Хроматин ядра — это комплекс дезоксирибонуклеиновых кислот с белками, где ДНК находится в различной степени конденсации.

При световой микроскопии хроматин представляет собой глыбки неправильной формы, не имеющие четких границ, окрашивающиеся основными красителями. Слабо и сильно конденсированные зоны хроматина плавно переходят друг в друга. По электронной и светооптической плотности выделяют электронноплотный, ярко окрашенный гетерохроматин и менее окрашенный, менее электронно-плотный эухроматин.

Гетерохроматин — зона сильно конденсированной ДНК, связанной с гистоновыми белками. При электронной микроскопии заметны темные глыбки неправильной формы.

Гетерохроматин представляет собой плотно упакованные скопления нуклеосом. Гетерохроматин в зависимости от локализации подразделяют на пристеночный, матричный и перинуклеарный.

Пристеночный гетерохроматин прилежит к внутренней поверхности ядерной оболочки, матричный распределен в матриксе кариоплазмы, а перинуклеарный гетерохроматин примыкает к ядрышку.


Эухроматин — это участок слабо конденсированной ДНК. Эухроматин соответствует участкам хромосом, которые перешли в диффузное состояние, но между конденсированным и деконденсированным хроматином нет четкой границы. С нуклеиновыми кислотами в эухроматине связаны в основном негистоновые белки, но имеются и гистоны, формирующие нуклеосомы, которые рыхло распределены между участками неконденсированной ДНК. Негистоновые белки проявляют менее выраженные основные свойства, более разнообразны по химическому составу, жолюционно гораздо более изменчивы. Они участвуют в транскрипции и регулируют этот процесс. На уровне трансмиссионной электронной микроскопии эухроматин представляет собой структуру низкой электронной плотности, состоящую из мелкозернистых и тонкофибриллярных структур.

Нуклеосомы — это сложные дезоксирибонуклеопротеидные комплексы, содержащие ДНК и белки диаметром около 10 нм. Нуклеосомы состоят из 8 белков — гистонов Н2а, Н2в, НЗ и Н4, располагающихся в 2 ряда.

Вокруг белкового макромолекулярного комплекса фрагмент ДНК образует 2,5 спиральных витка и охватывает 140 нуклеотидных пар. Такой участок ДНК называют коровым и обозначают как core-ДНК (nDNA). Зону ДНК между нуклеосомами иногда называют линкером. Линкерные участки занимают около 60 пар нуклеотидов и их обозначают как iDNA.

Гистоны — это низкомолекулярные, эволюционно консервативные белки с выраженными основными свойствами. Они контролируют считывание генетической информации. В области нуклеосомы процесс транскрипции блокируется, но при необходимости может произойти «раскручивание» спирали ДНК, вокруг нее активизируется полимеризация яРНК. Таким образом, гистоны значимы как белки, контролирующие реализацию генетической программы и функциональную специфическую активность клетки.


Нуклеосомный уровень организации имеет и эухроматин, и гетерохроматин. Однако если к области линкеров присоединяется гистон Н1, то нуклеосомы объединяются между собой, и происходит дальнейшая конденсация (уплотнение) ДНК с образованием грубых конгломератов — гетерохроматина. В эухроматине же значительной конденсации ДНК не происходит.

Конденсация ДНК может происходить по типу сверхбусин или соленоида. При этом восемь нуклеосом компактно прилежат друг к другу и формируют сверхбусину. И в соленоидной модели, и в сверхбусине нуклеосомы, вероятнее всего, лежат в виде спирали.

ДНК может стать еще более компактной, формируя хромомеры. В хромомере фибриллы дезоксирибонуклеопротеида объединяются в петли, скрепленные негистоновыми белками. Хромомеры могут располагаться более или менее компактно. Хромомеры в процессе митоза становятся еще более конденсированными, образуя хромонему (нитевидную структуру). Хромонемы видны в световой микроскоп, образуются в профазу митоза и участвуют в образовании хромосом, располагаясь в виде спиральной укладки.

Морфологию хромосом удобнее изучать при их наибольшей конденсации в метафазе и в начале анафазы. В этом состоянии хромосомы имеют форму палочек разной длины, но с довольно постоянной толщиной. В них хорошо заметна зона первичной перетяжки, которая делит хромосому на два плеча.


