даже температур 1000—2000°. В тер­мосфере сгорает, не долетая до поверхности земли, основная часть метеоритов.
Наиболее интересной особенностью атмосферы выше 60 км является ее ионизация, т. е. наличие в ней огромного количе­ства электрически заряженных частиц — ионов. Атмосфера становится электропроводной вследствие ионизации в тех слу­чаях, когда наблюдается наибольшая концентрация ионов. Так как ионизация характерна для термосферы, последнюю назы­вают также и ионосферой. Ионизация воздуха протекает под действием ультрафиолетовой и корпускулярной радиации Солнца.
Процесс ионизации наиболее интенсивно происходит в мощ­ных слоях, ограниченных высотами 60—80 и 320—400 км. В этих слоях существуют оптимальные условия для ионизация. Здесь плотность воздуха заметно больше, чем в верхней атмо­сфере, а поступление ультрафиолетовой и корпускулярной радиации Солнца достаточно для процесса ионизации.
По интенсивности процесса ионизации ионосфера делится на ряд слоев. Один из них (слой Е) находится на высоте около 100 км, слои F1 и F2— соответственно на высотах 150—180 и 220—400 км. В слое 60—80 км, т. е. в верхней мезосфере (слой D), процесс ионизации происходит слабее.
Отличительной особенностью ионосферы является ее влияние на распространение радиоволн. В ионизированных слоях радиоволны преломляются, отражаются и поглощаются.
Слой D распространяется до уровня 80 км. Здесь длинные радиоволны поглощаются больше, чем отражаются, что объяс­няется большей плотностью этого слоя. Остальные ионосферные слои (Е, F1 и F2) отражают преимущественно средние и корот­кие радиоволны, особенно слой F2, располагающийся на уровне 220—400 км.
Сильное поглощение коротких радиоволн в ионосфере вы­зывает нарушение радиосвязи. Это явление связано с измене­нием солнечной активности. На Солнце временами возникают солнечные пятна, сопровождающиеся усилением ультрафиоле­тового излучения. При этих процессах увеличивается электрон­ная плотность ионосферы и поглощение радиоволн в дневные часы, приводящее к нарушению нормальной работы радио­связи на коротких волнах. Объясняется это тем, что при уси­лении излучения Солнца заряженные частицы (корпускулы) под влиянием магнитного поля Земли отклоняются в сторону высоких широт. Войдя в атмосферу, корпускулы усиливают ионизацию газов настолько, что начинается их свечение. Так возникают полярные сияния, имеющие вид красивых многокра­сочных дуг и драпри, загорающихся в ночном небе преимуще­ственно в высоких широтах Земли. Полярные сияния сопро­вождаются сильными магнитными бурями.
Путем фотографирования полярных сияний из двух пунк­тов, находящихся на расстоянии нескольких десятков кило­метров, с большой точностью определяется высота сияния. Обычно нижний край полярных сияний располагается на вы­соте около 100 км, верхняя их часть обнаруживается на высоте нескольких сотен километров, а иногда на уровне около 1000 км.
Несмотря на выяснение природы полярных сияний, остается еще много нерешенных вопросов. До сих пор неизвестны при­чины многообразия форм полярных сияний, игры красок и пр.
При сильных магнитных бурях полярное сияние становится видимым и в средних широтах, а в редких случаях даже в тро­пической зоне. Интенсивное сияние, наблюдавшееся 21 — 22 января 1957 г., было видно почти во всех южных районах СССР.
В 50-х годах с помощью ракет и искусственных спутников Земли впервые удалось произвести зондирование ионосферы. Процессы, происходящие в ионосфере, изучаются и косвенными методами — по интенсивности и характеру таких явлений, как свечение ночного неба, полярные сияния и др.
Экзосфера — сфера рассеяния — самая верхняя часть атмосферы, расположена выше 800 км. Она изучена менее всего. По данным, полученным с помощью косвенных методов наблюдений и теоретических расчетов, температура в экзосфере с высотой возрастает предположительно до 2000°. В отличие от нижней ионосферы, в экзосфере газы настолько разрежены, что частицы их, двигаясь с огромными скоростями, почти не встречаются друг с другом.
Еще сравнительно недавно предполагали, что условная гра­ница атмосферы лежит на высоте около 1000 км. Однако по торможению искусственных спутников Земли установлено, что на высотах 700—800 км в 1 см3 содержится до 160 тысяч поло­жительных ионов атомарного кислорода и азота. Это указы­вает, что разреженные слои атмосферы простираются до вы­соты 2000 км и более.
На рис. 10 представлен схематический вертикальный разрез атмосферы; по вертикальной шкале отложены высота и давле­ние воздуха, сплошная кривая характеризует изменение тем­пературы воздуха с высотой. На соответствующих высотах изображены главнейшие явления, наблюдающиеся в атмо­сфере, а также максимальные высоты, достигнутые радиозондами и другими средствами зондирования атмосферы.

