Картинки атмосферы земли

Научное познавание мира открывает людям массу грандиозных и загадочных явлений. Мне кажется, что эти реальные чудеса Земли, космоса и вселенной, в чём-то гораздо интересней выдуманных чудес в фантастике и фэнтези. Здесь будет рассказано о наиболее интересных и малоизвестных явлениях в атмосфере, уверен многие впервые узнают о них из этой статьи.     

Сразу хочу предупредить, что здесь нет описания таких общеизвестных проявлений как полярное сияние, шаровая и обычная молния, радуга и т.д. Информацию о них и так легко найти и каждый наверняка уже много слышал или читал о всём этом. Так-же сюда не включены бури, шторма, ураганы, тайфуны, циклоны, поскольку это отдельная большая тема.  Описание каждого явления находится над его фотографией.

Названия того о чём в статье пойдёт речь:

1).Спрайты.    2).Эльфы (гало в ионосфере).    3.Голубые джеты (гномы).    4).Огни Святого Эльма.    5).Нижний мираж (пустынный мираж).    6).Верхний мираж (эффект Новой Земли; полярный мираж; озёрный мираж).    7).Сложный мираж (комбинированный мираж; фата-моргана).   8).Ложное Солнце (паргелий).    9).Световые столбы (солнечные столбы).  10).Брокенский призрак (горный призрак; глория; сияние Будды).  11).Линзовидные облака (лентикулярные облака).  12).Серебристые облака (мезосферные облака; светящиеся облака).   13).
ренняя глория (облака утренней славы).    14).Вирга.   15).Вымеобразные облака (трубчатые облака).

 

1).  Спрайты (красные тайгеры; ракетные молнии; облачно-стратосферные разряды; восходящие молнии; высотные разряды; молнии облако — космос). К настоящему времени они хорошо изучены и им посвящено много публикаций. Выглядят как яркие объемные вспышки, чаще красного, реже синего цвета, возникающие на высоте от 50 до 130 км. Достигают в длину до 60 км и до 100 км в диаметре (самые объемные из высотных разрядов). Красно-фиолетовый цвет связан с атмосферным азотом. Верхняя часть спрайта светится однородно, а вот ниже 70 километров разряд сплетается из каналов толщиной в сотни метров. Появляются через десятые доли секунды после удара очень сильной молнии и длятся около 100 миллисекунд. Чаще всего спрайты распространяются одновременно вверх и вниз, но при этом распространение вниз заметно больше и быстрее. Длительность — от сотен до десятка микросекунд. Иногда спрайты сопровождаются гало в ионосфере (эльфами).

Были открыты в 1989 году Д.
нклером (США) который снял их на высокоскоростную камеру и опубликовал об этом статьи в научных журналах Geophysical Research Letters и Science. После этого НАСА запустило масштабную программу их изучения, так как появились опасения, что они могут влиять на космические запуски. В ходе исследований, проводимых разными способами (летающая лаборатория на борту самолета DC-8К, записи с космических челноков, наблюдения с научной станции вблизи Форт-Коллинса, а так-же работа других коллективов не от НАСА) были обнаружены ещё несколько видов высотных явлений о которых речь пойдёт ниже (эльфы и джеты).

 

2.)  Эльфы (гало в ионосфере). Огромные пятна овальной или конусообразной формы красного цвета. (Другая более точная формулировка выглядит так: слабосветящиеся вспышки-конусы в форме стремительно расширяющегося кольца диаметром около 400 километров, которое рождается после сильной молнии, ударившей из грозового облака в землю. Ствол молнии становится передающей антенной, от которой стартует мощная электромагнитная волна низкой частоты. За 300 микросекунд волна доходит до высоты 100 километров, где возбуждает красно-фиолетовое свечение молекул азота). Всегда появляются над верхней частью грозового облака прямо над вспышкой молнии. Время жизни – от 3 до 5 мл/сек. Возникают на высотах 80-100 км совместно со спрайтами.

Открыты следующим образом. В 1989 году группа учёных из Минесотского Университета в Миннеаполисе наблюдала за развитием конвективных грозовых ячеек с помощью сверхчувствительной телевизионной техники. Видеокамера, направленная на грозовое облако в районе озера Верхнее, зафиксировала вспышки. С тех пор эльфы начали регистрировать постоянно. Любопытно, что совместная энергия эльфа и спрайта гораздо больше энергии обычного разряда молнии. И из-за этого непонятно: гроза провоцирует огненные факелы над ней, эльфы-спрайты инициируют грозу, или третий неизвестный фактор является причиной возникновения грозового фронта и вспышек над ним?


 

3.)  Голубые джеты (гномы). Один из самых загадочных видов высотных разрядов. Высоты на которых они находятся – от 14 до 50 км. Выглядит джет, как голубой узкий конус, стартующий с верхнего края грозового облака в сторону – от земли. Общая длина их – от 10 до 30 км. Появление не всегда связано с обычными разрядами молний. Обнаружены в 1995 году. Самые интересные — гигантские джеты (голубые стартеры), фиксировали их за всю историю наблюдений около 20 раз — они достигают 90-километровой высоты, т.е. их протяжённость – от тропосферы, до ионосферы, продолжительность до 1 сек. Теория таких разрядов находится в стадии развития, много вопросов и неясностей в самой природе их существования.

 

4.)  Огни Святого Эльма. Разряд в форме светящихся пучков или кисточек, возникающий на острых концах высоких предметов (шпили, башни, мачты, одиноко стоящие деревья, острые вершины скал и т. д.) обычно голубого или бело-голубого цвета. Имеются разные описания: от танцующего пламени до настоящего фейерверка.
амя не обжигает и не вызывает возгорания, длительность — не более минуты, иногда сопровождается шипящим или свистящим звуком. В науке данный феномен известен как коронный или точечный разряд. Возникает на объектах, особенно одиночных, когда потенциал электрического поля атмосферы достигает значений более 1000 вольт на сантиметр (в ясную погоду это значение около 1 вольта на сантиметр). Огни долгое время были среди моряков знамением божественного вмешательства, поскольку возникали при штормах. Для команды корабля свечение символизировало направляющую длань Святого Эльма — покровителя моряков. Описаны в судовых журналах многих мореплавателей (Колумб, Магеллан и пр.) а так-же произведениях Шекспира, Мелвилла и др.

 

5.)  Нижний мираж (пустынный мираж). Хорошо изучен и наиболее часто (из всех видов миражей) наблюдается. Причина – отражение световых лучей от верхнего, нагретого слоя воздуха. Для появления необходимы: ровная и сильно нагретая поверхность; горячие слои воздуха над ней и более холодные слои над ними (пустыня, асфальтовая дорога, море).

Чаще всего проявляется в том, что на месте земли (или дороги) видно небо, которое из-за колебаний слоёв нагретого воздуха очень напоминает водоём. Каждый дальнобойщик со стажем, не раз видел подобный мираж над асфальтовой дорогой в жаркий солнечный день (на 1-ом фото).

 

6.)  Верхний мираж (эффект Новой земли, полярный мираж, озёрный мираж). Причина появления — отклонение или отражение света в верхних слоях атмосферы (в ясную погоду холодный воздух у поверхности действует как линза и искривляет солнечные лучи).
ление получило научное объяснение и было признано учёными в конце 20 века. Подобные миражи более стабильны и продолжительны, чем нижние миражи, но появляются гораздо реже их. Максимальный эффект достигается при следующих условиях: горизонтальная длина отражающего слоя не менее 400 километров; большая разница температур между слоями воздуха (нижний слой должен быть холоднее верхних).

Проявляется в том, что становится видно находящееся далеко за горизонтом. Благодаря данному эффекту восход Солнца в полярных областях не редко можно увидеть на 2-3 недели раньше. В более умеренных широтах, например у нас в Карелии по той-же причине восход Солнца (в холодное время года) иногда виден на пол-часа раньше подлинного астрономического восхода.

Лично я не раз видел в Белом море верхние миражи, чаще всего они выглядят как приподнятые в туманной дымке далёкие острова над гладью моря.  Миражи у нас довольно частое явление, о нём даже предупреждает лоция:  http://rivermaps.ru/doc/beloe/…   

 

7.)  Сложный мираж (фата-моргана; комбинированный мираж). Возникает, когда из-за разницы температур образуется несколько чередующихся слоёв воздуха разной плотности, способных давать зеркальные отражения. В результате отражения и преломления лучей, на горизонте или над ним возникает по нескольку искажённых изображений, которые могут накладываться друг на друга и быстро меняться во времени. Самый сложный и малоизученный вид миража, механизм появления до конца не ясен.


 

8.)  Ложное Солнце (паргелий). Один из видов гало, выглядит как яркое пятно на уровне Солнца. Возникает из-за преломления солнечного света в упорядоченно ориентированных кристалликах льда, парящих в атмосфере (гало — оптический феномен, в виде светящегося кольца, диска или ореола вокруг источника света).

 

9.)  Световой столб (солнечный столб). Самый частый вид гало. Представляет собой вертикальную полосу света, тянущуюся от яркого источника света. Явление вызывается шестиугольными или столбовидными ледяными кристаллами с параллельными плоскими поверхностями, которые стремятся занять горизонтальную позицию при падении в воздухе. При формировании светового столба свет отражается от верхней или нижней поверхности ледяной пластинки, либо от торцов или граней ледяного стержня. Такие кристаллы наиболее часто образуются в высоких перистых облаках и в перисто-слоистых. Световые столбы (как и паргелий) чаще наблюдаются в холодное время года. Столбы, исходящие от низко расположенных источников света, длиннее, чем солнечные или лунные столбы.

