На момент завершения саммита предварительные планы по сокращению эмиссий парниковых газов представили 189 государств. Пять стран, на долю которых приходится наибольший объем выбросов, предоставили следующие цифры по их снижению по отношению к 1990 году:

     • Евросоюз — 40%;

     • Россия — 30%;

     • США — 12-14%;

     • Китай — 6-18%;

     • Япония — 13%.

Официально страны должны озвучить свои обязательства по сокращению выбросов парниковых газов в день подписания документа. Важнейшее условие — они должны быть не ниже, чем уже заявленные цели в Париже.

Для мониторинга выполнения Парижского соглашения и взятых на себя странами обязательств предлагается сформировать специальную рабочую группу. Планируется, что она начнет работу уже в 2016 году. 

Разногласия и пути их решения


«Должны» заменили на «следовало бы»

На этапе обсуждения договора Россия выступала за то, чтобы соглашение носило юридически обязывающий характер для всех стран. Против этого выступали США. Как заявил неназванный дипломат, слова которого приводит агентство Associated Press, американская делегация настояла на том, чтобы в итоговом документе в разделе о показателях по сокращению выбросов в атмосферу слово «должны» было заменено на «следовало бы».

Такая структура договора позволяет обойтись без ратификации документа в Конгрессе США, который настроен крайне скептично в отношении экологической политики Обамы.

Конкретных обязательств нет

Другим предложением РФ было разделение ответственности за выбросы между всеми странами. Однако против этого выступили развивающиеся страны. По их мнению, большая часть нагрузки должна ложиться на развитые государства, которые долгое время являлись основными источниками выбросов. Между тем, сейчас в первую пятерку «загрязнителей» планеты, наряду с США и ЕС, входят Китай и Индия, которые считаются развивающимися странами. Россия находится на пятом месте по уровню выбросов СО2.

Как отметил французский эколог Николя Юло, в ходе конференции некоторые страны, такие как Саудовская Аравия, «приложили все усилия, чтобы максимально ослабить соглашение и вычеркнуть из него неудобные формулировки касательно сокращения выбросов и перехода к новым источникам энергии вместо традиционных углеводородов».


В результате в тексте документа отсутствуют какие-либо конкретные обязательства государств по снижению выбросов парниковых газов: предполагается, что каждая из стран будет самостоятельно определять свою политику в этой сфере.

Данный подход обусловлен тем, что среди стран — участников конференции — государства с разными возможностями, что не позволяет предъявлять им единые требования.

США «за все платить не собираются»

Еще одним пунктом, по которому страны долго не могли прийти к соглашению, стал вопрос финансирования. Несмотря на принятое решение продолжать выделять средства в Зеленый фонд, в Парижском договоре отсутствуют четко прописанные механизмы распределения средств и обязательств развитых стран.

В начале саммита президент Барак Обама признал, что Соединенные Штаты как один из главных «загрязнителей» планеты должны нести ответственность за сохранение окружающей среды для будущих поколений. Однако в кулуарах встречи члены делегации США четко дали понять, что «за все платить не собираются» и что они рассчитывают на активную финансовую поддержку других стран, таких как богатые нефтяные монархии Персидского залива.

Источник: tass.ru

7)В чем суть концепции эволюции и как она развивалась? в какой концепции совместились взгляды Дарвина и Кропоткина? Как происходила эволюция с позиции концепции коэволюции?


История Земли, со времени появления на ней органической жизни и до появления на ней человека, разделяется на три больших периода – эры, резко отличающиеся одна от другой, и носящих названия:

Палеозой – древняя жизнь,

Мезозой – средняя,

Неозой – новая жизнь.

Из них самый большой по времени – палеозой, он иногда разделяется на две части: ранний палеозой и поздний, так как астрономические, геологические, климатические и флористические условия позднего резко отличаются от раннего. В первый входят: кембрийский, силурийский и девонский периоды, во второй – каменноугольный и пермский.

До палеозоя была архейская эра, но тогда еще не было жизни.

Первая жизнь на Земле – это водоросли и вообще растения. Первые водоросли зародились в воде: так представляется современной науке возникновение первой органической жизни, и только позже появляются моллюски, питающиеся водорослями.

Водоросли переходят в наземную траву, гигантские травы переходят в травовидные деревья палеозоя.

В девонский период на Земле появляется буйная растительность, а в воде – жизнь в виде ее мелких представителей: простейших, трилобитов и т.д.

Теплый климат – на всем земном шаре, ибо нет еще современного неба с его солнцем, луной и звездами; все было покрыто густым, слабопроницаемым, мощным туманом из водяных паров, еще в колоссальном количестве окружающих землю, и только часть осела в водные бассейны океанов.

iv>

Земля несется в холодном мировом пространстве, но тогда она была одета в теплую, непроницаемую оболочку. Вследствие парникового (оранжерейного) эффекта весь ранний палеозой, включая даже и каменноугольный период, имеет тепловодную флору и фауну по всей земле: и на Шпицбергене, и в Антарктике – всюду залежи каменного угля, являющегося продуктом тропического леса, всюду была тепловодная морская фауна. Тогда лучи солнца не проникали непосредственно на землю, но преломлялись под известным углом через пары и освещали ее тогда иначе, чем сейчас: ночь была не такой темной и не такой длинной, а день не таким ярким. Сутки были короче нынешних. Не было ни зимы, ни лета, нет еще астрономических и геофизических причин для этого. Залежи каменного угля состоят из деревьев, не имеющих годичных колец, их структура трубчатая, как у травы, а не кольцевая. Значит, времен года не было. Не было и климатических поясов, тоже из-за парникового эффекта.