Газовый хвост Земли. При высоких температурах на ус­ловной границе атмосферы скорости молекул достигают при­близительно 12 км/сек. При таких скоростях частицы газов . постепенно уходят из области действия земного притяжения в межпланетное пространство. Это осуществляется в течение длительного времени. Так, например, частицы водорода, по­падая на высоты около 300 км, переходят в межпланетное про­странство в течение нескольких лет, а частицы гелия — в тече­ние миллионов лет. Более тяжелые газы уходят за пределы земной атмосферы еще медленнее.
Исследование ночного свечения неба показывает, что форма воздушной оболочки Земли не шарообразна: рукав чрезвы­чайно разреженных газов наподобие хвоста кометы тянется от внешних слоев земной атмосферы в плоскости эклиптики в неосвещенной стороне нашей планеты. Судя по спектру, газо­вый хвост Земли состоит из кислорода и азота.
Газовый хвост Земли, по-видимому, образуется в резуль­тате давления солнечных лучей на верхние слои атмосферы.
Всего несколько лет назад предполагали, что за пределами земной атмосферы, в межпланетном пространстве, газы очень разрежены и концентрация частиц в них не превышает несколь­ких единиц в 1 см3. В настоящее время установлено, что меж­планетное пространство является сравнительно плотной средой с концентрацией, равной сотням частиц в 1 см3. Однако меж­планетная среда, как и природа газового хвоста Земли, еще не достаточно изучена.

  • ← Методы исследования атмосферы
  • Энергия солнца →

Источник: collectedpapers.com.ua

Строение атмосферы Земли

Глядя на небо, особенно когда оно совершенно безоблачно, очень сложно даже предположить, что оно имеет такую сложную и многослойную структуру, что температура там на различных высотах очень сильно отличается, и что именно там, в высоте, происходят важнейшие процессы для всей флоры и фауны на Земле.

Строение атмосферы схема

Если бы не такой сложный состав газового покрова планеты, то здесь бы просто не было никакой жизни и даже возможности для ее зарождения.

Первые попытки изучить эту часть окружающего мира были предприняты еще древними греками, но те не могли зайти в своих умозаключениях слишком далеко, так как не обладали необходимой технической базой. Они не видели границы разных слоев, не могли измерить их температуру, изучить компонентный состав и т. д.

В основном только погодные явления наталкивали самые прогрессивные умы на размышления о том, что видимое небо не такое простое, как кажется.

Считается, что структура современной газовой оболочки вокруг Земли образовалась в три этапа. Сначала была первичная атмосфера из водорода и гелия, захваченных из космического пространства.

Строение атмосферы схема

Потом извержение вулканов наполнило воздух массой других частиц, и возникла вторичная атмосфера. После прохождения всех основных химических реакций и процессов релаксации частиц, возникла нынешняя ситуация.

Слои атмосферы по порядку от поверхности земли и их характеристика

Структура газовой оболочки планеты достаточно сложная и многообразная. Рассмотрим ее более подробно, постепенно дойдя на самых верхних уровней.