 

10.)  Брокенский призрак (горный призрак, сияние Будды). Громадная тень человека (или предмета) на поверхности облаков или тумана. Эта тень часто бывает окружена цветными кольцами (глория). Из-за движения облачного слоя, очертания призрака на его поверхности могут причудливым образом шевелиться или меняться. Наблюдается в облаке или в тумане, расположеном прямо напротив источника света. Наблюдатель должен находиться на возвышенности, а источник света — за его спиной.


Внешний вид: отчётливая тень (человека или предмета) и цветные кольца света на облаке (тумане) вокруг неё. Внутри находится голубоватое, снаружи — красноватое, далее кольца могут повторяться с меньшей интенсивностью. Глория объясняется дифракцией света (отражение света в каплях так, что он возвращается от облака в том же направлении, откуда пришёл).

 

11.)  Лентикулярные облака (линзовидные облака). Образуются на гребнях воздушных волн или между двумя слоями воздуха. Характерной особенностью является то, что они не двигаются, сколь бы ни был силён ветер. Поток воздуха, проносящийся над земной поверхностью, обтекает препятствия, и при этом образуются воздушные волны. Облака чаще всего зависают с подветренной стороны горных хребтов, за хребтами и отдельными вершинами на высоте от двух до пятнадцати километров.

 

12.)  Серебристые облака (мезосферные облака, светящиеся облака). Возникают в мезосфере на высоте 76—85 км. над поверхностью Земли и лучше всего видны в глубоких сумерках (днём они не видны). Наблюдаются в широтах между 43° и 65° (на северо-западе России их можно увидеть в летние-осенние месяцы почти каждый год). Это самые высокие облака в атмосфере Земли, видны только, когда освещены солнцем из-за горизонта (в это время более низкие слои атмосферы находятся в земной тени). Пока до конца не ясна природа появления на такой высоте водяного пара, необходимого для образования серебристых облаков. Они крайне разрежённые и передвигаются в верхних слоях атмосферы со средней скоростью около 27 метров в секунду.


 

13.)  Утренняя глория (облака утренней славы). Вид облаков, наблюдаемый в заливе Карпентария на севере Австралии. Выглядят как очень длинный, круглый вал, находящийся в 100-500-х метрах над землёй, который может достигать 1000 км в длину и перемещаться со скоростью до 60 км/ч. Чаще всего глория наблюдается из города Бьюрктауна в сентябре и ноябре. Необычные облака здесь видели еще с древних времен (местное племя гаррава называло их kangolgi). Изучаются с 1970-х годов и у учёных масса разных гипотез и математических моделей, которые объясняют сложные передвижения облачных масс в этом месте.

14.)  Вирга. Дождь, который испаряется не достигая земли (полоса осадков, выходящая из облака и не доходящая до земной поверхности). Испарение происходит из-за сильно нагретого воздуха у поверхности земли. Явление распространено в пустынях и в умеренных широтах, как например запад США и Канада. Вирга может вызвать разные необычные оптические и погодные эффекты. Из-за того, что переход дождевых капель в состояние пара резко снижает температуру воздуха, образуются карманы холодного воздуха, которые могут быстро опускаться, создавая вертикальный порыв, пробивающий (или увлекающий за собой) слои облачности.


 

15.)  Вымеобразные облака (трубчатые облака). Имеют специфическую ячеистую или сумчатую форму. Встречаются редко, в основном в тропических широтах, их форма связана с особенностями образования тропических циклонов. Ячейки чаще всего резко очерчены и обычно имеют размер около полукилометра.

Несомненно, что какая-то часть из описанных в статье явлений послужила в древности толчком для появления разнообразных религиозно — мистических представлений о природе и вселенной. И надо сказать людей того времени легко понять, ибо даже современному человеку, что насквозь «отравлен» научным мышлением, техническими достижениями и критической логикой, трудно отделаться от ощущения внутреннего трепета при прямом столкновении с любым из этих чудес. Сразу появляется ощущение некой разумной и грандиозной игры совершенно не человеческих и масштабных сил. Подсознательно ловишь себя на том, что хочется поклониться духам или божествам, что управляет всем этим, что-бы задобрить эти могущественные силы. Надо-ли говорить о том, что древних людей подобные желания обуревали гораздо сильнее, поскольку они в то время были больше уязвимы и открыты перед лицом стихий, да и не могли они знать причины возникновения и развития подобных проявлений, поскольку для этого нужны современные методы исследований, знаний и инструментария (хотя догадываться могли). Человечество как общность цивилизаций (этносов, государств) существует примерно около 10 000 лет и только в последние лет 50 у нас есть возможность – во первых наблюдать данные явления не выходя из дома, во вторых – знать первопричину появления всех этих сил природы. Скажем за это спасибо прогрессу науки и учёным.

 

Статья не является копией чьих-либо материалов, заметок или трудов, так-же она не может считаться академически — научной, поскольку большинство специфических терминов и формулировок упрощено или пропущено. Все фото из интернета.

Источник: magspace.ru


Строение атмосферы

По вер­ти­ка­ли А. име­ет слои­стую струк­ту­ру, оп­ре­де­ляе­мую гл. обр. осо­бен­но­стя­ми вер­ти­каль­но­го рас­пре­де­ле­ния темп-ры (рис.), ко­то­рое за­ви­сит от гео­гра­фич. по­ло­же­ния, се­зо­на, вре­ме­ни су­ток и т. д. Ниж­ний слой А. – тро­по­сфе­ра – ха­рак­те­ри­зу­ет­ся па­де­ни­ем темп-ры с вы­со­той (при­мер­но на 6 °C на 1 км), его вы­со­та от 8–10 км в по­ляр­ных ши­ро­тах до 16–18 км в тро­пи­ках. Бла­го­да­ря бы­ст­ро­му убы­ва­нию плот­но­сти воз­ду­ха с вы­со­той в тро­по­сфе­ре на­хо­дит­ся ок. 80% всей мас­сы А. Над тро­по­сфе­рой рас­по­ла­га­ет­ся стра­то­сфе­ра – слой, ко­то­рый ха­рак­те­ри­зу­ет­ся в об­щем по­вы­ше­ни­ем темп-ры с вы­со­той. Пе­ре­ход­ный слой ме­ж­ду тро­по­сфе­рой и стра­то­сфе­рой на­зы­ва­ет­ся тро­по­пау­зой. В ниж­ней стра­то­сфе­ре до уров­ня ок. 20 км темп-ра ма­ло ме­ня­ет­ся с вы­со­той (т. н. изо­тер­мич. об­ласть) и не­ред­ко да­же не­зна­чи­тель­но умень­ша­ет­ся. Вы­ше темп-ра воз­рас­та­ет из-за по­гло­ще­ния УФ-ра­диа­ции Солн­ца озо­ном, вна­ча­ле мед­лен­но, а с уров­ня 34–36 км – бы­ст­рее. Верх­няя гра­ни­ца стра­то­сфе­ры – стра­то­пау­за – рас­по­ло­же­на на выс. 50–55 км, со­от­вет­ст­вую­щей мак­си­му­му темп-ры (260–270 К). Слой А., рас­по­ло­жен­ный на выс. 55–85 км, где темп-ра сно­ва па­да­ет с вы­со­той, на­зы­ва­ет­ся ме­зо­сфе­рой, на его верх­ней гра­ни­це – ме­зо­пау­зе – темп-ра дос­ти­га­ет ле­том 150–160 К, а зи­мой 200–230 К. Над ме­зо­пау­зой на­чи­на­ет­ся тер­мо­сфе­ра – слой, ха­рак­те­ри­зую­щий­ся бы­ст­рым по­вы­ше­ни­ем темп-ры, дос­ти­гаю­щей на выс. 250 км зна­че­ний 800–1200 К. В тер­мо­сфе­ре по­гло­ща­ет­ся кор­пус­ку­ляр­ная и рент­ге­нов­ская ра­диа­ция Солн­ца, тор­мо­зят­ся и сго­ра­ют ме­тео­ры, по­это­му она вы­пол­ня­ет функ­цию за­щит­но­го слоя Зем­ли. Ещё вы­ше на­хо­дит­ся эк­зо­сфе­ра, от­ку­да ат­мо­сфер­ные га­зы рас­сеи­ва­ют­ся в ми­ро­вое про­стран­ст­во за счёт дис­си­па­ции и где про­ис­хо­дит по­сте­пен­ный пе­ре­ход от А. к меж­пла­нет­но­му про­стран­ст­ву.

Состав атмосферы

До выс. ок. 100 км А. прак­ти­че­ски од­но­род­на по хи­мич. со­ста­ву и ср. мо­ле­ку­ляр­ная мас­са воз­ду­ха (ок. 29) в ней по­сто­ян­на. Вбли­зи по­верх­но­сти Зем­ли А. со­сто­ит из азо­та (ок. 78,1% по объёму) и ки­сло­ро­да (ок. 20,9%), а так­же со­дер­жит ма­лые ко­ли­че­ст­ва ар­го­на, ди­ок­си­да уг­ле­ро­да (уг­ле­ки­сло­го га­за), не­она и др. по­сто­ян­ных и пе­ре­мен­ных ком­по­нен­тов (см. Воз­дух).