Часть хромосом содержит вторичную перетяжку. Вторичная перетяжка представляет собой ядрышковый организатор, так как в интерфазу именно на этих участках происходит формирование ядрышек.

В области первичной перетяжки прикрепляются центромеры, или кинетохоры. Кинетохор представляет собой пластинку дискоидальной формы. К кинетохорам присоединяются микрогрубочки, которые связаны с центриолями. Микротрубочки «растаскивают» хромосомы в митозе.

Хромосомы могут существенно отличаться по размерам и соотношению плеч. Если плечи равны или почти равны, то они метацентрические. Если одно из плеч очень короткое (почти незаметное), то такая хромосома акроцентрическая. Промежуточное положение занимает субметацентрическая хромосома. Хромосомы, имеющие вторичные перетяжки, иногда называют спутниковыми.

Тельца Барра (половой хроматин) — эго особые структуры хроматина, чаще встречающиеся в клетках самок. В нейронах эти тельца находятся возле ядрышка. В эпителии они лежат пристеночно и имеют овальную форму, в нейтрофилах выступают в цитоплазму в виде «барабанной палочки», а в нейронах имеют округлую форму. Они встречаются и 90 % женских и только в 10 % мужских клеток. Тельце Барра соответствует одной из Х-половых хромосом, которая, как полагают, находится в конденсированном состоянии. Выявление телец Барра имеет значение для определения половой принадлежности животного.


Перихроматиновые и интерхроматиновые фибриллы встречаются в матриксе кариоплазмы и лежат либо вблизи хроматина (перихроматиновые), либо рассеяны (интерхроматиновые). Предполагают, что эти фибриллы являются слабо конденсированными рибонуклеиновыми кислотами, попавшими в косой или продольный срез.

Перихроматиновые гранулы — частицы размером 30…50 нм, высокой электронной плотности. Они лежат на периферии гетерохроматина и содержат ДНК и белки; это локальный участок с плотно упакованными нуклеосомами.

Интерхроматиновые гранулы имеют высокую электронную плотность, диаметр 20…25 нм и представляют собой скопление рибонуклеиновых кислот и ферментов. Это могут быть субъединицы рибосом, транспортируемых к ядерной оболочке.

Источник: www.activestudy.info

Ядро — обязательная составная часть полноценной клетки. Оно содержит геном и продуцирует макромолекулы, контролирующие синтетические процессы цитоплазмы. Клетки без ядра (эритроциты млекопитающих, кровяные пластинки, центральные волокна хрусталика) не способны продуцировать белок и соответственно ограничены в метаболической активности. Форма ядер и их размеры в клетках различного типа весьма разнообразны и специфичны. Для большинства плоских, кубических и округлых клеток характерна шарообразная форма ядра. Такую же форму имеют отростчатые нервные клетки, тогда как в числе шарообразных клеток крови имеются клетки с сегментированными ядрами (рис. 6).

В ядре различают ядерную оболочку, хроматин, ядрышко и ядерный сок.


Хроматин ядра
Рис. 6. Форма ядер в различных клетках:

1 — круглая, пузырьковидная; 2 — овальная; 3 — палочковидная; 4 — подковообразная; 5 — кольцевидная; 6 — неправильно-кольцевидная; 7 — подковообразная; S — трехлопастная.

Ядерная оболочка (кариолемма) состоит из двух элементарных липопротеидных мембран, разделенных перинуклеарным пространством в 20 — 100 нм (рис. 7 и 8). На определенном расстоянии мембраны ядерной оболочки формируют ядерные поры диаметром 80 — 90 нм. В области поры наружная и внутренняя мембраны ядерной оболочки сближаются и непосредственно переходят одна в другую. Количество пор зависит от функциональной активности клетки. В мембраны пор включены три ряда гранул по восемь гранул в каждом, расположенные последовательно со стороны ядра, в центре поры и со стороны цитоплазмы клетки. Каждая гранула снабжена фибриллой. Последние при определенном положении, перпендикулярном к стенке поры, в совокупности образуют «диафрагму», закрывающую пору (рис. 9). Электронно-микроскопическим анализом установлен непосредственный переход наружной мембраны ядерной оболочки в мембраны эндо-плазматической сети цитоплазмы, что, очевидно, необходимо учитывать при оценке возможных путей переноса веществ через ядерную оболочку.