Тропосфера

Если не считать пограничный слой, тропосфера представляет собой самый нижний слой атмосферы. Простирается она на высоту приблизительно 8-10 км над поверхностью земли в полярных регионах, на 10-12 км в умеренном климате, а в тропических частях – на 16-18 километров.

Строение атмосферы схема

Воздух тропосферы содержит в себе основную живительную силу для всего живого на земле. Здесь содержится около 80% от всего имеющегося атмосферного воздуха, более 90% водяного пара, именно здесь образуются облака, циклоны и прочие атмосферные явления.

Интересно отметить постепенное снижение температуры при поднятии от поверхности планеты. Ученые подсчитали, что на каждые 100 м высоты температура убывает примерно на 0,6-0,7 градусов.

Стратосфера

Следующий важнейший слой – стратосфера. Высота стратосферы составляет примерно 45-50 километров. Начинается она с 11 км и здесь уже преобладают отрицательные температуры, достигая целых -57°С.

Строение атмосферы схема

Чем важен этот слой для человека, всех животных и растений? Именно здесь, на высоте 20-25 километров, находится озоновый слой – он задерживает ультрафиолетовые лучи, исходящие от солнца, и уменьшает их разрушительное воздействие на флору и фауну до приемлемого значения.

Очень интересно отметить, что стратосфера поглощает многие типы излучения, которые идут на землю от солнца, других звезд и космического пространства. Полученная энергия от этих частиц идет на ионизацию находящихся здесь молекул и атомов, появляются различные химические соединения.

Строение атмосферы схема

Все это приводит к такому известному и красочному явлению, как северное сияние.

Мезосфера

Мезосфера начинается примерно с 50 и простирается до 90 километров. Градиент, или перепад температуры с изменением высоты, здесь уже не столь большой, как в нижних слоях. В верхних границах данной оболочки температура равна около -80°С. Состав этой области включает в себя примерно 80% азота, а также 20% кислорода.

Строение атмосферы схема

Важно отметить, что мезосфера – своего рода мертвая зона для любых летательных устройств. Самолеты не могут здесь летать, так как воздух чрезмерно разрежен, спутники же на такой низкой высоте не летают, так как для них имеющаяся плотность воздуха очень большая.

Еще одна интересная характеристика мезосферы – именно здесь сгорают налетающие на планету метеориты. Изучение таких отдаленных от земли слоев происходит с помощью специальных ракет, но эффективность процесса невелика, поэтому изученность региона оставляет желать лучшего.

Термосфера

Сразу после рассмотренного слоя идет термосфера, высота в км которой простирается на целых 800 км. В некотором роде это уже почти открытый космос. Здесь наблюдается агрессивное воздействие космического излучения, радиации, солнечного излучения.

Строение атмосферы схема

Все это порождает такое замечательное и красивое явление, как полярное сияние.

Самый низкий слой термосферы нагревается до температуры примерно 200 К и больше. Происходит это благодаря элементарным процессам между атомами и молекулами, их рекомбинацией и излучения.

Верхние слои же нагреваются благодаря протекающим здесь магнитным бурям, электрическим токам, которые при этом генерируются. Температура слоя неравномерна и может очень существенно колебаться.

Строение атмосферы схема

В термосфере происходит полет большинства искусственных спутников, баллистических тел, пилотируемых станций и т.д. Также здесь производятся испытания запусков разного рода оружия, ракет.

Экзосфера

Экзосфера, или как она еще называется сфера рассеяния, — это самый верхний уровень нашей атмосферы, ее предел, за которым следует межпланетное космическое пространство. Начинается экзосфера с высоты примерно в 800-1000 километров.

Строение атмосферы схема

Плотные слои остались позади и здесь воздух предельно разрежен, любые попавшие со стороны частицы просто уносятся в космос в силу очень слабого действия силы гравитации.

Заканчивается данная оболочка на высоте приблизительно 3000-3500 км, и здесь уже почти нет никаких частиц. Данная зона называется ближнекосмическим вакуумом. Здесь преобладают не отдельные частицы в своем обычном состоянии, а плазма, чаще всего полностью ионизированная.