Кро­ме то­го, А. со­дер­жит не­боль­шие ко­ли­че­ст­ва озо­на, ок­си­дов азо­та, ам­миа­ка, ра­до­на и др. От­но­сит. со­дер­жа­ние осн. со­став­ляю­щих воз­ду­ха по­сто­ян­но во вре­ме­ни и од­но­род­но в раз­ных гео­гра­фич. рай­онах. Со­дер­жа­ние во­дя­но­го па­ра и озо­на пе­ре­мен­но в про­стран­ст­ве и вре­ме­ни; не­смот­ря на ма­лое со­дер­жа­ние, их роль в ат­мо­сфер­ных про­цес­сах весь­ма су­ще­ст­вен­на.

Вы­ше 100–110 км про­ис­хо­дит дис­со­циа­ция мо­ле­кул ки­сло­ро­да, уг­ле­ки­сло­го га­за и во­дя­но­го па­ра, по­это­му мо­ле­ку­ляр­ная мас­са воз­ду­ха умень­ша­ет­ся. На выс. ок. 1000 км на­чи­на­ют пре­об­ла­дать лёг­кие га­зы – ге­лий и во­до­род, а ещё вы­ше А. Зем­ли по­сте­пен­но пе­ре­хо­дит в меж­пла­нет­ный газ.

Наи­бо­лее важ­ная пе­ре­мен­ная ком­по­нен­та А. – во­дя­ной пар, ко­то­рый по­сту­па­ет в А. при ис­па­ре­нии с по­верх­но­сти во­ды и влаж­ной поч­вы, а так­же пу­тём транс­пи­ра­ции рас­те­ния­ми. От­но­сит. со­дер­жа­ние во­дя­но­го па­ра ме­ня­ет­ся у зем­ной по­верх­но­сти от 2,6% в тро­пи­ках до 0,2% в по­ляр­ных ши­ро­тах. С вы­со­той оно бы­ст­ро па­да­ет, убы­вая на­по­ло­ви­ну уже на выс. 1,5–2 км. В вер­ти­каль­ном стол­бе А. в уме­рен­ных ши­ро­тах со­дер­жит­ся ок. 1,7 см «слоя оса­ж­дён­ной во­ды». При кон­ден­са­ции во­дя­но­го па­ра об­ра­зу­ют­ся об­ла­ка, из ко­то­рых вы­па­да­ют осад­ки ат­мо­сфер­ные в ви­де до­ж­дя, гра­да, сне­га.

Важ­ной со­став­ляю­щей ат­мо­сфер­но­го воз­ду­ха яв­ля­ет­ся озон, со­сре­до­то­чен­ный на 90% в стра­то­сфе­ре (ме­ж­ду 10 и 50 км), ок. 10% его на­хо­дит­ся в тро­по­сфе­ре. Озон обес­пе­чи­ва­ет по­гло­ще­ние жё­ст­кой УФ-ра­диа­ции (с дли­ной вол­ны ме­нее 290 нм), и в этом – его за­щит­ная роль для био­сфе­ры. Зна­че­ния об­ще­го со­дер­жа­ния озо­на ме­ня­ют­ся в за­ви­си­мо­сти от ши­ро­ты и се­зо­на в пре­де­лах от 0,22 до 0,45 см (тол­щи­на слоя озо­на при дав­ле­нии $p=$ 1 атм и темп-ре $T=$ 0 °C). В озо­но­вых ды­рах, на­блю­дае­мых вес­ной в Ан­тарк­ти­ке с нач. 1980-х гг., со­дер­жа­ние озо­на мо­жет па­дать до 0,07 см. Оно уве­ли­чи­ва­ет­ся от эк­ва­то­ра к по­лю­сам и име­ет го­до­вой ход с мак­си­му­мом вес­ной и ми­ни­му­мом осе­нью, при­чём ам­пли­ту­да го­до­во­го хо­да ма­ла в тро­пи­ках и рас­тёт к вы­со­ким ши­ро­там. Су­ще­ст­вен­ной пе­ре­мен­ной ком­по­нен­той А. яв­ля­ет­ся уг­ле­кис­лый газ, со­дер­жа­ние ко­то­ро­го в ат­мо­сфе­ре за по­след­ние 200 лет вы­рос­ло на 35%, что объ­яс­ня­ет­ся в осн. ан­тро­по­ген­ным фак­то­ром. На­блю­да­ет­ся его ши­рот­ная и се­зон­ная из­мен­чи­вость, свя­зан­ная с фо­то­син­те­зом рас­те­ний и рас­тво­ри­мо­стью в мор­ской во­де (со­глас­но за­ко­ну Ген­ри, рас­тво­ри­мость га­за в во­де умень­ша­ет­ся с рос­том её темп-ры).

Важ­ную роль в фор­ми­ро­ва­нии кли­ма­та пла­не­ты иг­ра­ет ат­мо­сфер­ный аэ­ро­золь – взве­шен­ные в воз­ду­хе твёр­дые и жид­кие час­ти­цы раз­ме­ром от не­сколь­ких нм до де­сят­ков мкм. Раз­ли­ча­ют­ся аэ­ро­зо­ли ес­те­ст­вен­но­го и ан­тро­по­ген­но­го про­ис­хо­ж­де­ния. Аэ­ро­золь об­ра­зу­ет­ся в про­цес­се га­зо­фаз­ных ре­ак­ций из про­дук­тов жиз­не­дея­тель­но­сти рас­те­ний и хо­зяйств. дея­тель­но­сти че­ло­ве­ка, вул­ка­нич. из­вер­же­ний, в результате подъ­ё­ма пы­ли вет­ром с по­верх­но­сти пла­не­ты, осо­бен­но с её пус­тын­ных ре­гио­нов, а так­же об­ра­зу­ет­ся из кос­мич. пы­ли, по­па­даю­щей в верх­ние слои А. Бóльшая часть аэ­ро­зо­ля со­сре­до­то­че­на в тро­по­сфе­ре, аэ­ро­золь от вул­ка­нич. из­вер­же­ний об­ра­зу­ет т. н. слой Юн­ге на выс. ок. 20 км. Наи­боль­шее ко­ли­че­ст­во ан­тро­по­ген­но­го аэ­ро­зо­ля по­па­да­ет в А. в ре­зуль­та­те ра­бо­ты ав­то­транс­пор­та и ТЭЦ, хи­мич. про­из­водств, сжи­га­ния то­п­ли­ва и др. Поэтому в не­ко­то­рых рай­онах со­став А. за­мет­но от­ли­ча­ет­ся от обыч­но­го воз­ду­ха, что по­тре­бо­ва­ло соз­да­ния спец. служ­бы на­блю­де­ний и кон­тро­ля за уров­нем за­гряз­не­ния ат­мо­сфер­но­го воз­ду­ха.

Эволюция атмосферы

Совр. А. име­ет, по-ви­ди­мо­му, вто­рич­ное про­ис­хо­ж­де­ние: она об­ра­зо­ва­лась из га­зов, вы­де­лен­ных твёр­дой обо­лоч­кой Зем­ли по­сле за­вер­ше­ния фор­ми­ро­ва­ния пла­не­ты ок. 4,5 млрд. лет на­зад. В те­че­ние гео­ло­гич. ис­то­рии Зем­ли А. пре­тер­пе­ва­ла зна­чит. из­ме­не­ния сво­его со­ста­ва под влия­ни­ем ря­да фак­то­ров: дис­си­па­ции (уле­ту­чи­ва­ния) га­зов, пре­им. бо­лее лёг­ких, в кос­мич. про­стран­ст­во; вы­де­ле­ния га­зов из ли­то­сфе­ры в ре­зуль­та­те вул­ка­нич. дея­тель­но­сти; хи­мич. ре­ак­ций ме­ж­ду ком­по­нен­та­ми А. и по­ро­да­ми, сла­гаю­щи­ми зем­ную ко­ру; фо­то­хи­мич. ре­ак­ций в са­мой А. под влия­ни­ем сол­неч­но­го УФ-из­лу­че­ния; ак­кре­ции (за­хва­та) ма­те­рии меж­пла­нет­ной сре­ды (напр., ме­те­ор­но­го ве­ще­ст­ва). Раз­ви­тие А. тес­но свя­за­но с гео­ло­гич. и гео­хи­мич. про­цес­са­ми, а по­след­ние 3–4 млрд. лет так­же с дея­тель­но­стью био­сфе­ры. Зна­чит. часть га­зов, со­став­ляю­щих совр. А. (азот, уг­ле­кис­лый газ, во­дя­ной пар), воз­ник­ла в хо­де вул­ка­нич. дея­тель­но­сти и ин­тру­зии, вы­но­сив­шей их из глу­бин Зем­ли. Ки­сло­род поя­вил­ся в за­мет­ных ко­ли­че­ст­вах ок. 2 млрд. лет то­му на­зад как ре­зуль­тат дея­тель­но­сти фо­то­син­те­зи­рую­щих ор­га­низ­мов, пер­во­на­чаль­но за­ро­див­ших­ся в по­верх­но­ст­ных во­дах океа­на.

