Перенос энергии пищи от её источника — автотрофов (растений) — через ряд организмов, происходящий путём поедания одних организмов другими, называется пищевой цепью. При каждом переносе большая часть (80-90%) потенциальной энергии теряется, переходя в тепло. Поэтому, чем короче пищевая цепь (чем ближе организм к её началу) , тем больше количество энергии, доступной для популяции. Пищевые цепи можно разделить на два основных типа : пастбищная цепь, которая начинается с зелёного растения и идёт далее к пасущимся растительноядным животным (т.е. к организмам, поедающим живые растительные клетки или ткани) и к хищникам (организмам, поедающим животных), и детритная цепь, которая от мёртвого органического вещества идёт к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя, так называемые пищевые сети. В сложных природных сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню. Так, зелёные растения занимают первый трофический уровень (уровень продуцентов), травоядные — второй (уровень первичных консументов), первичные хищники, поедающие травоядных, — третий (уровень вторичных консументов), а вторичные хищники — четвёртый (уровень третичных консументов).


Пищевые цепи знакомы каждому из нас : человек съедает крупную рыбу, а она ест мелких рыб, поедающих зоопланктон, который питается фитопланктоном, улавливающим солнечную энергию, или же человек может употреблять в пищу мясо коров, которые едят траву, улавливающую солнечную энергию, он может использовать и гораздо более короткую пищевую цепь, питаясь зерновыми культурами, которые улавливают солнечную энергию. В последнем случае человек является первичным консументом на втором трофическом уровне. В пищевой цепи трава — коровы — человек он является вторичным консументом на третьем трофическом уровне. Но чаще человек является одновременно и первичным и вторичным консументом, так как в его диету обычно входит смесь растительной и животной пищи.

При каждом переносе пищи часть потенциальной энергии теряется. Прежде всего, растения фиксируют лишь малую долю поступающей энергии солнечного излучения. Поэтому число консументов (например, людей), которые могут прожить при данном выходе первичной продукции, сильно зависит от длины цепи, переход к каждому следующему звену в нашей традиционной сельскохозяйственной пищевой цепи уменьшает доступную энергию примерно на порядок величины (т.е. в 10 раз). Поэтому если в рационе увеличивается содержание мяса, то уменьшается число людей, которых можно прокормить. Если окажется, что на основе имеющейся первичной продукции придётся кормить очень много новых ртов, то нужно вовсе отказываться от мяса или резко снизить его потребление.




Некоторые вещества по мере продвижения по цепи не рассеиваются, а наоборот накапливаются. Это так называемое концентрирование в пищевой цепи (биоконцентрирование) нагляднее всего демонстрируют устойчивые радионуклиды и пестициды.

Тенденция некоторых радионуклидов, побочных продуктов деления ядра атома увеличивать свою концентрацию с каждым этапом пищевой цепи была обнаружена в 50-ых годах. Крайне малые (следовые) количества радиоактивного J, P, Cs, Se в реке Колумбия концентрировались в тканях рыб и птиц. Было обнаружено, что коэффициент накопления (соотношение количества вещества в тканях и окружающей среде) радиоактивного фосфора в яйцах гусей равен 2 млн. Таким образом, безопасные выбросы в реку могут стать крайне опасными для высших звеньев пищевой цепи.

Пример: ДДТ (4,4 — дихлордифенил трихлорметилметан). Чтобы сократить численность комаров на Лонг-Айленде, болота много лет опыляли ДДТ.


ециалисты по борьбе с насекомыми не применяли таких концентраций, которые были бы непосредственно летальны для рыбы и других животных, но они не учли экологических процессов и длительного сохранения остатков ДДТ. Вместо того, чтобы смываться в море, ядовитые остатки адсорбированные на детринге, концентрировались в тканях детрингофагов и мелких рыб и далее — в хищниках высшего порядка (рыбоядные птицы). Коэффициент концентрации (отношение содержания ДДТ в организме к содержанию в воде, выраженное в частях на миллион) составляет для рыбоядных животных около 500 000. У рыб и птиц накоплению способствует значительные жировые накопления, в которых концентрируется ДДТ. Птицы особенно чувствительны к отравлению ДДТ, т.к. этот яд (и др. инсектициды, представляющие собой хлорированные углеводороды ) посредством снижения в крови концентрации стероидных гормонов нарушает образование яичной скорлупы; тонкая скорлупа лопается ещё до того, как разовьётся птенец. Таким образом, очень малые дозы, неопасные для особи, оказываются летальными для популяции.

Принципы биологического накопления надо учитывать при любых решениях, связанных с поступлением загрязнений в среду. Многие небиологические факторы, однако, могут уменьшать или увеличивать коэффициент концентрации. Так, человек получает меньше ДДТ, чем птица, т.к. при обработке и варке пищи часть этого вещества удаляется.

Трофический уровень — это совокупность организмов, занимающих определённое место в пищевой сети.

iv>

I трофический уровень — всегда растения,

II трофический уровень — первичные консументы

III трофический уровень — вторичные консументы и т.д.