Значение атмосферы в жизни Земли

Вот так выглядят все основные уровни устройства атмосферы нашей планеты. Подробная ее схема может включать и другие регионы, но они имеют уже второстепенное значение.

Строение атмосферы схема

Важно отметить, что атмосфера играет для жизни на Земле решающую роль. Много озона в ее стратосфере позволяют флоре и фауне спасаться от убийственного действия радиации и излучения из космоса.

Также именно здесь формируется погода, происходят все атмосферные явления, зарождаются и умирают циклоны, ветры, устанавливается то или иное давление. Все это имеет прямое воздействие на состояние человека, всех живых организмов и растений.

Ближайший слой, тропосфера, дает нам возможность дышать, насыщает кислородом все живое и позволяет ему жить. Даже небольшие отклонения в структуре и компонентном составе атмосферы способны самым пагубным образом повлиять на все живое.

Именно поэтому сейчас развернулась такая кампания против вредных выбросов от авто и производства, экологи бьют тревогу по поводу толщины озонного шара, партия Зелёных и ей подобные ратуют за максимальное сохранение природы. Только так можно продлить нормальную жизнь на земле и не сделать ее невыносимой в климатическом плане.

Источник: 1001student.ru

Из чего состоит атмосфера Земли

Оказывается, атмосфера планеты Земля возникла благодаря двум факторам:

  • падения космических объектов на поверхность нашей планеты. А точнее испарение веществ, из которых состоят эти тела;
  • дегазация земной мантии. Проще говоря, газовые выделения, которые происходят при извержениях вулканов.

Однако, важную роль сыграло наличие воды, флоры и фауны на планете. Потому что всё это привело к появлению биосферы, а также изменению атмосферы.
По данным учёных, в состав атмосферы входят газы и разные примеси. Например, такие, как пыль, частицы воды, кристаллы льда, морские соли и продукты горения.

Атмосфера Земли и её строение

Безусловно, что окружающая нас газовая сфера является не просто тонким слоем воды и воздуха планеты. Это некое облачное одеяло. Оно укрывает и защищает нас от воздействия сил космоса. На данный момент, выделили определённые слои, из которых состоит атмосфера Земли. Ниже рассмотрим их подробнее.

Тропосфера

Это основной, к тому же, нижний слой воздушной оболочки. Вдобавок, в его составе более 80% общей массы воздуха, и примерно 90% всего водяного пара, который есть во всей атмосфере. С учётом географической широты верхняя граница данной окружной части может располагаться на высоте от 8 до 18 км.
Интересно, что в тропосфере ярко выражены конвекция и турбулентность. Более того, именно в этой части происходит образование облаков, создание циклонов и антициклонов. Также учёные отметили характерную особенность данного атмосферного слоя: чем выше — тем меньше температура воздуха.
Между прочим, нижняя зона тропосферы является пограничным слоем. По толщине он примерно 1-2 км. Как оказалось, он тесно связан с поверхностью нашей планеты. Действительно, в нём свойства и состояние земной сферы оказывают влияние на всю окружающую оболочку.

Тропосфера
Тропосфера

Тропопауза

Так называют переходную область между тропосферой и стратосферой. Проще говоря, плавное перевоплощение от одного к другому. Интересно, что здесь отмечается приостановка понижения температуры воздуха с повышением высоты.

Стратосфера как область атмосферы Земли

Данный атмосферный участок находится на высоте от 11 до 50 км. Важно, что именно тут лежит озоновый слой. А он, как известно, оберегает нас от ультрафиолетового излучения.
Сратосфера составляет примерно 20% общей массы земной оболочки.
Характерной особенностью является то, что в нижней части (11-25 км) наблюдается небольшое изменение температуры, а в верхней (25-40 км), наоборот, её активное повышение. К слову сказать, верхнюю часть называют областью инверсии.