По дан­ным о хи­мич. со­ста­ве кар­бо­нат­ных от­ло­же­ний по­лу­че­ны оцен­ки ко­ли­че­ст­ва уг­ле­ки­сло­го га­за и ки­сло­ро­да в А. гео­ло­ги­чес­ко­го про­шло­го. На про­тя­же­нии фа­не­ро­зоя (по­след­ние 570 млн. лет ис­то­рии Зем­ли) ко­ли­че­ст­во уг­ле­ки­с­ло­го га­за в А. из­ме­ня­лось в ши­ро­ких пре­де­лах в со­от­вет­ст­вии с уров­нем вул­ка­нич. ак­тив­но­сти, темп-рой океа­на и уров­нем фо­то­син­те­за. Боль­шую часть это­го вре­ме­ни кон­цен­тра­ция уг­ле­ки­сло­го га­за в А. бы­ла зна­чи­тель­но вы­ше со­вре­мен­ной (до 10 раз). Ко­ли­че­ст­во ки­с­ло­ро­да в А. фа­не­ро­зоя су­ще­ст­вен­но из­ме­ня­лось, при­чём пре­об­ла­да­ла тен­ден­ция к его уве­ли­че­нию. В А. до­кем­брия мас­са уг­ле­ки­сло­го га­за бы­ла, как пра­ви­ло, боль­ше, а мас­са ки­сло­ро­да – мень­ше по срав­не­нию с А. фа­не­ро­зоя. Ко­ле­ба­ния ко­ли­че­ст­ва уг­ле­ки­сло­го га­за ока­зы­ва­ли в про­шлом су­ще­ст­вен­ное влия­ние на кли­мат, уси­ли­вая пар­ни­ко­вый эф­фект при рос­те кон­цен­тра­ции уг­ле­ки­сло­го га­за, бла­го­да­ря че­му кли­мат на про­тя­же­нии осн. час­ти фа­не­ро­зоя был го­раз­до те­п­лее по срав­не­нию с совр. эпо­хой.

Атмосфера и жизнь

Без А. Зем­ля бы­ла бы мёрт­вой пла­не­той. Ор­га­нич. жизнь про­те­ка­ет в тес­ном взаи­мо­дей­ст­вии с А. и свя­зан­ны­ми с ней кли­ма­том и по­го­дой. Не­зна­чи­тель­ная по мас­се по срав­не­нию с пла­не­той в це­лом (при­мер­но мил­ли­он­ная часть), А. яв­ля­ет­ся не­пре­мен­ным ус­ло­ви­ем для всех форм жиз­ни. Наи­боль­шее зна­че­ние из ат­мо­сфер­ных га­зов для жиз­не­дея­тель­но­сти ор­га­низ­мов име­ют ки­сло­род, азот, во­дя­ной пар, уг­ле­кис­лый газ, озон. При по­гло­ще­нии уг­ле­ки­сло­го га­за фо­то­син­те­зи­рую­щи­ми рас­те­ния­ми соз­да­ёт­ся ор­га­нич. ве­ще­ст­во, ис­поль­зуе­мое как ис­точ­ник энер­гии по­дав­ляю­щим боль­шин­ст­вом жи­вых су­ществ, вклю­чая че­ло­ве­ка. Кис­лород не­об­хо­дим для су­ще­ст­во­ва­ния аэроб­ных ор­га­низ­мов, для ко­то­рых при­ток энер­гии обес­пе­чи­ва­ет­ся ре­ак­ция­ми окис­ле­ния ор­га­нич. ве­ще­ст­ва. Азот, ус­ваи­вае­мый не­ко­то­ры­ми мик­ро­ор­га­низ­ма­ми (азо­то­фик­са­то­ра­ми), не­об­хо­дим для ми­нер. пи­та­ния рас­те­ний. Озон, по­гло­щаю­щий жё­ст­кое УФ-из­лу­че­ние Солн­ца, зна­чи­тель­но ос­лаб­ля­ет эту вред­ную для жиз­ни часть сол­неч­ной ра­диа­ции. Кон­ден­са­ция во­дя­но­го па­ра в А., об­ра­зо­ва­ние об­ла­ков и по­сле­дую­щее вы­па­де­ние ат­мо­сфер­ных осад­ков по­став­ля­ют на су­шу во­ду, без ко­то­рой не­воз­мож­ны ни­ка­кие фор­мы жиз­ни. Жиз­не­дея­тель­ность ор­га­низ­мов в гид­ро­сфе­ре во мно­гом оп­ре­де­ля­ет­ся ко­ли­че­ст­вом и хи­мич. со­ста­вом ат­мо­сфер­ных га­зов, рас­тво­рён­ных в во­де. По­сколь­ку хи­мич. со­став А. су­ще­ст­вен­но за­ви­сит от дея­тель­но­сти ор­га­низ­мов, био­сфе­ру и А. мож­но рас­смат­ри­вать как часть еди­ной сис­те­мы, под­дер­жа­ние и эво­лю­ция ко­то­рой (см. Био­гео­хи­ми­че­ские цик­лы) име­ла боль­шое зна­че­ние для из­ме­не­ния со­ста­ва А. на про­тя­же­нии ис­то­рии Зем­ли как пла­не­ты.

Радиационный, тепловой и водный балансы атмосферы

Сол­неч­ная ра­диа­ция яв­ля­ет­ся прак­ти­че­ски единств. ис­точ­ни­ком энер­гии для всех фи­зич. про­цес­сов в А. Глав­ная осо­бен­ность ра­ди­ац. ре­жи­ма А. – т. н. пар­ни­ко­вый эф­фект: А. дос­та­точ­но хо­ро­шо про­пус­ка­ет к зем­ной по­верх­но­сти сол­неч­ную ра­диа­цию, но ак­тив­но по­гло­ща­ет те­п­ло­вое длин­но­вол­но­вое из­лу­че­ние зем­ной по­верх­но­сти, часть ко­то­ро­го воз­вра­ща­ет­ся к по­верх­но­сти в фор­ме встреч­но­го из­лу­че­ния, ком­пен­си­рую­ще­го ра­ди­ац. по­те­рю те­п­ла зем­ной по­верх­но­стью (см. Ат­мос­фер­ное из­лу­че­ние). В от­сут­ст­вие А. ср. темп-ра зем­ной по­верх­но­сти бы­ла бы –18 °C, в дей­ст­ви­тель­но­сти она 15 °C. При­хо­дя­щая сол­неч­ная ра­диа­ция час­тич­но (ок. 20%) по­гло­ща­ет­ся в А. (гл. обр. во­дя­ным па­ром, ка­п­ля­ми во­ды, уг­ле­кис­лым га­зом, озо­ном и аэ­ро­зо­ля­ми), а так­же рас­сеи­ва­ет­ся (ок. 7%) на час­ти­цах аэ­ро­зо­ля и флук­туа­ци­ях плот­но­сти (рэ­ле­ев­ское рас­сея­ние). Сум­мар­ная ра­диа­ция, дос­ти­гая зем­ной по­верх­но­сти, час­тич­но (ок. 23%) от­ра­жа­ет­ся от неё. Ко­эф. от­ра­же­ния оп­ре­де­ля­ет­ся от­ра­жат. спо­соб­но­стью под­сти­лаю­щей по­верх­но­сти, т. н. аль­бе­до. В сред­нем аль­бе­до Зем­ли для ин­те­граль­но­го по­то­ка сол­неч­ной ра­диа­ции близ­ко к 30%. Оно ме­ня­ет­ся от не­сколь­ких про­цен­тов (су­хая поч­ва и чер­но­зём) до 70–90% для свеже­вы­пав­ше­го сне­га. Ра­ди­ац. те­п­ло­об­мен ме­ж­ду зем­ной по­верх­но­стью и А. су­ще­ст­вен­но за­ви­сит от аль­бе­до и оп­ре­де­ля­ет­ся эф­фек­тив­ным из­лу­че­ни­ем по­верх­но­сти Зем­ли и по­гло­щён­ным ею про­ти­во­из­лу­че­ни­ем А. Ал­геб­ра­ич. сум­ма по­то­ков ра­диа­ции, вхо­дя­щих в зем­ную ат­мо­сфе­ру из кос­мич. про­стран­ст­ва и ухо­дя­щих из неё об­рат­но, на­зы­ва­ет­ся ра­диа­ци­он­ным ба­лан­сом.

Пре­об­ра­зо­ва­ния сол­неч­ной ра­диа­ции по­сле её по­гло­ще­ния А. и зем­ной по­верх­но­стью оп­ре­де­ля­ют те­п­ло­вой ба­ланс Зем­ли как пла­не­ты. Гл. ис­точ­ник те­п­ла для А. – зем­ная по­верх­ность; те­п­ло­та от неё пе­ре­да­ёт­ся не толь­ко в ви­де длин­но­вол­но­во­го из­лу­че­ния, но и пу­тём кон­век­ции, а так­же вы­де­ля­ет­ся при кон­ден­са­ции во­дя­но­го па­ра. До­ли этих при­то­ков те­п­ло­ты рав­ны в ср. 20%, 7% и 23% со­от­вет­ст­вен­но. Сю­да же до­бав­ля­ет­ся ок. 20% те­п­ло­ты за счёт по­гло­ще­ния пря­мой сол­неч­ной ра­диа­ции. По­ток сол­неч­ной ра­диа­ции за еди­ни­цу вре­ме­ни че­рез еди­нич­ную пло­щад­ку, пер­пен­ди­ку­ляр­ную сол­неч­ным лу­чам и рас­по­ло­жен­ную вне А. на ср. рас­стоя­нии от Зем­ли до Солн­ца (т. н. сол­неч­ная по­сто­ян­ная), ра­вен 1367 Вт/м2, из­ме­не­ния со­став­ля­ют 1–2 Вт/м2 в за­ви­си­мо­сти от цик­ла сол­неч­ной ак­тив­но­сти. При пла­не­тар­ном аль­бе­до ок. 30% средний по вре­ме­ни гло­баль­ный при­ток сол­неч­ной энер­гии к пла­не­те со­став­ля­ет 239 Вт/м2. По­сколь­ку Зем­ля как пла­не­та ис­пус­ка­ет в кос­мос в сред­нем та­кое же ко­ли­че­ст­во энер­гии, то, со­глас­но за­ко­ну Сте­фа­на – Больц­ма­на, эф­фек­тив­ная темп-ра ухо­дя­ще­го те­п­ло­во­го длин­но­вол­но­во­го из­лу­че­ния 255 К (–18 °C). В то же вре­мя ср. темп-ра зем­ной по­верх­но­сти со­став­ля­ет 15 °C. Раз­ни­ца в 33 °C воз­ни­ка­ет за счёт пар­ни­ко­во­го эф­фек­та.