Детритофаги могут находиться на II и выше трофическом уровне.

Обычно в экосистеме насчитывается 3-4 трофических уровня.

Трофическую структуру можно измерить и выразить либо урожаем на корню (на единицу площади), либо количеством энергии, фиксируемой на единице площади за единицу времени на последовательных трофических уровнях.

Трофическую структуру и трофическую функцию можно изобразить графически в виде экологических пирамид, основанием которых служит первый уровень (уровень продуцентов), а последующие уровни образуют этажи и вершину пирамиды. Экологические пирамиды можно отнести к трём основным типам :

1. пирамида чисел, отражающая численность отдельных организмов ;

2. пирамида биомассы, характеризующая общую сухую массу, калорийность или другую меру общего количества живого вещества ;

3. пирамида энергии показывающая величину потока энергии и «продуктивность» на последовательных трофических уровнях. С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.


оцентное содержание энергии высокого качества, переходящей из одного трофического уровня в другой колеблется от 2 до 30%. Большая часть энергии теряется в окружающей среде как тепловая энергия низкого качества. Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Пирамида энергетических потоков объясняет, почему можно прокормить большее количество людей, если сократить пищевую цепь до прямого потребления зерновых (рис – человек), чем если в качестве пищи использовать животных, потребляющих зерно. Чтобы избежать белкового (протеинового) недоедания, вегитарианское питание должно состоять из разнообразных растений.

Пирамиды чисел Можно собрать все образцы организмов в экосистеме и подсчитать численность всех видов, обнаруженных на каждом трофическом уровне. Такая информация необходима для создания пирамиды численностей. Например, миллион особей фитоплангтона в небольшом пруду может прокормить 10 000 особей зооплангтона, которые в свою очередь прокормят 100 окуней, которых будет достаточно, чтобы прокормиться одному человеку в течение месяца.

 

Для каждого следующего уровня пищевой цепиРис. 3.2 Пирамида чисел

Но для некоторых экосистем пирамиды численностей имеют другую форму. Например, в лесу небольшое количество больших деревьев, таких как секвойя вечнозеленая, снабжает пищей огромное количество небольших по размеру насекомых-фитофагов и птиц – консументов первого порядка.

>

Пирамида биомассы, характеризующая массу живого вещества (на ед. площади или объема). Каждый трофический уровень пищевой цепи или сети содержит определённое количество биомассы. В наземных экосистемах действует следующее правило пирамиды биомасс: суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников.

Для океана правило пирамиды биомасс недействительно – пирамида имеет перевернутый (обращенный) вид. Для экосистемы океана характерно накаливание биомассы на высоких уровнях, у хищников. Хищники живут долго, и скорость оборота их регенерации мала, но у продуцентов – фитопланктонных водорослей оборачиваемость в сотни раз превышает запас биомассы.

Для каждого следующего уровня пищевой цепи

Рис. 3.3 Пирамида биомассы

Пирамиды чисел и биомассы могут быть обращёнными, (или частично обращёнными), т.е. основание может быть меньше, чем один или несколько верхних этажей. Так бывает, когда средние размеры продуцентов меньше размеров консументов. Напротив, энергетическая пирамида всегда будет сужаться к верху, при условии, что мы учитываем все источники пищевой энергии в системе.

 

Источник: studopedia.su

Что такое пищевая цепь?

Каждый организм должен получать энергию для жизни. Например, растения потребляют энергию солнца, животные питаются растениями, а некоторые животные питаются другими животными.

Пищевая (трофическая) цепь — это последовательность того, кто кого ест в биологическом сообществе (экосистеме) для получения питательных веществ и энергии, поддерживающих жизнедеятельность.

Читайте также: Отличие пищевой цепи от пищевой сети в экосистеме.


Автотрофы (продуценты)

Для каждого следующего уровня пищевой цепи» data-layzr=»https://natworld.info/wp-content/uploads/2014/06/Весенние-растения.jpg» alt=»» width=»500″ height=»375″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2014/06/Весенние-растения.jpg 800w, https://natworld.info/wp-content/uploads/2014/06/Весенние-растения-300×225.jpg 300w, https://natworld.info/wp-content/uploads/2014/06/Весенние-растения-768×576.jpg 768w, https://natworld.info/wp-content/uploads/2014/06/Весенние-растения-500×375.jpg 500w» sizes=»(max-width: 500px) 100vw, 500px» />

Автотрофы — живые организмы, которые производят свою пищу, то есть собственные органические соединения, из простых молекул, таких как углекислый газ. Существует два основных типа автотрофов:

  • Фотоавтотрофы (фотосинтезирующие организмы) такие, как растения, перерабатывают энергию солнечного света для получения органических соединений — сахаров — из углекислого газа в процессе фотосинтеза. Другими примерами фотоавтотрофов являются водоросли и цианобактерии.

  • Хемоавтотрофы получают органические вещества благодаря химическим реакциям, в которых задействованы неорганические соединения (водород, сероводород, аммиак и т.д.). Этот процесс называется хемосинтезом.