Стратосфера
Стратосфера

Стратопауза

Что примечательно, на уровне 40 км температура равняется 00С, и сохраняется до 55 км. Эта территория носит название стратопауза. Между прочим, она представляет край стратосферы, и переход от неё к мезосфере.

Мезосфера

Собственно, она берёт своё начало на уровне 50 км. А верхняя граница её располагается на 80-90 км. По данным учёных, температура в мезосфере снижается с повышением высоты. Однако здесь протекает лучистый теплообмен. Кроме того, сложные фотохимические процессы порождают свечение атмосферы Земли.
Доля мезосферы относительно общей массы составляет не больше 0,3%.

Мезосферные серебристые облака
Мезосферные серебристые облака

Мезопауза

Это переходный участок от мезосферы до термосферы. Стоит отметить, что температурный фон минимальный (примерно -90°С).

Линия Кармана

На самом деле, это точка вершины над уровнем моря. К тому же, её принято принимать за границу участка от атмосферы Земли до самого космоса. Установлено, что линия Кармана лежит на высоте 100 км от уровня моря.

Линия кармана
Линия кармана

Атмосфера Земли и её термосфера

Можно сказать, что она является самым верхней границей воздушной зоны планеты (приблизительно 800 км). Но температура всей области разная. Например, до 200-300 км наблюдается её повышение до 1500 К, а после держится в одном значении.

Полярное сияние из космоса
Полярное сияние из космоса

Интересно, что на этом участке отмечают полярные сияния. По всей вероятности они появляются в результате ионизации воздуха. Которые, в свою очередь, возникают под действием радиации Солнца и космического излучения. Между прочим, главные и основные области ионосферы располагаются как раз здесь.
Кроме того, на высоте выше 300 км присутствует большое количество атомарного кислорода.
К удивлению, верхняя граница термосферы может изменяться в размерах. Это связано, главным образом, с солнечной активностью. Так, к примеру, в момент низкой активности происходит его уменьшение, и наоборот.
От общей атмосферной массы Земли на термосферу приходится чуть меньше 0,05%.

Термопауза

Собственно говоря, это область, которая расположена сверху от термосферы. Здесь наблюдается небольшое поглощение излучения Солнца. Притом установлено, что температура остаётся неизменной.

Экзосфера

По-другому её также называют сферой рассеяния. Более того, она является внешней частью термосферы. В данной зоне в вышей степени разреженный газ. По этой причине происходит утечка его элементов в космос.
На уровне 2000-3000 км экзосфера медленно сливается с межпланетной территорией. Поэтому часто этот участок называют ближнекосмическим вакуумом. В нём пространство заполнено редкими частицами газа, в основном атомами водорода.

Спутники системы GPS и ГЛОНАСС находятся в экзосфере
Спутники системы GPS и ГЛОНАСС находятся в экзосфере

Из чего ещё состоит атмосфера Земли

Помимо территориальных воздушных земельных слоев, различают ионосферу и нейтросферу. Они делятся по электрическим свойствам. Как уже было сказано, ионосфера преимущественно находится в термосфере. И связана она с ионизацией воздуха. Но что такое нейтросфера понятно не всем. Проще говоря, это нижняя часть атмосферного слоя. В ней преобладают незаряженные частицы воздуха Земли.

Прорыв через атмосферу
Прорыв через атмосферу

Более того, в окружающей нас воздушной оболочке, учёные выделили две области:
1) Гетеросфера — участок, где силы гравитации влияют на газы. Таким образом происходит их небольшое перемешивание. По этой причине состав гетеросферы переменный.
2) Гомосфера — область под гетеросферой, где отмечают сильно перемешанные газы. Поэтому состав однородный.
Вдобавок существует граница между этими зонами. Её называют турбопаузой. Её территория простирается на высоте 120 км.

Как видно, атмосфера планеты Земля довольно интересная по своей структуре. Хотя нельзя сказать, что прямо сложная. По всей вероятности, мы её довольно хорошо изучили. Но Вселенная и природа всегда преподносят нам сюрпризы.

Источник: kosmosgid.ru