Вод­ный ба­ланс А. в це­лом со­от­вет­ст­ву­ет ра­вен­ст­ву ко­ли­че­ст­ва вла­ги, ис­па­рив­шей­ся с по­верх­но­сти Зем­ли, ко­ли­че­ст­ву осад­ков, вы­па­даю­щих на зем­ную по­верх­ность. А. над океа­на­ми по­лу­ча­ет боль­ше вла­ги от про­цес­сов ис­па­ре­ния, чем над су­шей, а те­ря­ет в ви­де осад­ков 90%. Из­бы­ток во­дя­но­го па­ра над океа­на­ми пе­ре­но­сит­ся на кон­ти­нен­ты воз­душ­ны­ми по­то­ка­ми. Ко­ли­че­ст­во во­дя­но­го па­ра, пе­ре­но­си­мо­го в А. с океа­нов на кон­ти­нен­ты, рав­но объ­ё­му сто­ка рек, впа­даю­щих в океа­ны.

Движение воздуха

Зем­ля име­ет ша­ро­об­раз­ную фор­му, по­это­му к её вы­со­ким ши­ро­там при­хо­дит го­раз­до мень­ше сол­неч­ной ра­диа­ции, чем к тро­пи­кам. Вслед­ст­вие это­го ме­ж­ду ши­ро­та­ми воз­ни­ка­ют боль­шие тем­пе­ра­тур­ные кон­т­расты. На рас­пре­де­ле­ние темп-ры в су­ще­ст­вен­ной ме­ре влия­ет так­же вза­им­ное рас­по­ло­же­ние океа­нов и кон­ти­нен­тов. Из-за боль­шой мас­сы океа­нич. вод и вы­со­кой те­п­ло­ём­ко­сти во­ды се­зон­ные ко­ле­ба­ния темп-ры по­верх­но­сти океа­на зна­чи­тель­но мень­ше, чем су­ши. В свя­зи с этим в сред­них и вы­со­ких ши­ро­тах темп-ра воз­ду­ха над океа­на­ми ле­том за­мет­но ни­же, чем над кон­ти­нен­та­ми, а зи­мой – вы­ше.

Не­оди­на­ко­вый ра­зо­грев А. в раз­ных об­лас­тях зем­но­го ша­ра вы­зы­ва­ет не­од­но­род­ное по про­стран­ст­ву рас­пре­де­ле­ние ат­мо­сфер­но­го дав­ле­ния. На уров­не мо­ря рас­пре­де­ле­ние дав­ле­ния ха­рак­те­ри­зу­ет­ся от­но­си­тель­но низ­ки­ми зна­че­ния­ми вбли­зи эк­ва­то­ра, уве­ли­че­ни­ем в суб­тро­пи­ках (по­ясá вы­со­ко­го дав­ле­ния) и по­ни­же­ни­ем в сред­них и вы­со­ких ши­ро­тах. При этом над ма­те­ри­ка­ми вне­тро­пич. ши­рот дав­ле­ние зи­мой обыч­но по­вы­ше­но, а ле­том по­ни­же­но, что свя­за­но с рас­пре­де­ле­ни­ем темп-ры. Под дей­ст­ви­ем гра­ди­ен­та дав­ле­ния воз­дух ис­пы­ты­ва­ет ус­ко­ре­ние, на­прав­лен­ное от об­лас­тей с вы­со­ким дав­ле­ни­ем к об­лас­тям с низ­ким, что при­во­дит к пе­ре­ме­ще­нию масс воз­ду­ха. На дви­жу­щие­ся воз­душ­ные мас­сы дей­ст­ву­ют так­же от­кло­няю­щая си­ла вра­ще­ния Зем­ли (си­ла Ко­рио­ли­са), си­ла тре­ния, убы­ваю­щая с вы­со­той, а при кри­во­ли­ней­ных тра­ек­то­ри­ях и цен­тро­беж­ная си­ла. Боль­шое зна­че­ние име­ет тур­бу­лент­ное пе­ре­ме­ши­ва­ние воз­ду­ха (см. Тур­бу­лент­ность в ат­мос­фе­ре).

С пла­не­тар­ным рас­пре­де­ле­ни­ем дав­ле­ния свя­за­на слож­ная сис­те­ма воз­душ­ных те­че­ний (об­щая цир­ку­ля­ция ат­мо­сфе­ры). В ме­ри­дио­наль­ной плос­ко­сти в сред­нем про­сле­жи­ва­ют­ся две или три ячей­ки ме­ри­дио­наль­ной цир­ку­ля­ции. Вбли­зи эк­ва­то­ра на­гре­тый воз­дух под­ни­ма­ет­ся и опус­ка­ет­ся в суб­тро­пи­ках, об­ра­зуя ячей­ку Хэд­ли. Там же опус­ка­ет­ся воз­дух об­рат­ной ячей­ки Фер­ре­ла. В вы­со­ких ши­ро­тах час­то про­сле­жи­ва­ет­ся пря­мая по­ляр­ная ячей­ка. Ско­ро­сти ме­ри­дио­наль­ной цир­ку­ля­ции по­ряд­ка 1 м/с или мень­ше. Из-за дей­ст­вия си­лы Ко­рио­ли­са в боль­шей час­ти А. на­блю­да­ют­ся зап. вет­ры со ско­ро­стя­ми в сред­ней тро­по­сфе­ре ок. 15 м/с. Су­ще­ст­ву­ют срав­ни­тель­но ус­той­чи­вые сис­те­мы вет­ров. К ним от­но­сят­ся пас­са­ты – вет­ры, дую­щие от поя­сов вы­со­ко­го дав­ле­ния в суб­тро­пи­ках к эк­ва­то­ру с за­мет­ной вост. со­став­ляю­щей (с во­сто­ка на за­пад). Дос­та­точ­но ус­той­чи­вы мус­соны – воз­душ­ные те­че­ния, имею­щие чёт­ко вы­ра­жен­ный се­зон­ный ха­рак­тер: они ду­ют с океа­на на ма­те­рик ле­том и в про­ти­во­по­лож­ном на­прав­ле­нии зи­мой. Осо­бен­но ре­гу­ляр­ны мус­со­ны Ин­дий­ско­го ок. В сред­них ши­ро­тах дви­же­ние воз­душ­ных масс име­ет в осн. зап. на­прав­ле­ние (с за­па­да на вос­ток). Это зо­на атмо­сфер­ных фрон­тов, на ко­то­рых воз­ни­ка­ют круп­ные вих­ри – ци­кло­ны и ан­ти­ци­кло­ны, ох­ва­ты­ваю­щие мн. сот­ни и да­же ты­ся­чи ки­ло­мет­ров. Ци­кло­ны воз­ни­ка­ют и в тро­пи­ках; здесь они от­ли­ча­ют­ся мень­ши­ми раз­ме­ра­ми, но очень боль­ши­ми ско­ро­стя­ми вет­ра, дос­ти­гаю­ще­го ура­ган­ной си­лы (33 м/с и бо­лее), т. н. тро­пи­че­ские ци­кло­ны. В Ат­лан­ти­ке и на вос­то­ке Ти­хо­го ок. они на­зы­вают­ся ура­га­на­ми, а на за­па­де Ти­хо­го ок. – тай­фу­на­ми. В верх­ней тро­по­сфе­ре и ниж­ней стра­то­сфе­ре в об­лас­тях, раз­де­ляю­щих пря­мую ячей­ку ме­ри­дио­наль­ной цир­ку­ля­ции Хэд­ли и об­рат­ную ячей­ку Фер­ре­ла, час­то на­блю­да­ют­ся срав­ни­тель­но уз­кие, в сот­ни ки­ло­мет­ров ши­ри­ной, струй­ные те­че­ния с рез­ко очер­чен­ны­ми гра­ни­ца­ми, в пре­де­лах ко­то­рых ве­тер дос­ти­га­ет 100–150 и да­же 200 м/с.

Климат и погода

Раз­ли­чие в ко­ли­че­ст­ве сол­неч­ной ра­диа­ции, при­хо­дя­щей на раз­ных ши­ро­тах к раз­но­об­раз­ной по фи­зич. свой­ст­вам зем­ной по­верх­но­сти, оп­ре­де­ля­ет мно­го­об­ра­зие кли­ма­тов Зем­ли. От эк­ва­то­ра до тро­пич. ши­рот темп-ра воз­ду­ха у зем­ной по­верх­но­сти в ср. 25–30 °C и ма­ло ме­ня­ет­ся в те­че­ние го­да. В эк­ва­то­ри­аль­ном поя­се обыч­но вы­па­да­ет мно­го осад­ков, что соз­да­ёт там ус­ло­вия из­бы­точ­но­го ув­лаж­не­ния. В тро­пич. поя­сах ко­ли­че­ст­во осад­ков умень­ша­ет­ся и в ря­де об­лас­тей ста­но­вит­ся очень ма­лым. Здесь рас­по­ла­га­ют­ся об­шир­ные пус­ты­ни Зем­ли.