Автотрофы являются основой каждой экосистемы на планете. Они составляют большинство пищевых цепей и сетей, а энергия, получаемая в процессе фотосинтеза или хемосинтеза, поддерживает все остальные организмы экологических систем. Когда речь идет об их роли в пищевых цепях, автотрофы можно назвать продуцентами или производителями.

Гетеротрофы (консументы)

Для каждого следующего уровня пищевой цепи» data-layzr=»https://natworld.info/wp-content/uploads/2017/09/что-ест-панда.jpg» alt=»» width=»500″ height=»240″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/09/что-ест-панда.jpg 628w, https://natworld.info/wp-content/uploads/2017/09/что-ест-панда-300×144.jpg 300w, https://natworld.info/wp-content/uploads/2017/09/что-ест-панда-500×240.jpg 500w» sizes=»(max-width: 500px) 100vw, 500px» />

Гетеротрофы, также известные как потребители, не могут использовать солнечную или химическую энергию, для производства собственной пищи из углекислого газа. Вместо этого, гетеротрофы получают энергию, потребляя другие организмы или их побочные продукты. Люди, животные, грибы и многие бактерии — гетеротрофы. Их роль в пищевых цепях заключается в потреблении других живых организмов. Существует множество видов гетеротрофов с разными экологическими ролями: от насекомых и растений до хищников и грибов.

Деструкторы (редуценты)


Для каждого следующего уровня пищевой цепи» data-layzr=»https://natworld.info/wp-content/uploads/2017/03/-в-пищевой-цепи-e1489269459617.jpg» alt=»» width=»500″ height=»317″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/03/-в-пищевой-цепи-e1489269459617.jpg 500w, https://natworld.info/wp-content/uploads/2017/03/-в-пищевой-цепи-e1489269459617-300×190.jpg 300w, https://natworld.info/wp-content/uploads/2017/03/-в-пищевой-цепи-e1489269459617-183×116.jpg 183w» sizes=»(max-width: 500px) 100vw, 500px» />

Следует упомянуть еще одну группу потребителей, хотя она не всегда фигурирует в схемах пищевых цепей. Эта группа состоит из редуцентов, организмов, которые перерабатываю мертвые органические вещества и отходы, превращаяя их в неорганические соединения.

Редуценты иногда считаются отдельным трофическим уровнем. Как группа, они питаются отмершими организмами, поступающими на различных трофических уровнях. (Например, они способны перерабатывать разлагающееся растительное вещество, тело недоеденной хищниками белки или останки умершего орла.) В определенном смысле, трофический уровень редуцентов проходит параллельно стандартной иерархии первичных, вторичных и третичных потребителей. Грибы и бактерии являются ключевыми редуцентами во многих экосистемах.

Редуценты, как часть пищевой цепи, играют важную роль в поддержании здоровой экосистемы, поскольку благодаря им, в почву возвращаются питательные вещества и влага, которые в дальнейшем используется продуцентами.

Уровни пищевой (трофической) цепи


Пищевая цепь представляет собой линейную последовательность организмов, которые передают питательные вещества и энергию начиная с продуцентов и к высшим хищникам.

Трофический уровень организма — это положение, которое он занимает в пищевой цепи.

Первый трофический уровень

Пищевая цепь начинается с автотрофного организма или продуцента, производящего собственную пищу из первичного источника энергии, как правило, солнечной или энергии гидротермальных источников срединно-океанических хребтов. Например, фотосинтезирующие растения, хемосинтезирующие бактерии и археи.

Второй трофический уровень

Далее следуют организмы, которые питаются автотрофами. Эти организмы называются растительноядными животными или первичными потребителями и потребляют зеленые растения. Примеры включают насекомых, зайцев, овец, гусениц и даже коров.

Третий трофический уровень

Следующим звеном в пищевой цепи являются животные, которые едят травоядных животных — их называют вторичными потребителями или плотоядными (хищными) животными (например, змея, которая питается зайцами или грызунами).

Четвертый трофический уровень

В свою очередь, этих животных едят более крупные хищники — третичные потребители (к примеру, сова ест змей).

Пятый трофический уровень

Третичных потребителей едят четвертичные потребители (например, ястреб ест сов).

Каждая пищевая цепь заканчивается высшим хищником или суперхищником — животным без естественных врагов (например, крокодил, белый медведь, акула и т.д.). Они являются «хозяевами» своих экосистем.

Когда какой-либо организм умирает, его в конце концов съедают детритофаги (такие, как гиены, стервятники, черви, крабы и т.д.), а остальная часть разлагается с помощью редуцентов (в основном, бактерий и грибов), и обмен энергией продолжается.

Стрелки в пищевой цепи показывают поток энергии, от солнца или гидротермальных источников до высших хищников. По мере того, как энергия перетекает из организма в организм, она теряется на каждом звене цепи. Совокупность многих пищевых цепей называется пищевой сетью.