Хроматин ядра получил свое название за способность интенсивно окрашиваться основными красителями (chroma — краска), что зависит главным образом от присутствия в ядре дезоксирибонуклеиновой кислоты (ДНК). Последняя является характерной составной частью хромосом, определяющей закономерности основных жизненных процессов в клетках. Химический анализ хромосом свидетельствует, что выделенное из их ядер вещество (дезоксирибонуклеопротеид — ДНП) содержит ДНК (40% общей массы), незначительное количество РНК (до 1%) и белки (60%, 85% гистонов и 15% кислых белков).

Молекула ДНК представляет собой двойную спираль нуклеотпдов. Специфичность структуры молекул ДНК и РНК, характерная для каждого организма, определяется содержанием и последовательностью локализации в их составе нуклеотидов, различных по азотистым основаниям. Химический состав и строение ДНК,Хроматин ядра
Рис. 7. Электронная микрофотография ядра кроветворной клетки (ув. 16000):

1 — оболочка ядра; 2 — поры в оболочке; 3 — глыбки хроматина; 4 — ядрышко; 5 — гранулярная сеть (по Фаусету).


Хроматин ядра
Рис. 8. Схема интерфазного ядра клетки (по Заварзину и Хазаровой):

1 — поверхностный аппарат ядра; 2, 3 — мембраны ядерной оболочки (2 — наружная, 3 — внутренняя, между ними перинуклеарное пространство); 4 — плотная пластика; 5 — поровой комплекс; 6 — рибосомы; 7 — гетерохроматин; 8 — эухроматин (ДЫП); 9 — элементы ядерного матрикса; 10 — РШТ-частицы; 11 — ядрышко; 12 — околоядерный хроматин.

Хроматин ядра
Pиc. 9. Тонкая организация ядерной поры:

1 — перинуклеарное пространство; 2 — внутренняя ядерная мембрана; 3 — внешняя ядерная мембрана; 4 — периферические субъединицы; 5 — центральная гранула (по Франке).


механизм ее синтеза и синтеза РНК подробно излагаются в курсе генетики.

Из хроматина построены хромосомы. Однако хромосомы как палочковидные или нитевидные структуры видны только в определенные фазы деления клеток. В ядрах неделящихся клеток значительные участки каждой хромосомы деконденсированы или деспирализованы. Эти дисперсные, или растянутые, участки хромосом активны в процессах синтеза. Они плохо окрашиваются гистологическими красителями. Дисперсный хроматин называют эухроматином. Участки хромосом, которые остаются конденсированными, интенсивно окрашиваются и выглядят на гистологических препаратах как базофильные глыбки в ядре. Они функционально не активны.

Конденсированный хроматин в ядре неделящейся клетки называют гетерохроматином.

Белки хромосом представлены гистонами и негистоновыми белками.

Гистоны характеризуются высоким сродством к ДНК и образуют с ней характерные структурные комплексы. В составе хромосом различают пять фракций гистонов: H1, Н2а, Н2б, Н3, Н4. Четыре из них (Н2а, Н2б, Н3 и Н4 по две молекулы каждого вида) формируют глобули — нуклеосомы — 20 нм в диаметре. Участки молекул ДНК в два витка спирали (140 нуклеотидных пар молекулы) стабилизируются нуклеосомами. Нить ДНК, расположенная между нуклеосомами, имеет различную длину и состоит из 10 — 70 пар оснований. Молекула гистона Hl связана с этими сегментами хромосомы и участвует в установлении и стабилизации высокоупорядоченной структуры хромосомы (рис. 10).


Растянутая молекула ДНК нуклеосомы и промежуточных участков составляют филаменты (10 нм в диаметре). В присутствии ионов магния филаменты конденсируются с участием гистона H1 в структурные комплексы высшего порядка диаметром 20 — 30 нм и более.

Микроскопическая картина хроматина ядра клеток соответствует степени напряженности синтетических процессов определенных участков хромосом. При активизации последних хромосомы деспирализуются и рассредоточиваются — базофильная субстанция (эухроматин) исчезает. Функциональные неактивные участки хромосом уплотнены и микроскопически выявляются как базофильные глыбки хроматина (гетерохроматин). Количество и локализация конденсированного хроматина хромосом интерфазных ядер различных типов клеток соответствует специфичности активности их белкового обмена. Конденсированный хроматин преимущественно выявляется на внутренней поверхности ядерной оболочки и в разной степени в виде глыбок в других зонах ядра. Максимально конденсируется хроматин в период митотического деления клеток, когда хромосомы выключаются из процессов синтеза, уплотняясь, формируют характерные для каждого вида клеток наборы хромосом.