В суб­тро­пич. и сред­них ши­ро­тах темп-ра воз­ду­ха зна­чи­тель­но ме­ня­ет­ся в те­че­ние го­да, при­чём раз­ни­ца ме­ж­ду темп-ра­ми ле­та и зи­мы осо­бен­но ве­ли­ка в уда­лён­ных от океа­нов об­лас­тях кон­ти­нен­тов. Так, в не­ко­то­рых рай­онах Вост. Си­би­ри го­до­вая ам­пли­ту­да темп-ры воз­ду­ха дос­ти­га­ет 65 °C. Ус­ло­вия ув­лаж­не­ния в этих ши­ро­тах весь­ма раз­но­об­раз­ны, за­ви­сят в осн. от ре­жи­ма об­щей цир­ку­ля­ции А. и су­ще­ст­вен­но ме­ня­ют­ся от го­да к го­ду.

В по­ляр­ных ши­ро­тах темп-ра ос­та­ёт­ся низ­кой в те­че­ние все­го го­да, да­же при на­ли­чии её за­мет­но­го се­зон­но­го хо­да. Это спо­соб­ст­ву­ет ши­ро­ко­му рас­про­стра­не­нию ле­до­во­го по­кро­ва на океа­нах и су­ше и мно­го­лет­не­мёрз­лых по­род, за­ни­маю­щих в Рос­сии св. 65% её пло­ща­ди, в осн. в Си­би­ри.

За по­след­ние де­ся­ти­ле­тия ста­ли всё бо­лее за­мет­ны из­ме­не­ния гло­баль­но­го кли­ма­та. Темп-ра по­вы­ша­ет­ся боль­ше в вы­со­ких ши­ро­тах, чем в низ­ких; боль­ше зи­мой, чем ле­том; боль­ше но­чью, чем днём. За 20 в. ср.-го­до­вая темп-ра воз­ду­ха у зем­ной по­верх­но­сти в Рос­сии вы­рос­ла на 1,5–2 °C, при­чём в отд. рай­онах Си­би­ри на­блю­да­ет­ся по­вы­ше­ние на неск. гра­ду­сов. Это свя­зы­ва­ет­ся с уси­ле­ни­ем пар­ни­ко­во­го эф­фек­та вслед­ст­вие рос­та кон­цен­тра­ции ма­лых га­зо­вых при­ме­сей.

По­го­да оп­ре­де­ля­ет­ся ус­ло­вия­ми цир­ку­ля­ции А. и гео­гра­фич. по­ло­же­ни­ем ме­ст­но­сти, она наи­бо­лее ус­той­чи­ва в тро­пи­ках и наи­бо­лее из­мен­чи­ва в сред­них и вы­со­ких ши­ро­тах. Бо­лее все­го по­го­да ме­ня­ет­ся в зо­нах сме­ны воз­душ­ных масс, обу­слов­лен­ных про­хо­ж­де­ни­ем ат­мо­сфер­ных фрон­тов, ци­кло­нов и ан­ти­ци­кло­нов, не­су­щих осад­ки и уси­ле­ние вет­ра. Дан­ные для про­гно­за по­го­ды со­би­ра­ют­ся на на­зем­ных ме­тео­стан­ци­ях, мор­ских и воз­душ­ных су­дах, с ме­тео­ро­ло­гич. спут­ни­ков. См. так­же Ме­тео­ро­ло­гия.

Оптические, акустические и электрические явления в атмосфере

При рас­про­стра­не­нии элек­тро­маг­нит­но­го из­лу­че­ния в А. в ре­зуль­та­те реф­рак­ции, по­гло­ще­ния и рас­сея­ния све­та воз­ду­хом и разл. час­ти­ца­ми (аэ­ро­золь, кри­стал­лы льда, ка­п­ли во­ды) воз­ни­ка­ют раз­но­об­раз­ные оп­тич. яв­ле­ния: ра­ду­га, вен­цы, га­ло, ми­раж и др. Рас­сея­ние све­та обу­слов­ли­ва­ет ви­ди­мую вы­со­ту не­бес­но­го сво­да и го­лу­бой цвет не­ба. Даль­ность ви­ди­мо­сти пред­ме­тов оп­ре­де­ля­ет­ся ус­ло­вия­ми рас­про­стра­не­ния све­та в А. (см. Ат­мо­сфер­ная ви­ди­мость). От про­зрач­но­сти А. на разл. дли­нах волн за­ви­сят даль­ность свя­зи и воз­мож­ность об­на­ру­же­ния объ­ек­тов при­бо­ра­ми, в т. ч. воз­мож­ность ас­тро­но­мич. на­блю­де­ний с по­верх­но­сти Зем­ли. Для ис­сле­до­ва­ний оп­тич. не­од­но­род­но­стей стра­то­сфе­ры и ме­зо­сфе­ры важ­ную роль иг­ра­ет яв­ле­ние су­ме­рек. Напр., фо­то­гра­фи­ро­ва­ние су­ме­рек с кос­мич. ап­па­ра­тов по­зво­ля­ет об­на­ру­жи­вать аэ­ро­золь­ные слои. Осо­бен­но­сти рас­про­стра­не­ния элек­тро­маг­нит­но­го из­лу­че­ния в А. оп­ре­де­ля­ют точ­ность ме­то­дов дис­тан­ци­он­но­го зон­ди­ро­ва­ния её па­ра­мет­ров. Все эти во­про­сы, как и мн. дру­гие, изу­ча­ет ат­мо­сфер­ная оп­ти­ка. Реф­рак­ция и рас­сея­ние ра­дио­волн обу­слов­ли­ва­ют воз­мож­но­сти ра­дио­приё­ма (см. Рас­про­стра­не­ние ра­дио­волн).

Рас­про­стра­не­ние зву­ка в А. за­ви­сит от про­стран­ст­вен­но­го рас­пре­де­ле­ния темп-ры и ско­ро­сти вет­ра (см. Ат­мо­сфер­ная аку­сти­ка). Оно пред­став­ля­ет ин­те­рес для зон­ди­ро­ва­ния А. дис­танц. ме­то­да­ми. Взры­вы за­ря­дов, за­пус­кае­мых ра­ке­та­ми в верх­нюю А., да­ли бо­га­тую ин­фор­ма­цию о сис­те­мах вет­ров и хо­де темп-ры в стра­то­сфе­ре и ме­зо­сфе­ре. В ус­той­чи­во стра­ти­фи­ци­ро­ван­ной А., ко­гда темп-ра па­да­ет с вы­со­той мед­лен­нее адиа­ба­ти­че­ско­го гра­ди­ен­та (9,8 К/км), воз­ни­ка­ют т. н. внут­рен­ние вол­ны. Эти вол­ны мо­гут рас­про­стра­нять­ся вверх в стра­то­сфе­ру и да­же в ме­зо­сфе­ру, где они за­ту­ха­ют, спо­соб­ст­вуя уси­ле­нию вет­ра и тур­бу­лент­но­сти.

От­ри­ца­тель­ный за­ряд Зем­ли и обу­с­лов­лен­ное им элек­трич. по­ле А. вме­сте с элек­три­че­ски за­ря­жен­ны­ми ио­но­сфе­рой и маг­ни­то­сфе­рой соз­да­ют гло­баль­ную элек­трич. цепь. Важ­ную роль при этом иг­ра­ет об­ра­зо­ва­ние об­ла­ков и гро­зо­во­го элек­три­че­ст­ва. Опас­ность гро­зо­вых раз­ря­дов вы­зва­ла не­об­хо­ди­мость раз­ра­бот­ки ме­то­дов гро­зо­за­щи­ты зда­ний, со­ору­же­ний, ли­ний элек­тро­пе­ре­дач и свя­зи. Осо­бую опас­ность это яв­ле­ние пред­став­ля­ет для авиа­ции. Гро­зо­вые раз­ря­ды вы­зы­ва­ют ат­мо­сфер­ные ра­дио­по­ме­хи, по­лу­чив­шие назв. ат­мо­сфе­ри­ков (см. Сви­стя­щие ат­мо­сфе­ри­ки). Во вре­мя рез­ко­го уве­ли­че­ния на­пря­жён­но­сти элек­трич. по­ля на­блю­да­ют­ся све­тя­щие­ся раз­ря­ды, воз­ни­каю­щие на ост­ри­ях и ост­рых уг­лах пред­ме­тов, вы­сту­паю­щих над зем­ной по­верх­но­стью, на отд. вер­ши­нах в го­рах и др. (Эль­ма ог­ни). А. все­гда со­дер­жит силь­но ме­няю­ще­еся в за­ви­си­мо­сти от кон­крет­ных ус­ло­вий ко­ли­че­ст­во лёг­ких и тя­жё­лых ио­нов, ко­то­рые оп­ре­де­ля­ют элек­трич. про­во­ди­мость А. Глав­ные ио­ни­за­то­ры воз­ду­ха у зем­ной по­верх­но­сти – из­лу­че­ние ра­дио­ак­тив­ных ве­ществ, со­дер­жа­щих­ся в зем­ной ко­ре и в А., а так­же кос­мич. лу­чи. См. так­же Ат­мо­сфер­ное элек­три­чест­во.