Положение некоторых организмов в пищевой цепи может варьироваться, поскольку их рацион отличается. Например, когда медведь ест ягоды, он выступает как растительноядное животное. Когда он съедает грызуна, питающегося растениями, то становиться первичным хищником. Когда медведь ест лосося, то выступает суперхищником (это связано с тем, что лосось является первичным хищником, поскольку он питается селедкой, а она ест зоопланктон, который питается фитопланктоном, вырабатывающим собственную энергию благодаря солнечному свету). Подумайте о том, как меняется место людей в пищевой цепи, даже часто в течение одного приема пищи.

 

Типы пищевых цепей

Для каждого следующего уровня пищевой цепи» data-layzr=»https://natworld.info/wp-content/uploads/2017/03/Типы-пищевых-цепей.jpg» alt=»» width=»500″ height=»226″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/03/Типы-пищевых-цепей.jpg 500w, https://natworld.info/wp-content/uploads/2017/03/Типы-пищевых-цепей-300×136.jpg 300w» sizes=»(max-width: 500px) 100vw, 500px» />

В природе, как правило, выделяют два типа пищевых цепей: пастбищную и детритную.

Пастбищная пищевая цепь

Этот тип пищевой цепи начинается с живых зеленых растений, предназначенных для питания растительноядных животных, которыми питаются хищники. Экосистемы с таким типом цепи напрямую зависят от солнечной энергии.

Таким образом, пастбищный тип пищевой цепи зависит от автотрофного захвата энергии и перемещения ее по звеньям цепи. Большинство экосистем в природе следуют этому типу пищевой цепи.

Примеры пастбищной пищевой цепи:

  • Трава → Кузнечик → Птица → Ястреб;
  • Растения → Заяц → Лиса → Лев.

Детритная пищевая цепь

Этот тип пищевой цепи начинается с разлагающегося органического материала — детрита — который употребляют детритофаги. Затем, детритофагами питаются хищники. Таким образом, подобные пищевые цепи меньше зависят от прямой солнечной энергии, чем пастбищные. Главное для них — приток органических веществ, производимых в другой системе.

К примеру, такой тип пищевой цепи встречается в разлагающейся подстилке умеренного леса.

Энергия в пищевой цепи

Для каждого следующего уровня пищевой цепи» data-layzr=»https://natworld.info/wp-content/uploads/2017/03/передача-энергии-в-пищевой-цепи.jpg» alt=»» width=»500″ height=»327″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/03/передача-энергии-в-пищевой-цепи.jpg 500w, https://natworld.info/wp-content/uploads/2017/03/передача-энергии-в-пищевой-цепи-300×196.jpg 300w» sizes=»(max-width: 500px) 100vw, 500px» />

Энергия переносится между трофическими уровнями, когда один организм питается другим и получает от него питательные вещества. Однако это движение энергии неэффективное, и эта неэффективность ограничивает протяженность пищевых цепей.

Когда энергия входит в трофический уровень, часть ее сохраняется как биомасса, как часть тела организмов. Эта энергия доступна для следующего трофического уровня. Как правило, только около 10% энергии, которая хранится в виде биомассы на одном трофическом уровне, сохраняется в виде биомассы на следующем уровне.

Этот принцип частичного переноса энергии ограничивает длину пищевых цепей, которые, как правило, имеют 3-6 уровней.

На каждом уровне, энергия теряется в виде тепла, а также в форме отходов и отмершей материи, которые используют редуценты.

Почему так много энергии выходит из пищевой сети между одним трофическим уровнем и другим? Вот несколько основных причин неэффективной передачи энергии:

  • На каждом трофическом уровне значительная часть энергии рассеивается в виде тепла, поскольку организмы выполняют клеточное дыхание и передвигаются в повседневной жизни.
  • Некоторые органические молекулы, которыми питаются организмы, не могут перевариваться и выходят в виде фекалий.
  • Не все отдельные организмы в трофическом уровне будут съедены организмами со следующего уровня. Вместо этого, они умирают, не будучи съеденными.
  • Кал и несъеденные мертвые организмы становятся пищей для редуцентов, которые их метаболизируют и преобразовывают в свою энергию.

Итак, ни одна из энергий на самом деле не исчезает — все это в конечном итоге приводит к выделению тепла.

Значение пищевой цепи

Для каждого следующего уровня пищевой цепи» data-layzr=»https://natworld.info/wp-content/uploads/2016/08/stado-antilop.jpg» alt=»» width=»500″ height=»350″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2016/08/stado-antilop.jpg 500w, https://natworld.info/wp-content/uploads/2016/08/stado-antilop-300×210.jpg 300w» sizes=»(max-width: 500px) 100vw, 500px» />

1. Исследования пищевой цепи помогают понять кормовые отношения и взаимодействие между организмами в любой экосистеме.

2. Благодаря им, есть возможность оценить механизм потока энергии и циркуляцию веществ в экосистеме, а также понять движение токсичных веществ в экосистеме.

3. Изучение пищевой цепи позволяет понять проблемы биоусиления.

В любой пищевой цепи, энергия теряется каждый раз, когда один организм потребляется другим. В связи с этим, должно быть намного больше растений, чем растительноядных животных. Автотрофов существует больше, чем гетеротрофов, и поэтому большинство из них являются растительноядными, нежели хищниками. Хотя между животными существует острая конкуренция, все они взаимосвязаны. Когда один вид вымирает, это может воздействовать на множество других видов и иметь непредсказуемые последствия.