Современная палеонтология уже достаточно изучила все виды живых организмов кембрийского периода: около тысячи различных видов моллюсков, но есть основания полагать, что все же первая растительность и даже первые моллюски появились в конце архейской эры.

В следующий, силурийский период, количество моллюсков увеличивается до 10000 разновидностей, а в девонский период появляются двоякодышащие рыбы, то есть рыбы, не имеющие позвоночника, но покрытые панцирем, как переходная форма от моллюсков к рыбам. Они дышали и жабрами, и легкими. Они делают попытку превратиться в обитателей суши, но не им приходится осуществить это. Переход из моря на сушу выполнят амфибии, из класса позвоночных типа земноводных ящеров.


Первый представитель ящеров – археозавр – появляется в конце палеозоя, развитие получает в начале мезозойской эры, в триасовый период.

Отличительные свойства палеозоя:

  1. Свет не был отделен от тьмы, промежуточное состояние, среднее между светом и тьмой, между днем и ночью, частично продлевается до начала карбона.

  2. На небе не было видно светил

  3. Не было времен года и климатических поясов

Доказательства:

  1. отсутствие годичных колец на деревьях палеозоя, кроме последнего, пермского периода, когда они впервые появляются

  2. исчезновение с этого времени всех травовидных деревьев с трубчатой структурой ствола

  3. распространение тропической растительности по всей поверхности земли, включая полюсы

  4. такая же теплолюбивая фауна по всей земле

    >
  5. образование в гигантских количествах залежей каменного угля, как результат гибели травовидных лесов, не приспособленных к прямым лучам солнца и естественно обуглившихся и погибших от ультрафиолета и солнечной радиации, как обугливается трава в жаркое лето при засухе

  6. с пермского периода появляются климатические пояса

  7. распределение поздних флоры и фауны, по-разному приспособившихся к климатическим поясам.

Есть несколько иных объяснений этих явлений, но насколько они убедительны, можно судить из следующего:

а) Теория отклонения земной оси категорически опровергается астрономией

б) Теория перемещения полюсов за счет материков, плавающих в раскаленной магме (теория Вегенера), вполне правдоподобна, но, чтобы это движение было с полюсов на экватор, противоположно движению Земли, маловероятно, или, во всяком случае, противоречит физическим законам. Кроме того, это все равно ничего не объясняет, так как вся флора и фауна по всему земному шару в палеозое тепловодная, почти тропическая.

Далее, как увязать это объяснение с отсутствием годичных колец до пермского периода?

Следующему периоду в жизни Земли соответствует вся мезозойская эра, то есть периоды: триасовый, юрский и меловой. Это был самый расцвет животного царства. Самые разнообразные и причудливые формы рептилий населяли Землю. Они были как в морях, так и на суше и в воздухе.


Необходимо отметить, что весь класс насекомых появился еще в конце палеозоя, причем они были во много раз крупнее, чем их современные потомки.

Первые птицы появляются в юрский период. Размножались не только количественно, но и в разнообразные виды. У одного вида птиц рождались птенцы со своими особенностями, которые давали начало новому виду птиц, у которых в свою очередь появлялись птенцы, не совсем на них похожие.

Так развивался многообразный мир живых существ. В некоторые моменты были совершенно удивительные метаморфозы.

Палеонтологи знают многие экземпляры разных ступеней в развитии птиц и ни одного промежуточного вида между ними: это птеродактили, археоптериксы и совершенно развившиеся птицы.

Птеродактили – это полуптицы, полурептилии. Это ящер, у которого сильно развились пальцы лап и между ними появились пленки, как у летучей мыши. Но следующее поколение, сохранившее тот же длинный позвоночник, по обе стороны от которого выросли перья, резко отличается от предшественников. Туловище и крылья покрылись перьями, но на крыльях остались когти для цепляния за ветви.

Голова археоптерикса – морда зверя, унаследованная от птеродактиля, с острыми крупными зубами и мягкими губами. И только в следующем поколении отпадает позвоночный хвост и голова становится головой птицы с клювом.


Наступает последняя эра – неозойская. Она включает в себя третичный и ледниковый (четвертичный) периоды. Человек появляется к концу ледникового периода. Именно в неозойскую эру появились млекопитающие. Это почти современный нам мир животных. Фауну того времени можно в некоторой степени увидеть в Африке, которой не коснулся ледник. Самым большим вопросом является для многих вопрос об обезьянах. Большинство ученых склонны считать, что обезьяна никоим образом не может быть предшественником человека; но некоторые говорят, что должен быть какой-то общий предок. Но этого общего предка пока не нашли.

8). Чем занимается нейрофизиология? Опишите процессы торможения и возбуждения. Поясните понятия «условной и безусловный рефлекс». Чем отличаются инстинкты от рефлексов? Как изучают мозг с помощью электродов? Что такое разум и речь?

Изучением физиологии мозга и нервной системы в целом, в связи с их исключительной сложностью, занимается выделившаяся из физиологии самостоятельная отрасль знания — нейрофизиология.