Ядрышко — тельце сферической формы диаметром 1 — 5 мкм, сильно преломляющее свет. Размеры его варьируют в зависимости от физиологического состояния клеток. Наиболее крупные ядрышки встречаются в быстро размножающихся эмбриональных клетках и клетках опухолей. Формирование ядрышка зависит от специфического участия хромосомы — ядрышкового организатора (рис. 11). Число ядрышек в ядре соответствует числу ядрышковых организаторов. Последние обычно располагаются в области вторичных перетяжек хромосом и содержат гены, кодирующие синтез рибосомальной РНК. Ядрышко окрашивается кислыми и особенно основными красителями.


Функция ядрышек — формирование рибосом. При небольших увеличениях электронного микроскопа в ядрышке обнаруживают аморфную часть и нуклеолонему (ядрышковая нить), представляющую собой сеть нитей толщиной 60 — 80 нм. При больших увеличениях электронного микроскопа можно видеть, что аморфная часть состоит из филаментов толщиной 5 — 8 нм, а нуклеолонема построена из филаментов толщиной 5 — 8 нм и гранул диаметром 15 — 20 нм. Филаменты и гранулы состоят из РНК. На периферии ядрышка располагается околоядрышковый хроматин. Его рассматривают как конденсированную часть хроматина ядрышкового организатора. Электронно-микроскопические исследования с использованием меченого уридина показали, что сначала метка включается в фибриллы, а затем в гранулы. Следовательно,

Хроматин ядра
Рис. 10. Схема различных уровней строения ДАП:

1 — нуклеосомы; 2 — межнуклеосомальные участки ДНК; 3 — фибрилла ДНП с диаметром 20 — 25 нм (по Ченцову).

Хроматин ядра
Рис. 11. Схема организации ядрышка:

1 — околоядрышковый хроматин; 2 — ДНК ядрышкового организатора (область ДНК с рибосомальными генами); 3 — фибриллярная зона; 4 — гранулярная зона; 5 — белки и РНП ядрышкового матрикса.

вначале формируются фибриллы, затем конфигурация их изменяется и они превращаются в гранулы. В ядрышке РНК связывается с белком. Здесь происходит сборка субъединиц рибосом, которые, по-видимому, и являются гранулярным компонентом ядрышка. Окончательное формирование рибосом происходит вые ядрышка.

Ядерный сок (кариоплазма) — микроскопически бесструктурное вещество ядра. Он содержит различные белки (нуклеопротеиды, гликопротеиды), ферменты и соединения, участвующие в процессах синтеза нуклеиновых кислот, белков и других веществ, входящих в состав кариоплазмы. Электронно-микроскопически в ядерном соке выявляют рибонуклеопротеидные гранулы 15 нм в диаметре.

В ядерном соке выявлены гликолитические ферменты и их субстраты, участвующие в синтезе и расщеплении свободных нуклеотидов и их компонентов, энзимы белкового и аминокислотного обмена и др. Сложные процессы жизнедеятельности ядра обеспечиваются энергией, освобождающейся в процессе гликолиза, ферменты которого содержатся в ядерном соке.

Хроматин ядра

Отзывов (0)

Добавить отзыв

Источник: HistologyBook.ru

Лекция № .

Количество часов: 2

 

 

Клеточное  ЯДРО

 

1.     Общая характеристика интерфазного ядра.  Функции ядра

2.     Ядерная оболочка, строение и функциональное значение

3.     Строение и функции хроматина и хромосом

4.     Ядрышко.  Кариоплазма.  Ядерный белковый матрикс

 