Источник: natworld.info

1. Продуценты (производители) производят органические вещества из неорганических. Это растения, а так же фото- и хемосинтезирующие бактерии.

2. Консументы (потребители) потребляют готовые органические вещества.

  • консументы 1 порядка питаются продуцентами (корова, карп, пчела)
  • консументы 2 порядка питаются консументами первого (волк, щука, оса)
    и т. д.

3. Редуценты (разрушители) разрушают (минерализуют) органические вещества до неорганических – бактерии и грибы.

Пример пищевой цепи: капуста → гусеница капустной белянки → синица → ястреб. Стрелка в пищевой цепи направлена от того, кого едят в сторону того, кто ест. Первое звено пищевой цепи – продуцент, последнее – консумент высшего порядка или редуцент.

Пищевая цепь не может содержать больше 5-6 звеньев, потому что при переходе на каждое следующее звено 90% энергии теряется (правило 10%, правило экологической пирамиды). Например, корова съела 100 кг травы, но потолстела только на 10 кг, т.к.
    а) часть травы она не переварила и выбросила с калом
    б) часть переваренной травы была окислена до углекислого газа и воды для получения энергии.

Каждое последующее звено в пищевой цепи весит меньше предыдущего, поэтому пищевую цепь можно представить в виде пирамиды биомассы (внизу производители, их больше всего, на самом верху – консументы высшего порядка, их меньше всего). Кроме пирамиды биомассы, можно построить пирамиду энергии, численности и т.п.

Еще можно почитать

БОЛЬШЕ ИНФОРМАЦИИ: Агроэкосистема (агроценоз), Экосистема – определения, Экологические факторы, Пищевая цепь
ЗАДАНИЯ ЧАСТИ 2: Пищевая цепь, Роль редуцентов в природе

Тесты и задания

Установите соответствие между функцией, выполняемой организмом в биогеоценозе, и представителями царства, выполняющими данную функцию: 1) растения, 2) бактерии, 3) животные. Запишите цифры 1, 2 и 3 в правильном порядке.
А) основные производители глюкозы в биогеоценозе
Б) первичные потребители солнечной энергии
В) минерализуют органические вещества
Г) являются консументами разных порядков
Д) обеспечивают усвоение азота растениями
Е) передают вещества и энергию в пищевых цепях

Выберите три варианта. Укажите консументов в экосистеме
1) паразитические растения
2) паукообразные
3) цветковые растения
4) насекомые
5) деревья верхнего яруса
6) цианобактерии

Выберите три варианта. Водоросли в экосистеме водоема составляют начальное звено в большинстве цепей питания, так как они
1) аккумулируют солнечную энергию
2) поглощают органические вещества
3) способны к хемосинтезу
4) синтезируют органические вещества из неорганических
5) обеспечивают энергией и органическими веществами животных
6) растут в течение всей жизни

Выберите один, наиболее правильный вариант. В экосистеме хвойного леса к консументам 2-го порядка относят
1) ель обыкновенную
2) лесных мышей
3) таежных клещей
4) почвенных бактерий

Установите правильную последовательность звеньев в пищевой цепи, используя все названные объекты
1) инфузория-туфелька
2) сенная палочка
3) чайка
4) рыба
5) моллюск
6) ил

Установите правильную последовательность звеньев в пищевой цепи, используя всех названных представителей
1) еж
2) полевой слизень
3) орел
4) листья растений
5) лисица

Установите соответствие между характеристикой организмов и функциональной группой, к которой она относится: 1) продуценты, 2) редуценты
А) поглощают из окружающей среды углекислый газ
Б) синтезируют органические вещества из неорганических
В) включают растения, некоторые бактерии
Г) питаются готовыми органическими веществами
Д) включают бактерии-сапротрофы и грибы
Е) разлагают органические вещества до минеральных

1. Выберите три варианта. К продуцентам относят
1) плесневый гриб — мукор
2) северного оленя
3) можжевельник обыкновенный
4) землянику лесную
5) дрозда-рябинника
6) ландыш майский

2. Выберите три верных ответа из шести. Запишите цифры, под которыми они указаны. К продуцентам относятся
1) патогенные прокариоты
2) бурые водоросли
3) фитофаги
4) цианобактерии
5) зеленые водоросли
6) грибы-симбионты

3. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К продуцентам биоценозов относят
1) гриб-пеницилл
2) молочнокислую бактерию
3) берёзу повислую
4) белую планарию
5) верблюжью колючку
6) серобактерию

4. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К продуцентам относят
1) пресноводную гидру
2) кукушкин лен
3) цианобактерию
4) шампиньон
5) улотрикс
6) планарию

ФОРМИРУЕТСЯ 5. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К продуцентам относят
А) дрожжи