Влияние человека на атмосферу

В те­че­ние по­след­них сто­ле­тий про­ис­хо­дил рост кон­цен­тра­ции пар­ни­ко­вых га­зов в А. вслед­ст­вие хо­зяйств. дея­тель­но­сти че­ло­ве­ка. Про­цент­ное со­дер­жа­ние уг­ле­ки­сло­го га­за воз­рос­ло с 2,86 10–2 две­сти лет на­зад до 3,8·10–2 в 2005, со­дер­жа­ние ме­та­на – с 0,7· 10–4 при­мер­но 300–400 лет на­зад до 1,8·10–4 в нач. 21 в.; ок. 20% в при­рост пар­ни­ко­во­го эф­фек­та за по­след­нее сто­ле­тие да­ли фре­о­ны, ко­то­рых прак­ти­че­ски не бы­ло в А. до сер. 20 в. Эти ве­ще­ст­ва при­зна­ны раз­ру­ши­те­ля­ми стра­то­сфер­но­го озо­на, и их про­изводство за­пре­ще­но Мон­ре­аль­ским про­то­ко­лом 1987. Рост кон­цен­тра­ции уг­ле­ки­сло­го га­за в А. вы­зван сжи­га­ни­ем всё воз­рас­таю­щих ко­ли­честв уг­ля, неф­ти, га­за и др. ви­дов уг­ле­род­но­го то­п­ли­ва, а так­же све­де́­ни­ем ле­сов, в ре­зуль­та­те че­го умень­ша­ет­ся по­гло­ще­ние уг­ле­ки­сло­го га­за пу­тём фо­то­син­те­за. Кон­цен­тра­ция ме­та­на уве­ли­чи­ва­ет­ся с рос­том до­бы­чи неф­ти и га­за (за счёт его по­терь), а так­же при рас­ши­ре­нии по­се­вов ри­са и уве­ли­че­нии по­го­ло­вья круп­но­го ро­га­то­го ско­та. Всё это спо­соб­ст­ву­ет по­те­п­ле­нию кли­ма­та.

Для из­ме­не­ния по­го­ды раз­ра­бо­та­ны ме­то­ды ак­тив­но­го воз­дей­ст­вия на ат­мо­сфер­ные про­цес­сы. Они при­ме­ня­ют­ся для за­щи­ты с.-х. рас­те­ний от гра­до­би­тия пу­тём рас­сеи­ва­ния в гро­зо­вых об­ла­ках спец. реа­ген­тов. Су­ще­ст­ву­ют так­же ме­то­ды рас­сея­ния ту­ма­нов в аэ­ро­пор­тах, за­щи­ты рас­те­ний от за­мо­роз­ков, воз­дей­ст­вия на об­ла­ка с це­лью уве­ли­че­ния осад­ков в нуж­ных мес­тах или для рас­сея­ния об­ла­ков в мо­мен­ты мас­со­вых ме­ро­прия­тий.

Изучение атмосферы

Све­де­ния о фи­зич. про­цес­сах в А. по­лу­ча­ют пре­ж­де все­го из ме­тео­ро­ло­гических на­блю­де­ний, ко­то­рые про­во­дят­ся гло­баль­ной се­тью по­сто­ян­но дей­ст­вую­щих ме­тео­ро­ло­гич. стан­ций и по­стов, рас­по­ло­жен­ных на всех кон­ти­нен­тах и на мн. ост­ро­вах. Еже­днев­ные на­блю­де­ния да­ют све­де­ния о темп-ре и влаж­но­сти воз­ду­ха, ат­мо­сфер­ном дав­ле­нии и осад­ках, об­лач­но­сти, вет­ре и др. На­блю­де­ния за сол­неч­ной ра­диа­ци­ей и её пре­об­ра­зо­ва­ния­ми про­во­дят­ся на ак­ти­но­мет­рич. стан­ци­ях. Боль­шое зна­че­ние для изу­че­ния А. име­ют се­ти аэ­ро­ло­гич. стан­ций, на ко­то­рых при по­мо­щи ра­дио­зон­дов вы­пол­ня­ют­ся ме­тео­ро­ло­гич. из­ме­ре­ния до выс. 30–35 км. На ря­де стан­ций про­во­дят­ся на­блю­де­ния за ат­мо­сфер­ным озо­ном, элек­трич. яв­ле­ния­ми в А., хи­мич. со­ста­вом воз­ду­ха.

Дан­ные на­зем­ных стан­ций до­пол­ня­ют­ся на­блю­де­ния­ми на океа­нах, где дей­ст­ву­ют «су­да по­го­ды», по­сто­ян­но на­хо­дя­щие­ся в оп­ре­де­лён­ных рай­онах Ми­ро­во­го ок., а так­же ме­тео­ро­ло­гич. све­де­ния­ми, по­лу­чае­мы­ми с н.-и. и др. су­дов.

Всё боль­ший объ­ём све­де­ний об А. в по­след­ние де­ся­ти­ле­тия по­лу­ча­ют с по­мо­щью ме­тео­ро­ло­гич. спут­ни­ков, на ко­то­рых ус­та­нов­ле­ны при­бо­ры для фо­тогра­фи­ро­ва­ния об­ла­ков и из­ме­ре­ния по­то­ков ульт­ра­фио­ле­то­вой, ин­фра­крас­ной и мик­ро­вол­но­вой ра­диа­ции Солн­ца. Спут­ни­ки по­зво­ля­ют по­лу­чать све­де­ния о вер­ти­каль­ных про­фи­лях темп-ры, об­лач­но­сти и её во­до­за­па­се, эле­мен­тах ра­ди­ац. ба­лан­са А., о темп-ре по­верх­но­сти океа­на и др. Ис­поль­зуя из­ме­ре­ния реф­рак­ции ра­дио­сиг­на­лов с сис­те­мы на­ви­гац. спут­ни­ков, уда­ёт­ся оп­ре­де­лять в А. вер­ти­каль­ные про­фи­ли плот­но­сти, дав­ле­ния и темп-ры, а так­же вла­го­со­дер­жа­ния. С по­мо­щью спут­ни­ков ста­ло воз­мож­ным уточ­нить ве­ли­чи­ну сол­неч­ной по­сто­ян­ной и пла­не­тар­но­го аль­бе­до Зем­ли, стро­ить кар­ты ра­ди­ац. ба­лан­са сис­те­мы Зем­ля – А., из­ме­рять со­дер­жа­ние и из­мен­чи­вость ма­лых ат­мо­сфер­ных при­ме­сей, ре­шать мн. др. за­да­чи фи­зи­ки ат­мо­сфе­ры и мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

Источник: bigenc.ru

Картинки атмосферы земли

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Мезосфера

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

 

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Источник: meteoinfo.ru

Атмосфера поверхности земли

Картинки атмосферы земли

Оболочка, которая покрывает нашу землю, называется атмосферой. Слово «атмосфера» в переводе с греческого означает — atmos — пар и spharia — шар. Формирование ее началось много миллиардов лет назад. Изначально она состояла из гелия и водорода, но в результате природных явлений, в которых принимали участие вулканы, атмосфера приобрела другой состав. Вулканы, во время извержения, выбрасывали газы, которые, впоследствии, вошли в состав атмосферы. Начался газообмен с водой, живыми организмами.

Атмосфера состоит из нескольких слоев, которые обеспечивают парниковый эффект: впускает тепло и не выпускает назад. Простирается атмосфера на несколько тысяч километров над землей и далее плавно переходит в космос. Воздух, которым мы дышим, тоже находится в атмосфере. Теперь, представьте, что было бы, если бы не было атмосферы.

Все природные явления, дождь, снег, гроза, ураганы, происходят в атмосфере.

Картинки атмосферы земли

Значение атмосферы для земли

Трудно переоценить значение атмосферы земли.

  • Газовая оболочка способствует тому, что, земля не остывает ночью и не нагревается сильно днем. Луна, например, лишена атмосферы, поэтому на ней нет таких благоприятных условий.
  • Метеориты, которые время от времени, летят в сторону земли, сгорают в слоях атмосферы, чем защищают ее от удара.
  • Ультрафиолет, который исходит от солнца, не доходит в полном объеме до земли, так как в качестве защиты выступает атмосфера. Ультрафиолетовые лучи, в большом количестве, очень вредны для всего живого.
  • Одной из составляющей атмосферы является кислород, которым мы дышим.
  • Вода свершает кругооборот в атмосфере, воздушные массы движутся — благодаря этому, поддерживается влажность и температура, комфортные для жизни.

Картинки атмосферы земли

Атмосфера для жизни на земле

Картинки атмосферы земли

Атмосфера, в результате эволюции, прошла большой путь, прежде чем создались условия, благоприятные для всего живого. Если говорить о том, в какой части атмосферы, человек может дышать, это зона не превышает 5 км над уровнем моря. Выше этой отметки наступает кислородное голодание.

Ежедневно, метеориты, массой около 100 тон, летят в сторону Земли. Атмосфера надежно защищает Землю от них.

Если бы не было атмосферы, на земле отсутствовал бы звук, который вызван колебаниями частиц воздуха. Тепло на земле, тоже благодаря атмосфере, так как атмосфера не дает теплу уйти в открытый космос. Небо голубого цвета потому, что лучи солнца, проходя через атмосферу, как через линзу, разлагаются на цвета.

Строение атмосферы земли

Картинки атмосферы земли

Между слоями атмосферы нет четких границ. Между ними есть пространства, которые считаются переходными. Переходные зоны между слоями, принято называть карманами. Здесь происходят основные изменения. Разные уровни атмосферы характерны определенными свойствами — температурой, плотностью, составом воздуха.