1.     Общая характеристика интерфазного ядра

Ядро — это важнейшая составная часть клетки, которая имеется практически во всех клетках многоклеточных организмов. Большинство клеток имеет одно ядро, но бывают двуядерные и многоядерные клетки (например, поперечно-полосатые мышечные волокна).  Двуядерность и многоядерность обусловлены функциональными особенностями или патологическим состоянием клеток.  Форма и размеры ядра очень изменчивы и зависят от вида организма, типа, возраста и функционального состояния клетки. В среднем объем ядра составляет приблизительно 10% от общего объема клетки.  Чаще всего ядро имеет округлую или овальную форму размером от 3 до 10 мкм в диаметре.  Минимальный размер ядра составляет 1 мкм (у некоторых простейших), максимальный — 1 мм (яйцеклетки некоторых рыб и земноводных).  В некоторых случаях наблюдается зависимость формы ядра от формы клетки.  Ядро обычно занимает центральное положение, но в дифференцированных клетках может быть смещено к периферийному участку клетки.  В ядре сосредоточена практически вся ДНК эукариотической клетки.

Основными функциями ядра являются:

1)    Хранение и передача генетической информации;

2)    Регуляция синтеза белка, обмена веществ и энергии в клетке.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводится. Поэтому нарушение любой из этих функций приведет к гибели клетки. Все это указывает на ведущее значение ядерных структур в процессах синтеза нуклеиновых кислот и белков.

Одним из первых ученых продемонстрировавших роль ядра в жизнедеятельности клетки был немецкий биолог Хаммерлинг. В качестве экспериментального объекта Хаммерлинг использовал крупные одноклеточные морские водоросли Acetobularia mediterranea и А. crenulata.  Эти близкородственные виды хорошо отличаются друг от друга по форме «шляпки».  В основании стебелька находится ядро. В одних экспериментах шляпку отделяли от нижней части стебелька.  В результате было установлено, что для нормального развития шляпки необходимо ядро. В других экспериментах стебелек с ядром одного вида водоросли соединялся со стебельком без ядра другого вида. У образовавшихся химер всегда развивалась шляпка, типичная для того вида, которому принадлежало ядро.

Общий план строения интерфазного ядра одинаков у всех клеток.  Ядро состоит из ядерной оболочки, хроматина, ядрышек, ядерного белкового матрикса и кариоплазмы (нуклеоплазмы).  Эти компоненты встречаются практически во всех неделящихся клетках эукариотических одно- и многоклеточных организмов.

 

2.     Ядерная оболочка, строение и функциональное значение

Ядерная оболочка (кариолемма, кариотека) состоит из внешней и внутренней ядерных мембран толщиной по 7 нм.  Между ними располагается перинуклеарное пространство шириной от 20 до 40 нм.  Основными химическими компонентами ядерной оболочки являются липиды (13-35%) и белки (50-75%). В составе ядерных оболочек обнаруживаются также небольшие количества ДНК (0-8%) и РНК (3-9%).  Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким — фосфолипидов. Ядерная оболочка непосредственно связана с эндоплазматической сетью и содержимым ядра. С обеих сторон к ней прилегают сетеподобные структуры. Сетеподобная структура, выстилающая внутреннюю ядерную мембрану, имеет вид тонкой оболочки и называется ядерной ламиной.  Ядерная ламина поддерживает мембрану и контактирует с хромосомами и ядерными РНК. Сетеподобная структура, окружающая наружную ядерную мембрану, гораздо менее компактна. Внешняя ядерная мембрана усеяна рибосомами, участвующими в синтезе белка. В ядерной оболочке имеются многочисленные поры диаметром около 30-100 нм.  Количество ядерных пор зависит от типа клетки, стадии клеточного цикла и конкретной гормональной ситуации. Так чем интенсивнее синтетические процессы в клетке, тем больше пор имеется в ядерной оболочке. Ядерные поры довольно лабильные структуры, т.  е.  в зависимости от внешнего воздействия способны изменять свой радиус и проводимость. Отверстие поры заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют ядерным поровым комплексом.  Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит средство построения концептуальных моделей стороны ядра, другой — средство построения концептуальных моделей стороны цитоплазмы, третий расположен в центральной части пор.  Размер гранул около 25 нм.  От гранул отходят фибриллярные отростки.  Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры.  В центре отверстия часто можно видеть так называемую центральную гранулу.