Торможение возникает в результате сложных физико-химических изменений в тканях, также как и возбуждение, но внешне этот процесс проявляется ослаблением функции какого-либо органа. Выделяют две формы торможения: первичное и вторичное. Торможение наряду с возбуждением принимает активное участие в приспособлении организма к окружающей среде. Торможение играет важную роль в формировании условных рефлексов: освобождает центральную нервную систему от переработки менее существенной информации; обеспечивает координацию рефлекторных реакций.


И.П. Павлов опытным путем выявил два вида торможения условных рефлексов – внешнее и внутреннее. Внешнее торможение происходит в случае образования в коре больших полушарий нового очага возбуждения под действием сильного раздражителя, не связанного с данным условным рефлексом. Например, боль приводит к торможению пищевого условного рефлекса. Чем сильнее постороннее раздражение, тем больше его ослабляющее действие.

Внутренне торможение условного рефлекса развивается постепенно, в случае многократного неподкрепления условного раздражителя безусловным. Благодаря внутреннему торможению, в ЦНС происходит угасание биологически нецелесообразных для организма реакций, утративших свое значение в измененных условиях среды.

Основной формой деятельности нервной системы является рефлекторная. Все рефлексы принято делить на безусловные и условные. 

Безусловные рефлексы — это врожденные, генетически запрограммированные реакции организма, свойственные всем животным и человеку. Рефлекторные дуги этих рефлексов формируются в процессе пренатального развития, а в некоторых случаях — и в процессе постнатального развития. Например, половые врожденные рефлексы окончательно формируются у человека только к моменту половой зрелости в подростковом возрасте. Безусловные рефлексы имеют консервативные, мало изменяющиеся рефлекторные дуги, проходящие главным образом через подкорковые отделы центральной нервной системы. Участие коры в протекании многих безусловных рефлексов необязательно. 


Условные рефлексы — индивидуальные, приобретенные реакции высших животных и человека, выработавшиеся в результате научения (опыта). Условные рефлексы всегда индивидуально своеобразны. Рефлекторные дуги условных рефлексов формируются в процессе постнатального онтогенеза. Они характеризуются высокой подвижностью, способностью изменяться под действием факторов среды. Проходят рефлекторные дуги условных рефлексов через высший отдел головного мозга — КГМ.

Инстинкты. Более сложной, безусловно-рефлекторной, деятельностью являются инстинкты, биологическая природа которых пока остается неясной в своих деталях. В упрощенном виде инстинкты можно представить как сложный взаимосвязанный ряд простых врожденных рефлексов.

Для изучения мозга в него в разных местах вживляют электроды и снимают показания при предъявлении различных заданий. Например, если предъявлен простой арифметический тест, в момент первого предъявления цифры, в момент задачи задания, и в момент выдачи испытуемым ответа в разных зонах мозга реагируют разные нервные клетки. В момент предъявления цифры в соответствующей точке мозга реакция следует очень быстро, реакция эта как бы не очень умная. В другой точке мозга происходит реакция на предъявление задания (например, сложить или вычесть), не очень быстрая. О том, как узнали, в каких местах и на что будет реакция, я скажу потом. Потом в третий точке, через достаточно большой промежуток времени появляется активность, свидетельствующая о том, что есть результат.

Речь – форма общения между людьми, характеризующаяся как процесс приема, переработки и передачи информации с помощью языка. Специальных органов речи у человека нет, и речь реализуется с помощью аппаратов дыхания, жевания и глотания.

Источник: StudFiles.net

Как менялся климат за время существования Земли

Автор: О. Иващенко.
Источник: форум сайта «Глобальное потепление».

Изменения климата Земли в исторической перспективе

Со времени формирования Земли из протопланетного облака происходили сильные изменения в температурном режиме ее поверхности. После того, как почти прекратились бомбардировки Земли кусками протопланетного вещества, распалась большая часть радиоактивных изотопов элементов, уменьшилась диссипация энергии приливов (благодаря отодвиганию Луны), и произошла значительная гравитационная дифференциация земного вещества, эти источники тепла стали слишком слабы, и основными факторами, влияющими на температуру всей поверхности Земли в целом, остались только поток солнечной энергии, поступающей к Земле, а также условия прохождения его и переизлученного потока через атмосферу. Т.е. основными факторами остались только солнечная светимость, пропускание земной атмосферой солнечного излучения, а также парниковый эффект.

Если посмотреть, как менялись солнечная светимость и парниковый эффект за всю историю Земли, то окажется, что солнечная светимость и парниковый эффект изменялись разнонаправлено – солнечная светимость постепенно росла, а парниковый эффект в целом уменьшался (хотя у него наблюдались и колебания на более коротких промежутках времени). Эти разнонаправленные процессы, после того, как основная роль в формировании термического режима поверхности Земли перешла именно к ним, позволили удерживать температуры на поверхности Земли в относительно узком коридоре, в котором возможна биологическая жизнь.

В начальный момент существования Земли, около 4,5 млрд. лет назад, солнечная светимость составляла примерно 1/3 часть от нынешней величины – это связано с тем, что хоть звезда типа Солнца в стабильной фазе своего существования почти не меняется, некоторые медленные изменения все же происходят – водород в ядре постепенно выгорает, и это приводит к очень медленному, но все таки заметному постепенному росту светимости. Парниковый же эффект на начальных этапах существования Земли был очень мощным – значительный нагрев Земли в это время за счет выпадения протопланетных обломков, высокой радиоактивности, и прочих указанных в начале главы причин, вызывал мощную дегазацию земных недр, поток углекислого и других парниковых газов в атмосферу был высок, а эффективных путей вывода их из атмосферы еще не было. .