  1. Тропосфера
  2. Стратосфера
  3. Мезосфера
  4. Термосфера
  5. Экзосфера
  6. Ионосфера

Пространства между слоями, называются — тропопауза, стратопауза, мезопауза. Именно здесь осуществляется переход от одного слоя к другому.

Космический корабль, шаттл, находится в»кармане». На фото видны все слои атмосферы.

Шаттл на линии Кармана. На фото отчетливо видны все слои атмосферы

Слои атмосферы земли по порядку от поверхности земли

Картинки атмосферы земли

Тропосфера — самый близкий к земле слой атмосферы, характерный высокой плотностью, Именно в этой части мы сейчас находимся. Именно здесь происходят все погодные изменения, формируются облака, образуются ветра. Чем выше вверх, в тропосфере температура понижается. На фотографии ниже — слои атмосферы, самый нижний — тропосфера.

Слои атмосферы из космоса. Самый нижний, оранжевый слой — тропосфера.

Стратосфера — этот слой характерен большим содержанием азота. Облаков здесь почти нет, так как очень маленькое содержание пара. В отличие от тропосферы, температура повышается с набором высоты. Именно здесь совершают свои полеты самолеты. Разряженный воздух и низкая температура, позволяют экономить топливо.

Картинки атмосферы земли

Мезосфера — самый малоизученный слой. Летать могут здесь только самолеты с ракетным двигателем и то не больше 15-ти минут. Здесь давление газов очень маленькое и летательный аппарат зависнет в воздухе. В этом слое происходят фото-химические процессы, именно здесь обеспечивается голубое сияние неба.

Картинки атмосферы земли

Термосфера —  самый протяженный слой атмосферы. Здесь температура достигает +2000 градусов. Но ощущается как очень холодная. Это происходит потому, что молекул газа очень мало для переноса тепла. Термосфера, это, по сути, открытый космос. Именно в этот слой был запущен первый спутник с Юрием Гагариным на борту. В этом слое летают спутники, которые изучают поверхность Земли.

Картинки атмосферы земли

Экзосфера — самый верхний слой, после которого начинается космос. Состоит в основном из водорода. Через этот слой  происходит улетучивание газов в атмосферу.

Картинки атмосферы земли

Ионосфера — смесь газов в этом слое очень маленькая. Поэтому воздух здесь разряженный и полеты космических кораблей невозможны. Ионосфера состоит из трех слоев, каждый из которых имеет свои характеристики. Недавние исследования показали, что ионосфера отражает радиоволны и тем самым, способствует передаче коротковолновых радиосигналов.

Картинки атмосферы земли

Состав атмосферы земли

Атмосфера земли имеет состав, который состоит из газов, пыли, солей, продуктов горения, различных примесей. Основная составляющая — это газы. Состав газов не является постоянной величиной и все время меняется.

 

Картинки атмосферы земли

  • Углекислый газ является важным компонентом. Он необходим растениям, которые его поглощают, а выделяют кислород. Так же он образуется от горения и гниения. Если бы не было углекислого газа, растения не смогли бы жить.
  • Кислород — играет большую и, даже, главную роль в жизни человека и животных. Без кислорода не было бы жизни на земле.
  • Водяной пар — содержание его в атмосфере колеблется от 1 до 4 процентов. Это зависит от температуры воздуха. При низкой температуре его количество уменьшается, а при высокой, увеличивается.
  • Наличие других газов, в атмосфере, очень мало. Неон, гелий, метан, водород и др. — менее 1 процента.
  • Азот — его концентрация самая большая, это самый малоактивный газ. Человек при дыхании, вдыхает, в том числе, и азот, но организм человека, азот не усваивает. В атмосфере он необходим, чтобы разбавить кислород, так как, в чистом виде, кислород опасен.
  • Озон — защищает нас от ультрафиолета. Но, наше время, в результате деятельности человека, характерно разрушением озонового слоя. Ведется очень важная работа, всеми странами мира, по его восстановлению.

Картинки атмосферы земли

В результате деятельности человека — развитие промышленности, переработке природных ресурсов, в атмосферу выбрасывается много вредных веществ, которые образуют озоновые дыры. В озоновые дыры проникают ультрафиолетовые лучи и пагубно влияют на все живое. Ученые всего мира решают эту проблему.

Озоновая дыра в атмосфере над Антарктидой

Высота атмосферы земли

Картинки атмосферы земли

Слои атмосферы находятся на разном уровне от земли и уходят вверх на определенное количество километров.

Тропосфера — в самой верхней точке достигает 18 км — на тропической широте. В широтах полярных — 8-10 км,

Картинки атмосферы земли

Стратосфера — распространяется на высоту 50-55 км, этот слой характерен большим количеством озона. Температура здесь повышается и достигает отметки 0,8 градусов.

Картинки атмосферы земли

Мезосфера — находится на высоте — 80-85 км. Наличие свободных радикалов обеспечивает северное сияние.

Картинки атмосферы земли

Термосфера — начинается с 80-го километра и распространяется дальше на 800 км. Воздух здесь способен нагреваться до 1000 градусов тепла. Колебания температуры — 100 градусов в ту или другую сторону.

Картинки атмосферы земли

Ионосфера — объединение термосферы и мезосферы.

Картинки атмосферы земли

Масса атмосферы земли

Как и всякое физическое тело, атмосфера имеет вес. По сравнению с массой земли, масса атмосферы очень мала  и она составляет всего лишь одну миллионную долю от массы земли — 5,15*1015 т., т.е., приблизительно 5 квадриллионов миллионов тонн!

Картинки атмосферы земли
Масса кислорода в атмосфере земли

Содержание кислорода в атмосфере оптимально для жизнедеятельности человека. Его количество составляет 21 процент. Масса кислорода в атмосфере Земли: 5.15 * * 0.231 = 1.08 * кг. Избыток как и недостаток его, влияет пагубно на человека. Большое количество кислорода в составе атмосферы, может привести к разрушению тканей и слепоте. Недостаток кислорода ведет к летальным последствиям. Уравновешивают уровень кислорода растения, которые вдыхают углекислый газ, а выдыхают кислород. Если кислород вступает в реакцию с водородом и углеродом, получается окисление. Например, со временем странницы книг желтеют — это результат окисления.

Картинки атмосферы земли

Небо над землей голубого цвета, благодаря, кислороду, так как он рассеивает солнечные лучи. Из космоса видно, что землю окутывает дымка голубого цвета.

Азот в атмосфере земли

Картинки атмосферы земли

Азот в составе атмосферы составляет самый большой процент из всех газов — 78 процентов. Образовался он, путем выделения горных пород, извержения вулканов. Молекулы азота обладают малой скоростью и низкой способностью соединяться с другими веществами. В результате, азот накапливался длительное время в атмосфере и является «разбавителем» кислорода. Если бы не было азота, от одной искры на земле сгорела бы вся растительность.

Вода в атмосфере земли

Вода и все ее составляющие, несомненно, играют важную роль, как на земле, так и в атмосфере. Она может находиться в трех состояниях — жидком, газообразном и твердом. Жидкое — дождь, газообразное — пар,твердое — лед. Не смотря на то, что ее соотношение в атмосфере очень мало, значение ее огромное.

  • Облака и пар задерживают и поглощают радиацию, которая идет от солнца.
  • Задерживают тепло в виде испарения, которое идет от земли.
  • Погоду и климат определяет вода, которая находится в атмосфере.

Распределение воды в атмосфере очень неравномерно. Например, над пустынями она составляет 0,01%, над другими регионами — до 4%. Общая масса ее составляет приблизительно 400 тысяч пирамид Хеопса, 1,5 триллиона тонн. Непрерывно происходит круговорот воды — на землю льется дождь, восполняя водой, реки и моря, а с водоемов вода, наоборот, испаряется и поднимается вверх.

Эволюция атмосферы земли

Картинки атмосферы земли

Земля сформировалась 4,5 миллиардов лет назад. С ее развитием формировалась и атмосфера. Ее состав поначалу, конечно же, был другой. Только в процессе эволюции, сложных химических процессов, атмосфера смогла достичь того состояния, в котором находится сейчас.

В далекие времена, атмосфера земли была очень тонкая. Метеориты, которые падали на землю, образовывали круглые озера. Это видно на картинке.

Молодая Земля

Первыми элементами, которые окружали нашу планету, были гелий и водород. Концентрация их в атмосфере была очень мала, кроме того, эти подвижные вещества, с легкостью улетали в космос, что до сих пор они и делают. Внутри земли находилось много веществ, которые стремились вырваться наружу. Не малую роль в этом сыграли вулканы. Сера, аммиак, метан, углекислый газ — было выброшено вулканами в огромном количестве. Метан с аммиаком разлагались на азот, который сейчас занимает львиную долю в атмосфере.

Вулканы — одни из главных участников формирования атмосферы

Появление кислорода в корне изменило состояние планеты, началась настоящая революция. Вулканы выбрасывали в том числе, водяной пар, который расщеплялся, под действием ультрафиолета, на водород и кислород. Но кислород не задерживался надолго в атмосфере и улетучивался. Изменили ситуацию живые организмы, которые появились, так как они начали выделять кислород. В результате, за два миллиарда лет, концентрация кислорода достигла 21 процент.

Живые организмы использовали углерод для построения своих скелетов. В следствии этого, углекислого газа в атмосфере стало гораздо меньше, а недра земли пополнились органическими материалами и ископаемыми. На фотографии ниже — известняк с останками беспозвоночных древних организмов.

Известняк с останками древних безпозвоночных организмов

Миллионы лет менялась атмосфера земли.

Источник: luckclub.ru