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В биогеоценозе гетеротрофы, в отличие от автотрофов,
1) являются продуцентами
2) обеспечивают смену экосистем
3) увеличивают запас молекулярного кислорода в атмосфере
4) извлекают органические вещества из пищи
5) превращают органические остатки в минеральные соединения
6) выполняют роль консументов или редуцентов

1. Установите соответствие между экологическими группами в экосистеме и их характеристиками: 1) продуценты, 2) консументы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) являются автотрофами
Б) гетеротрофные организмы
В) основными представителями являются зеленые растения
Г) производят вторичную продукцию
Д) синтезируют из неорганических веществ органические соединения

2. Установите соответствие между характеристиками организмов и их функциональными группами в экосистеме: 1) продуценты, 2) консументы
А) растительноядные животные
Б) использование растительной и животной пищи в качестве источника энергии
В) синтез первичного органического вещества
Г) плотоядные животные и паразиты
Д) преобразуют энергию солнца в энергию химических связей органических веществ
Е) начинают пастбищные цепи питания

Установите последовательность основных этапов круговорота веществ в экосистеме, начиная с фотосинтеза. Запишите соответствующую последовательность цифр.
1) разрушение и минерализация органических остатков
2) первичный синтез автотрофами органических веществ из неорганических
3) использование органических веществ консументами II порядка
4) использование энергии химических связей растительноядными животными
5) использование органических веществ консументами III порядка

Установите последовательность расположения организмов в цепи питания. Запишите соответствующую последовательность цифр.
1) лягушка
2) уж
3) бабочка
4) растения луга

1. Установите соответствие между организмами и их функцией в экосистеме леса: 1) продуценты, 2) консументы, 3) редуценты. Запишите цифры 1, 2 и 3 в правильном порядке.
А) хвощи и папоротники
Б) плесневые грибы
В) трутовики, обитающие на живых деревьях
Г) птицы
Д) березы и ели
Е) бактерии гниения

2. Установите соответствие между организмами — обитателями экосистемы и функциональной группой, к которой их относят: 1) продуценты, 2) консументы, 3) редуценты.
А) мхи, папоротники
Б) беззубки и перловицы
В) ели, лиственницы
Г) плесневые грибы
Д) гнилостные бактерии
Е) амебы и инфузории

3. Установите соответствие между организмами и функциональными группами в экосистемах, к которым их относят: 1) продуценты, 2) консументы, 3) редуценты. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) спирогира
Б) серобактерии
В) мукор
Г) пресноводная гидра
Д) ламинария
Е) бактерии гниения

4. Установите соответствие между организмами и функциональными группами в экосистемах, к которым они относятся: 1) продуценты, 2) консументы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) голый слизень
Б) обыкновенный крот
В) серая жаба
Г) чёрный хорь
Д) капуста листовая
Е) сурепка обыкновенная

5. Установите соответствие между организмами и функциональными группами: 1) продуценты, 2) консументы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) серобактерии
Б) полевая мышь
В) мятлик луговой
Г) пчела медоносная
Д) пырей ползучий

Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Какие из приведённых организмов являются потребителями готового органического вещества в сообществе соснового леса?
1) почвенные зелёные водоросли
2) гадюка обыкновенная
3) мох сфагнум
4) подрост сосны
5) тетерев
6) лесная мышь

1. Установите соответствие между организмом и его принадлежностью к определенной функциональной группе: 1) продуценты, 2) редуценты. Запишите цифры 1 и 2 в правильной последовательности.
А) клевер красный
Б) хламидомонада
В) бактерия гниения
Г) береза
Д) ламинария
Е) почвенная бактерия

2. Установите соответствие между организмом и трофических уровнем, на котором он находится в экосистеме: 1) Продуцент, 2) Редуцент. Запишите цифры 1 и 2 в правильном порядке.
А) Сфагнум
Б) Аспергилл
В) Ламинария
Г) Сосна
Д) Пеницилл
Е) Гнилостные бактерии

3. Установите соответствие между организмами и их функциональными группами в экосистеме: 1) продуценты, 2) редуценты. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) серобактерия
Б) цианобактерия
В) бактерия брожения
Г) почвенная бактерия
Д) мукор
Е) ламинария

Выберите три варианта. Какова роль бактерий и грибов в экосистеме?
1) превращают органические вещества организмов в минеральные
2) обеспечивают замкнутость круговорота веществ и превращения энергии
3) образуют первичную продукцию в экосистеме
4) служат первым звеном в цепи питания
5) образуют доступные растениям неорганические вещества
6) являются консументами II порядка

1. Установите соответствие между группой растений или животных и ее ролью в экосистеме пруда: 1) продуценты, 2) консументы. Запишите цифры 1 и 2 в правильном порядке.
А) прибрежная растительность
Б) рыбы
В) личинки земноводных
Г) фитопланктон
Д) растения дна
Е) моллюски

2. Установите соответствие между обитателями наземной экосистемы и функциональной группой, к которой они относятся: 1) консументы, 2) продуценты. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) ольха
Б) жук-типограф
В) вяз
Г) кислица
Д) клест
Е) сорока