Изменение средней глобальной температуры поверхности Земли
Изменение средней глобальной температуры поверхности Земли, содержания углекислого газа и кислорода в атмосфере Земли, с архея по настоящее время, в самом грубом приближении.

Если в катархее большая часть земной поверхности была расплавлена (особенно значимую роль тут вероятно играла кинетическая энергия соударения с выпадающими на поверхность кусками протопланетного вещества), то в первой половине архея температуры на поверхности уже опустились до уровня примерно 150 градусов Цельсия и даже ниже, что в условиях мощной атмосферы с высоким давлением, позволило начать конденсироваться водяным парам. Наличие жидкой воды включило механизмы геохимического, неорганического механизма вывода углекислого газа из атмосферы. В это время температура опустилась примерно до 70-90°С, и сохранялась на таком уровне почти до конца архея.

К концу архея, примерно около 2,5 млрд. лет назад значительно уменьшилась тектоническая активность, что уменьшило дегазацию недр. Ускорился и вывод углекислого газа из атмосферы. В результате всего за сотню-полторы миллионов лет основные запасы углекислого газа были выведены из атмосферы, наступило первое в истории земли мощное оледенение, известное как гуронское. Оно продолжалось более сотни миллионов лет, и средняя температуры на поверхности Земли на уровне моря в это время составляла менее 10°С. В дальнейшем все же произошло некоторое накопление углекислого газа в атмосфере, и температуры повысились, хотя так и не достигли архейских значений. Средние температуры большей части протерозоя составляли около 35-40°С, как показывают исследования. Однако к концу протерозоя на процессы вывода углекислого газа из атмосферы начал влиять новый мощный фактор.

В период примерно 900-600 млн. лет назад, на Земле вновь прошла череда сильнейших оледенений. Похоже они были вызваны широким распространением к тому времени живых организмов, способных к фотосинтезу, причем в условиях, очень хороших для захоронения органики (отсутствие кислорода на океанических глубинах) и вывода углекислого газа из атмосферы на длительный срок. Периодическое чередование таких оледенений была вызвана, вероятно, изъятием очень больших объемов углекислого газа из атмосферы биотой, похолоданием и оледенением, и в конце гибелью большей части биомассы, что приводило к сильному сокращению вывода углекислого газа из атмосферы, его накоплению в атмосфере вновь, и опять к потеплению и возрождению жизни.

Но началу фанерозоя, около 600 млн. лет назад, в атмосфере накопилось уже очень много кислорода, кроме того, вода океанических глубин также насыщалась кислородом, благодаря совокупности биологических, так и геохимических факторов. В результате заработали и механизмы, эффективно возвращающие часть захороняемого углерода из органики обратно в атмосферу в виде углекислого газа. Т.е. эффектитвно заработали и процессы окисления захороняемой органики. Благодаря этому, мощные колебания содержания углекислого газа в атмосфере, и соответственно парникового эффекта, поуменьшились, и климатическая система стала стабильнее.

изменения температуры от докембрийских эпох до наших дней
а) Изменение содержания углекислого газа в атмосфере (в количествах, кратных современной концентрации), средней глобальной температуры, средней температуры тропических широт, а также величины оледенения начиная от начала фанерозоя (ок. 600 млн. лет назад) и до настоящего времени (Crowley, T.J. and Berner, R.A., 2001, CO2 and climate change, Science 292: 870-872);
б) сглаженные данные изменения температуры от докембрийских эпох до наших дней, с указанием конкретного температурного корридора.

Итак, начиная с фанерозоя, изменения средней глобальной температуры в целом стали относительно небольшими, до 10-15 градусов. В основном, это была более теплая эпоха, по сравнению с современностью, хотя за это время и произошли три оледенения, не достигшие однако, масштаба оледенений протерозоя. Это оледенения на границе верхнего ордовика-нижнего силура (460-420 млн. лет назад), слабое оледенение верхнего девона (370-355 млн. лет назад), и наиболее мощное среди них, пермо-карбоновое (350-230 млн. лет назад), начавшеес в каменноугольном периоде. Связывают их с усилением вывода из атмосферы углекислого газа, с возраставшим в эти периоды потоком захоронения углерода (что отражено даже в названии каменноугольного периода). Кроме того, возможно на колебания климата с приблизительными периодами в 150-250 млн. лет (а именно столько проходит между великими длительными оледенениями) влияет накопление захороненого углерода в предыдущие эпохи. Благодаря движению океанической коры и явлению постоянного подныривания и задвига одних плит под другие (субдукция), происходит модуляция выброса вулканами углекислого газа и метана в атмосферу, запасами углерода накопленного на океаническом дне в предыдущие эпохи.

После продолжительной, почти постоянно теплой мезозойской эры, температура опять начала постепенно падать. Падало и содержание углекислого газа в атмосфере – в начале кайнозоя оно было примерно в пять раз больше, чем в современную эпоху.

Изменение средней глобальной температуры в течение кайнозойской эры
Изменение средней глобальной температуры в течение кайнозойской эры, за последние 65 млн. лет.

Описывая изменения климата в относительно холодные эпохи, необходимо особо выделить одно особо важное обстоятельство. После того, как общее понижение температуры достигало такой величины, что в районе полюсов температура опускалась довольно близко к 0°С, к точке замерзания воды, на климат Земли начинали влиять очень сильно многие факторы, которые в теплые эпохи были малозаметны. Это происходит потому, что тогда даже малого влияния достаточно, чтобы в полярных районах начинали формироваться ледяные шапки, а значит, чтобы и возникала заметная обратная связь между небольшим первоначальным похолоданием, и ростом альбедо, что приводит к дальнейшему, уже большему похолоданию.

Так во второй половине эоцена благодаря тому, что ранее вплотную прижатая к Антарктиде Австралия оторвалась от последней, и начала дрейфовать в строну экватора, вокруг Антарктиды начало формироваться широтное циркумполярное течение, которое стало препятствием для притока к Антарктиде теплых вод, идущих от экватора, и это послужило толчком к началу формирования ледяного щита Антарктиды. В дальнейшем, уже в миоцене, после того, как и Южная Америка отодвинулась от Антарктиды, это широтное течение замкнулось, сформировалось окончательно, и полностью преградило доступ тепла, переносимого океаном, к Антарктиде. В результате, при том что продолжалось и снижение парникового эффекта, и сформировался столь мощный ледяной щит в Антарктиде.

Заметно было и влияние на климат горообразования, повлиявшее уже на атмосферную циркуляцию и перенос атмосферой тепла от экватора к полюсам. Это относиться прежде всего к горообразованию в Евразии, в которой на протяжении кайнозоя сформировался значительный горный пояс, от Пиренеев до Гималаев, что привело к ухудшению переноса атмосферой тепла и влаги в сторону Северного полюса.

Кроме того, сильно стали влиять на климат и циклы Миланковича – периодические изменения параметров земной орбиты, с периодами 23, 41 и 100 тыс. лет. Эти циклы определяют изменения количества солнечной энергии, получаемой различными широтными зонами Земли в отдельные сезоны. Если в теплые эпохи их влияние не превышало 1 градуса, то в холодные, после образования хотя бы небольшого ледяного покрова, их влияние на среднепланетарную температуру начинало возрастать, и в конце концов возрастало в несколько раз.

Это происходило прежде всего потому, что возникали сильные обратные связи между изменением температуры, площадью оледенения (а значит и величиной альбедо) и содержанием водяного пара в атмосфере над оледенением (который является основным парниковым газом и вымораживается над ледяным покровом, а ведь современный парниковый эффект от водяного пара превышает целых 20 градусов!).

Кстати, наличие таких обратных связей и сильное влияние ледяного покрова на местный климат приводит к тому, что изменения температуры в высоких широтах (если там есть оледенение), намного превышает изменение температуры в теплых приэкваториальных широтах (понятно, что при этом сильно растет и общая разница температур между экватором и полюсом). К примеру, при переходе между ледниковым периодом и относительным межледниковьем (типа нынешнего), средняя температура теплых областей, где отсутствовал ледяной покров, менялась всего на 1-2 градуса Цельсия, а изменения в полярных областях были около 10 градусов и выше (колебания в Северном полушарии были выше чем в Южном, в связи с тем, что происходили еще сильные изменения в океанической циркуляции – прежде всего в течении Гольфстрим). А при глобальном переходе от состояния с практически полным отсутсвием льда к состоянию ледниковой эпохи (наподобие ледниковых периодов четвертичного периода) изменения температуры в полярных областях были еще значительнее, составляя уже несколько десятков градусов.

Градиент температуры между экватором и полюсами
В теплые эпохи, наподобие мезозоя, градиент температуры между экватором и полюсом составлял около 15-20 градусов. В холодные эпохи, наподобие современной, когда возникало оледенение (сначала в приполярных регионах, распространяясь в сторону низких широт со временем), температура в приполярных регионах опускалась значительно сильнее чем на экваторе, на несколько десятков градусов, в то время как на экваторе изменения составляли всего несколько градусов. Градиент температуры между экватором и полюсами увеличивался при этом до 40-60 градусов.

Как видно из рисунка ниже, за последние 5 млн. лет при постепенном снижении температуры сильно росло влияние миланковических циклов (на данном рисунке хорошо видны 100-тысячелетние и наложенные на них 41-тысячелетние циклы), благодаря чему при общем снижении температуры росла амплитуда ее колебаний.

Изменение температуры за последние 5 млн. лет
Изменение температуры за последние 5 млн. лет по данным изотопного анализа органических карбонатов. Температурные колебания даны в эквиваленте колебаний температуры в приполярных областях (т. е. заметно более резких чем в среднем по планете)

Наиболее точно известны температуры (прежде всего высоких широт) и содержание углекислого газа и метана в атмосфере за последние несколько сотен тысяч лет. Это связано с тем, что есть возможность прямого измерения содержания указанных газов в пробах льда, взятого из ледяных щитов Антарктики и Арктики; кроме того, измерение температуры изотопным методом, благодаря доступу к древнему льду, позволяет проверять и подтверждать данные изотопного анализа, получаемые по карбонатным отложениям.

Изменение температуры
Изменение температуры и содержания некоторых парниковых газов за последние 160 тыс. лет по данным ледяных кернов.

На рисунке выше показано изменение температуры и содержания углекислого газа за последние 160 тыс. лет. При этом изменение температуры хорошо отображает миланковические циклы (даже видны 20-тысячилетние циклы). Хорошо видно и почти синхронное изменение содержания углекислого газа и температуры. Вместе с тем отмечается, что при переходе от холодной эпохи к более теплой, температура и содержание углекислого газа в атмосфере меняется синхронно, а при обратном переходе изменение концентрации углекислого газа чуть запаздывает по сравнению с изменением температуры.