3. Установите соответствие между организмом и функциональной группой биоценоза, к которой его относят: 1) продуценты, 2) консументы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гриб трутовик
Б) пырей ползучий
В) серобактерия
Г) холерный вибрион
Д) инфузория-туфелька
Е) малярийный плазмодий

4. Установите соответствие между примерами и экологическими группами в пищевой цепи: 1) продуценты, 2) консументы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) заяц
Б) пшеница
В) дождевой червь
Г) синица
Д) ламинария
Е) малый прудовик

Установите соответствие между животными и их ролями в биогеоценозе тайги: 1) консумент 1 порядка, 2) консумент 2 порядка. Запишите цифры 1 и 2 в правильном порядке.
А) кедровка
Б) ястреб-тетеревятник
В) обыкновенная лисица
Г) благородный олень
Д) заяц-русак
Е) обыкновенный волк

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К консументам в экосистеме относят:
1) паразитических насекомых
2) бактерий гниения
3) зеленые растения
4) парнокопытных животных
5) хищников
6) цианобактерий

Установите правильную последовательность организмов в пищевой цепи.
1) зёрна пшеницы
2) рыжая лисица
3) клоп вредная черепашка
4) степной орёл
5) обыкновенный перепел

Установите соответствие между характеристикой организмов и функциональной группой, к которой их относят: 1) Продуценты, 2) Редуценты. Запишите цифры 1 и 2 в правильном порядке.
А) Является первым звеном в цепи питания
Б) Синтезируют органические вещества из неорганических
В) Используют энергию солнечного света
Г) Питаются готовыми органическими веществами
Д) Возвращают минеральные вещества в экосистемы
Е) Разлагают органические вещества до минеральных

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В биологическом круговороте происходит:
1) разложение продуцентов консументами
2) синтез органических веществ из неорганических продуцентами
3) разложение консументов редуцентами
4) потребление продуцентами готовых органических веществ
5) питание продуцентов консументами
6) потребление консументами готовых органических веществ

1. Выберите организмы, относящиеся к редуцентам. Три верных ответа из шести и запишите цифры, под которыми они указаны.
1) пеницилл
2) спорынью
3) гнилостные бактерии
4) мукор
5) клубеньковые бактерии
6) серобактерии

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К редуцентам в экосистеме относят
1) бактерии гниения
2) грибы
3) клубеньковые бактерии
4) пресноводные рачки
5) бактерии-сапрофиты
6) майские жуки

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие из перечисленных организмов участвуют в разложении органических остатков до минеральных?
1) бактерии-сапротрофы
2) крот
3) пеницилл
4) хламидомонада
5) заяц-беляк
6) мукор

Установите последовательность организмов в цепи питания, начиная с организма, поглощающего солнечный свет. Запишите соответствующую последовательность цифр.
1) гусеница непарного шелкопряда
2) липа
3) обыкновенный скворец
4) ястреб перепелятник
5) жук пахучий красотел

Выберите один, наиболее правильный вариант. Что общего у грибов и бактерий
1) наличие цитоплазмы с органоидами и ядра с хромосомами
2) бесполое размножение при помощи спор
3) разрушение ими органических веществ до неорганических
4) существование в виде одноклеточных и многоклеточных организмов

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В экосистеме смешанного леса первый трофический уровень занимают
1) зерноядные млекопитающие
2) береза бородавчатая
3) тетерев-косач
4) ольха серая
5) кипрей узколистный
6) стрекоза коромысло

1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Второй трофический уровень в экосистеме смешанного леса занимают
1) лоси и косули
2) зайцы и мыши
3) снегири и клесты
4) поползни и синицы
5) лисицы и волки
6) ежи и кроты

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Ко второму трофическому уровню экосистемы относятся
1) русская выхухоль
2) тетерев-косач
3) кукушкин лен
4) северный олень
5) куница европейская
6) мышь полевая

Установите последовательность организмов в цепи питания. Запишите соответствующую последовательность цифр.
1) мальки рыб
2) водоросли
3) окунь
4) дафнии

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В цепях питания консументами первого порядка являются
1) ехидна
2) саранча
3) стрекоза
4) лисица
5) лось
6) ленивец

Расположите в правильном порядке организмы в детритной цепи питания. Запишите соответствующую последовательность цифр.
1) мышь
2) опенок
3) ястреб
4) трухлявый пень
5) змея

Установите соответствие между животным и его ролью в саванне: 1) консумент первого порядка, 2) консумент второго порядка. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) антилопа
Б) лев
В) гепард
Г) носорог
Д) страус
Е) гриф

Таблица
Проанализируйте таблицу «Трофические уровни в цепи питания». Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка. Запишите выбранные цифры, в порядке, соответствующем буквам.
1) вторичные хищники
2) первый уровень
3) сапротрофные бактерии
4) редуценты
5) консументы второго порядка
6) второй уровень
7) продуценты
8) третичные хищники

Расположите в правильном порядке организмы в цепи разложения (детритной). Запишите соответствующую последовательность цифр.
1) мелкие плотоядные хищники
2) останки животных
3) насекомоядные животные
4) жуки-сапрофаги

Таблица
Проанализируйте таблицу «Трофические уровни в цепи питания». Заполните пустые ячейки таблицы, используя термины, приведенные в списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка. Запишите выбранные цифры, в порядке, соответствующем буквам.
Список терминов:
1) первичные хищники
2) первый уровень
3) сапротрофные бактерии
4) редуценты
5) консументы первого порядка
6) гетеротрофы
7) третий уровень
8) вторичные хищники

Таблица
Проанализируйте таблицу «Функциональные группы организмов в экосистеме». Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка. Запишите выбранные цифры, в порядке, соответствующем буквам.
1) вирусы
2) эукариоты
3) сапротрофные бактерии
4) продуценты
5) водоросли
6) гетеротрофы
7) бактерии
8) миксотрофы

Пищевая цепь
Рассмотрите рисунок с изображением пищевой цепи и укажите (А) тип пищевой цепи, (Б) продуцента и (В) консумента второго порядка. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка. Запишите выбранные цифры, в порядке, соответствующем буквам.
1) детритная
2) канадский рдест
3) скопа
4) пастбищная
5) большой прудовик
6) зеленая лягушка

Установите соответствие между организмами и функциональными группами биоценоза: 1) консументы, 2) редуценты. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) сапротрофные бактерии
Б) зоопланктон
В) эндопаразиты
Г) паразитические растения
Д) плесневые грибы

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Редуценты в экосистеме леса участвуют в круговороте веществ и превращениях энергии, так как
1) синтезируют органические вещества из минеральных
2) освобождают заключённую в органических остатках энергию
3) аккумулируют солнечную энергию
4) разлагают органические вещества
5) способствуют образованию гумуса
6) вступают в симбиоз с консументами

Установите, в какой последовательности в пищевой цепи должны располагаться перечисленные объекты.
1) паук-крестовик
2) ласка
3) личинка навозной мухи
4) лягушка
5) навоз

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. К экологическим терминам относят
1) гетерозис
2) популяция
3) аутбридинг
4) консумент
5) дивергенция

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Каких из перечисленных животных можно отнести к консументам II порядка?
1) серая крыса
2) колорадский жук
3) дизентерийная амеба
4) виноградная улитка
5) божья коровка
6) медоносная пчела

Источник: www.bio-faq.ru

Пищевая цепь — ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища — потребитель.

Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80—90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4—5.

Структура пищевой цепи

Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища — потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды. Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами. Чаще всего на этом месте находятся растения, грибы, водоросли. Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия. В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

Трофическая сеть Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища — потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру — трофическую сеть.

Трофический уровень — условная единица, обозначающая удалённость от продуцентов в трофической цепи данной экосистемы.

В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Типы пищевых цепей

Существуют 2 основных типа трофических цепей — пастбищные и детритные.

В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, щука, питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

В детритных трофических цепях (цепи разложения), наиболее распространённых в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита (органических останков), идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоёмах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

Наземные детритные цепи питания более энергоёмки, поскольку большая часть органической массы, создаваемой автотрофными организмами, остаётся невостребованной и отмирает, формируя детрит. В масштабах планеты, на долю цепей выедания приходится около 10 % энергии и веществ запасённых автотрофами, 90 % же процентов включается в круговорот посредством цепей разложения.

В пищевых цепях при переходе от звена к звену теряется часть энергии, поэтому численность особей каждого последующего звена меньше численности предыдущего. В пищевых цепях при переходе от звена к звену теряется часть энергии, поэтому численность особей каждого последующего звена меньше численности предыдущего.

87.Биологическая продуктивность. Первичная и вторичная продукция. Экологические пирамиды Ч. Элтона. Экологические пирамиды численности, биомассы, энергии. Закон пирамиды энергии при ее передаче через пищевую цепь (закон Линдемана); валовая первичная продукция, чистая и вторичная продукция.

БИОЛОГИЧЕСКАЯ ПРОДУКТИВНОСТЬ, способность природных сообществ или отдельных их компонентов поддерживать определённую скорость воспроизводства входящих в их состав живых организмов. Измеряется обычно количеством биомассы или эквивалентной ей энергии, произведённой за единицу времени на единицу площади. Определяют первичную и вторичную биопродукцию. Первичная – биомасса, производимая всеми растениями (фитомасса), вторичная – биомасса, производимая всеми животными. Продукты деятельности микроорганизмов обычно относят к первичной биопродукции. Для определения биопродуктивности экосистемы используют, как правило, показатели первичной биопродукции. Самая высокая биопродуктивность на суше – во влажных тропических лесах, самая низкая – в сухих и арктических пустынях. Самая высокая биопродуктивность в биосфере – на океанических рифах среди водорослей.

Правило экологической пирамиды

Количество растительного вещества, служащего основой цепи питания, примерно в 10 раз больше, чем масса растительноядных животных, и каждый последующий пищевой уровень также имеет массу, в 10 раз меньшую.

Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами — насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

Пирамида биомасс — соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70—90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энер гии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Источник: StudFiles.net