Судя по всему, в относительно холодные эпохи, когда парниковый эффект сам по себе уже мал (по сравнению с теплыми эпохами, наподобие мезозоя), и существуют уже очаги оледенений, на климат за счет указанных выше обратных связей (по оледенению и водяному пару) начинают сильно влиять факторы Миланковича, и эти же факторы начинают заметно модулировать парниковый эффект и от углекислого газа и метана. Ведь существуют еще и обратные связи между содержанием углекислого газа и метана в атмосфере и температурой. За счет влияния последней на природные резервуары, в которых законсервированы выведенные из атмосферы парниковые газы, возникают к примеру, такие связи: при изменении температуры меняется растворимость углекислого газа в воде, могут разрушаться либо образовываться метангидраты, меняется скорость выброса в атмосферу углекислого газа и метана при разрушении отмершей органики.

Этим можно объяснить то запаздывание снижения уровня углекислого газа в атмосфере по сравнению со снижением температуры, которое наблюдается при похолодании – ведь переход углекислого газа из атмосферы в остывающий океан (холодные воды могут вместить больше углекислого газа) требует довольно длительного времени (в том числе это связано и с растворением карбонатных пород, для высвобождения карбонат-ионов и образования бикарбонат-ионов – а это тысячелетние характерные времена). А синхронное повышение температуры и содержания углекислого газа в атмосфере при потеплении может быть обусловлено мощным выбросом углекислого газа из растаявших при отступлении ледников болот и общей активизации процессов биологического разложения органики. Да и обратное разложение в океане бикарбонат-ионов с разделением на углекислый газ и карбонат-ионы идет уже быстро.

Изменения средней годовой температуры за последние 140 лет
Изменения средней годовой температуры за последние 140 лет для всего земного шара и изменения среднегодовой температуры за последние 1000 лет для Северного полушария.
Изменения даны в отклонениях от средней глобальной температуры периода 1960-1990 гг.

Вместе с тем, нельзя и недооценивать влияние парникового эффекта холодные эпохи – он значительно усиливает колебания температуры. К примеру, оценка влияния парниковых газов за последний климатический цикл на изменение температуры в Антарктиде составляет около 50%, т. е. примерно 3 градуса из 6 (амплитуды ледниково-межледникового изменения) – это изменения температуры благодаря изменению парникового эффекта.

Изменение выброса углекислого газа от человеческой деятельности за последние 140 лет
Изменение выброса углекислого газа от человеческой деятельности за последние 140 лет.

В последнее время температура на поверхности планеты начала быстро и сильно расти. Причем, как видно из представленных выше графиков, рост температуры хорошо совпадает с выбросами углекислого газа от человеческой деятельности. Вместе с тем, надо обратить внимание на небольшое потепление в 30-40 годах, заметное на графике. Это потепление связывают не столько с повышением содержания углекислого газа в атмосфере (его в то время было еще маловато), сколько с увеличением прозрачности атмосферы для солнечного излучения, уменьшением альбедо в это время. Дело в том, что примерно с 20х годов ХХ века на несколько десятилетий установилась низкая вулканическая активность, что привело к уменьшению поступления аэрозолей, отражающих солнечный свет, в атмосферу. Однако вскоре вулканическая активность восстановила свой уровень, количество аэрозолей в атмосфере возросло, и дальнейшее потепление было обусловлено только парниковыми газами.

Скорость климатических изменений и уникальность настоящего момента

Как видно из представленных материалов, изменения глобальной средней температуры на Земле были обычно довольно медленными, для колебаний около 1 градуса и более. Даже наиболее резкие изменения в циклах Миланковича, шли со скоростью примерно 1-1,5°С за 10 тыс. лет, и то в относительно высоких широтах, с ледяным покровом (изменение в среднем по планете в несколько раз меньше, ведь в низких, приэкваториальных широтах, температура меняется очень слабо). В настоящее же время изменения средней глобальной температуры примерно на 1°С, произошли за время около 100 лет, а прогнозируемые в моделях МГЭИК (IPCC) изменения составляют еще 2-6 градусов за последующие 100 лет.

Вместе с тем, резкие изменения климата в истории Земли все же бывали. Правда они были преимущественно довольно локальными, не распространяясь полностью на всю планету. По настоящему глобальное резкое изменение климата в истории Земли известно только одно – это эоценовый термический максимум. Однако вначале разберемся с локальными изменениями.

При исследовании ледяных кернов Гренландии за последние несколько десятков тысяч лет были обнаружены резкие колебания температуры – менее чем за столетие из очень холодного состояния, местный климат в Гренландии теплел более чем на 10 градусов, температура поднималась до почти современных (правда тоже довольно низких) значений.

Изменения температуры за последние 40 тыс. лет
Изменения температуры за последние 40 тыс. лет в приполярных регионах Северного и Южного полушария по данным изотопного анализа ледяных кернов. Хорошо заметны резкие колебания в Северном полушарии и практическое отсутствие их в Южном.

Резкие изменения температуры в эпоху «юного дриаса» и несколько более ранних эпох, заметны не только в Гренландии, но и в Европе, да и во многих других районах Северного полушария. Однако в южном полушарии эти изменения почти не заметны, а в Антарктиде и вовсе отсутствуют (в эпоху «юного дриаса» в Антарктиде правда тоже было небольшое изменение, начавшееся, однако на 1000 лет раньше и бывшее заметно слабее). Подобные резкие изменения температуры в районе Северной Атлантики связывают с резкими изменениями течения Гольфстрим, которое несет теплые поверхностные воды из приэкваториальных районов к приполярным. Подобные резкие, но относительно локальные изменения могут произойти и в самом ближайшем будущем, под действием даже значительно менее заметных глобальных изменений климата.

Как уже указано выше, в истории Земли на сегодняшний день известно и одно довольно резкое глобальное изменение климата. Это эоценовый термический максимум 55 млн. лет назад (см. резкий пик на одном из рисунков выше, там где представлен график изменения средней глобальной температуры за последнее 67 млн. лет). Это событие началось с резкого и быстрого повышения температуры, за несколько тысяч лет потепление на поверхности океанов составило 8°С,  глубинные воды потеплели на 6°С. И потом около 200 тыс. лет потребовалось для восстановления прежнего состояния.

Эоценовый термический максимум 55 млн. лет назад
Эоценовый термический максимум 55 млн. лет назад характеризовался быстрым и значительным подъемом температуры поверхности Мирового океана и глубинных вод. При этом отмечалось и резкое повышение содержания метана в атмосфере.

Это резкое изменение связывают с большим выбросом метана в атмосферу, из подвергнувшихся внезапному разложению запасов метангидратов, предположительно благодаря начавшейся тектонической активности в районе одного из больших скоплений метангидратов, либо благодаря изменению океанических течений. Как раз к тому времени на океаническом дне уже около десятка млн. лет, как существовали относительно благоприятные условия для накопления метангидратов – ведь температура, и особенно глубинных вод, по окончании мезозойской эры заметно понизилась. Это и позволило накопиться заметно количеству метангидратов. Под воздействием внешней силы они начали интенсивно разрушаться, а далее, благодаря сильному влиянию выбросов метана на парниковый эффект, уже сами выбросы и потепление от них, способствовали дальнейшему разрушению метангидратов, пока их запасы не исчерпались, и поступление метана в атмосферу из этого источника не прекратилось.

Подобная ситуация резкого, и даже более резкого чем тогда, глобального потепления может повториться и в близком будущем – ведь прогнозируемое потепление в несколько градусов, от обычных антропогенных выбросов парниковых газов, уже вполне может повлиять на условия залегания метангидратов, вполне может нарушить их стабильность. А накоплено сейчас метангидратов в примерно десять раз больше, чем было накоплено ко времени эоценового термического максимума.

Источник: www.ladoga-lake.ru

Обзор нынешнего глобального изменения климата

Изменение климата — колебания климата Земли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, по одной из версий, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется как правило (особенно в контексте экологической политики) для обозначения изменения в современном климате (см. глобальное потепление).

Факторы изменения климата

Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, — это:

изменения солнечной радиации и орбиты Земли.

изменение размеров и взаимного расположения материков и океанов,

изменение светимости солнца,

изменения параметров орбиты Земли,

изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,

изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,

изменение отражательной способности поверхности Земли (альбедо),

изменение количества тепла, имеющегося в глубинах океана.

Климатические изменения на Земле

Погода — это ежедневное состояние атмосферы. Погода является хаотичной не линеарной динамической системой. Климат — это усредненное состояние погоды и он, напротив, стабилен и предсказуем. Климат включает в себя такие показатели как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.

Оледенения

Ледники признаны одними из самых чувствительных показателей изменения климата. Они существенно увеличиваются в размерах во время охлаждения климата (т. н. «малые ледниковые периоды») и уменьшаются во время потепления климата. Ледники растут и тают из-за природных изменений и под влиянием внешних воздействий. В прошлом веке ледники не были способны регенерировать достаточно льда в течение зим, чтобы восстановить потери льда во время летних месяцев.

Самые значительные климатические процессы за последние несколько миллионов лет — это гляциальные и интергляциальные циклы текущего ледникового периода, обусловленные изменениями орбиты Земли. Изменение состояния континентальных льдов и колебания уровня моря в пределах 130 метров являются в большинстве регионов ключевыми следствиями изменения климата.

Изменчивость мирового океана

В масштабе десятилетий климатические изменения могут быть результатом взаимодействия атмосферы и мирового океана. Многие флуктуации климата, включая наиболее известную южную осцилляцию Эль-Ниньо, а также североатлантическую и арктическую осцилляции, происходят отчасти благодаря возможности мирового океана аккумулировать тепловую энергию и перемещению этой энергии в различные части океана. В более длительном масштабе в океанах происходит термохалинная циркуляция, которая играет ключевую роль в перераспределении тепла и может значительно влиять на климат.

Климатическая память

В более общем аспекте изменчивость климатической системы является формой гистерезиса, т. е. это значит, что настоящее состояние климата является не только следствием влияния определенных факторов, но также и всей историей его состояния. Например, за десять лет засухи озера частично высыхают, растения погибают, и площадь пустынь увеличивается. Эти условия вызывают, в свою очередь, менее обильные дожди в последующие за засухой годы. Т. о. изменение климата является саморегулирующимся процессом, поскольку окружающая среда реагирует определенным образом на внешние воздействия, и, изменяясь, сама способна воздействовать на климат.

Парниковые газы

Принято считать, что парниковые газы являются главной причиной глобального потепления. Парниковые газы имеют также значение для понимания климатической истории Земли. Согласно исследованиям, парниковый эффект, возникающий в результате нагревания атмосферы тепловой энергией, удерживаемой парниковыми газами, является ключевым процессом, регулирующим температуру Земли.

В течение последних 600 млн лет концентрация диоксида углерода в атмосфере варьировались от 200 до более чем 5 000 чнм из-за воздействия геологических и биологических процессов. Однако в 1999 г. Вейзер и др. показали, что на протяжении последних десятков миллионов лет нет строгой корреляции между концентрацией парниковых газов и изменением климата и что более важная роль принадлежит тектоническому движению литосферных плит. Позднее Ройер и др. использовали корреляцию СО2 — климат, чтобы вывести значение «чувствительности климата». Есть несколько примеров быстрых изменений концентрации парниковых газов в земной атмосфере, имеющих строгую корреляцию с сильным потеплением, среди которых термальный максимум палеоцена — эоцена, вымирание видов перми — триаса и конец варяжской «Земли — снежка» (snowball earth event).

Растущий уровень диоксида углерода считается главной причиной глобального потепления, начиная с 1950 года. Согласно данным Межгосударственной группы экспертов по изменению климата (МГЭИК) от 2007 года, концентрация СО2 в атмосфере в 2005 году составила 379 чнм3, в доиндустриальный период она составляла 280 чнм3.

Чтобы предотвратить резкое потепление в ближайшие годы, концентрация углекислоты должна быть снижена до уровня, существовавшего до индустриальной эпохи — до 350 частей на миллион (0,035%) (сейчас — 385 частей на миллион и увеличивается на 2 миллионные доли (0,0002%) в год, в основном из-за сжигания ископаемого топлива и вырубки лесов). [1]

Ученым уже давно известны способы приостановления или даже прекращения массовых вырубок леса. Ещё в начале прошлого века американские исследователи прогнозировали, что выращивание конопли в промышленных масштабах способно остановить вырубку лесов, потому что урожай конопли с 10 тысяч гектаров пашни даёт столько же бумаги, сколько и лес, поваленный на площади 40 тысяч гектаров. Это связано с тем, что один гектар конопли даёт 5-6 кубометров древесины в год, а один гектар лесных угодьев – вдвое меньше. [2]

Имеется скептическое отношение к геоинженерным методам изъятия углекислоты из атмосферы, в частности, к предложениям захоранивать углекислый газ в тектонических трещинах или закачивать его в породы на океанском дне: изъятие 50 миллионных долей газа по этой технологии будет стоить, по меньшей мере, 20 триллионов долларов, что в два раза больше национального долга США. [1]

Тектоника литосферных плит

На протяжении длительных отрезков времени тектонические движения плит перемещают континенты, формируют океаны, создают и разрушают горные хребты, т. е. создают поверхность, на которой существует климат. Недавние исследования показывают, что тектонические движения усугубили условия последнего ледникового периода: около 3 млн лет назад северо- и южноамериканская плиты столкнулись, образовав Панамский перешеек и закрыв пути для прямого смешивания вод Атлантического и Тихого океанов.

Солнечное излучение

Изменение солнечной активности на протяжении последних нескольких столетий

Солнце является основным источником тепла в климатической системе. Солнечная энергия, превращённая на поверхности Земли в тепло, является неотъемлемой составляющей, формирующей земной климат. Если рассматривать длительный период времени, то в этих рамках Солнце становится ярче и выделяет больше энергии, так как развивается согласно главной последовательности. Это медленное развитие влияет и на земную атмосферу. Считается, что на ранних этапах истории Земли Солнце было слишком холодным для того, чтобы вода на поверхности Земли была жидкой, что привело к т. н. «парадоксу слабого молодого Солнца».

На более коротких временных отрезках также наблюдаются изменения солнечной активности: 11-летний солнечный цикл и более длительные модуляции. Однако 11-летний цикл возникновения и исчезновения солнечных пятен не отслеживается явно в климатологических данных. Изменение солнечной активности считается важным фактором наступления малого ледникового периода, а также некоторых потеплений, наблюдаемых между 1900 и 1950 годами. Циклическая природа солнечной активности ещё не до конца изучена; она отличается от тех медленных изменений, которые сопутствуют развитию и старению Солнца.

Изменения орбиты

По своему влиянию на климат изменения земной орбиты сходны с колебаниями солнечной активности, поскольку небольшие отклонения в положении орбиты приводят к перераспределению солнечного излучения на поверхности Земли. Такие изменения положения орбиты называются циклами Миланковича, они предсказуемы с высокой точностью, поскольку являются результатом физического взаимодействия Земли, ее спутника Луны и других планет. Изменения орбиты считаются главными причинами чередования гляциальных и интергляциальных циклов последнего ледникового периода. Результатом прецессии земной орбиты являются и менее масштабные изменения, такие как периодическое увеличение и уменьшение площади пустыни Сахара.

Вулканизм

Одно сильное извержение вулкана способно повлиять на климат, вызвав похолодание длительностью несколько лет. Например, извержение вулкана Пинатубо в 1991 году существенно повлияло на климат. Гигантские извержения, формирующие крупнейшие магматические провинции, случаются всего несколько раз в сто миллионов лет, но они влияют на климат в течение миллионов лет и являются причиной вымирания видов. В начале ученые полагали, что причиной похолодания является эмитированная в атмосферу вулканическая пыль, поскольку она препятствует достигнуть поверхности Земли солнечному излучению. Однако измерения показывают, что большая часть пыли оседает на поверхности Земли в течение шести месяцев.

Источник: MirZnanii.com