Ядерно-цитоплазматический транспорт

Процесс транслокации субстрата через ядерную пору (для случая импорта) состоит из нескольких стадий.  На первой стадии транспортирующийся комплекс заякоривается на обращенной в цитоплазму фибрилле.  Затем фибрилла сгибается и перемещает комплекс ко входу в канал ядерной поры.  Происходит собственно транслокация и освобождение комплекса в кариоплазму.  Известен и обратный процесс — перенос веществ из ядра в цитоплазму.  Это в первую очередь касается транспорта РНК синтезируемого исключительно в ядре. Также существует другой путь переноса веществ из ядра в цитоплазму.  Он связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, а затем содержимое их изливается или выбрасывается в цитоплазму.

Таким образом, обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями: через поры и путем отшнуровывания.

Функции ядерной оболочки:

1. Барьерная.  Эта функция заключается в отделении содержимого ядра от цитоплазмы. В результате оказываются пространственно разобщенными процессы синтеза РНК/ДНК от синтеза белка.

2. Транспортная. Ядерная оболочка активно регулирует транспорт макромолекул между ядром и цитоплазмой.

3. Организующая. Одной из основных функций ядерной оболочки является ее участие в создании внутриядерного порядка.

 

3.     Строение и функции хроматина и хромосом

Наследственный материал может находиться в ядре клетки в двух структурно-функциональных состояниях:

1.     Хроматин. Это деконденсированное, метаболически активное состояние, предназначенное для обеспечения процессов транскрипции и редупликации в интерфазе.

2.     Хромосомы. Это максимально конденсированное, компактное, метаболически неактивное состояние, предназначенное для распределения и транспортировки генетического материала в дочерние клетки.

Хроматин. В ядре клеток выявляются зоны плотного вещества, которые хорошо окрашиваются основными красителями. Эти структуры получили название "хроматин" (от греч. «хромо» – цвет, краска).  Хроматин интерфазных ядер представляет собой хромосомы, находящиеся в деконденсированном состоянии.  Степень деконденсации хромосом может быть различной.  Зоны полной деконденсации называются эухроматином.  При неполной деконденсации в интерфазном ядре видны участки конденсированного хроматина, называемого гетерохроматином. Степень деконденсации хроматина в интерфазе отражает функциональную нагрузку этой структуры. Чем "диффузнее" распределен хроматин в интерфазном ядре, тем интенсивнее в нем синтетические процессы. Уменьшение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина. Максимальная конденсация конденсированного хроматина достигается во время митотического деления клеток. В этот период хромосомы не выполняют никаких синтетических функций.

В химическом отношении хроматин состоит из ДНК (30-45%), гистонов (30-50%), негистонных белков (4-33%) и небольшого количества РНК.  ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера.  Средний размер репликона около 30 мкм.  Репликоны — участки ДНК, которые синтезируются как независимые единицы. Репликоны имеют начальную и терминальную точки синтеза ДНК. РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания. Гистоны синтезируются на полисомах в цитоплазме, причем этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами. Хроматиновая нить представляет собой двойную спираль ДНК, окружающую гистоновый стержень. Она состоит из повторяющихся единиц – нуклеосом. Количество нуклеосом огромно.

Хромосомы (от.  греч.  хромо и сома) — это органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов.

Хромосомы представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У них имеется зона первичной перетяжки, которая делит хромосому на два плеча.  Хромосомы с равными называют метацентрическими, с плечами неодинаковой длины — субметацентрическими. Хромосомы с очень коротким, почти незаметным вторым плечом называются акроцентрическими.

В области первичной перетяжки находится центромера, представляющая собой пластинчатую структуру в виде диска. К центромере прикрепляются пучки микротрубочек митотического веретена, идущие в направлении к центриолям.  Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют ядрышковыми организаторами.  Здесь локализована ДНК, ответственная за синтез р-РНК.  Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами. В отличие от них разорванные концы хромосом могут присоединяться к таким же разорванным концам других хромосом.

Размеры хромосом у разных организмов варьируют в широких пределах.  Так, длина хромосом может колебаться от 0,2 до 50 мкм.  Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные — у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных или растений. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у малярийного плазмодия, лошадиной аскариды. У человека число хромосом составляет 46, у шимпанзе, таракана и перца – 48, плодовая мушка дрозофила – 8, домашняя муха – 12, сазана – 104, ели и сосны – 24, голубя  — 80.

Кариотип (от греч.  Карион — ядро, ядро ореха, операторы — образец, форма) — совокупность признаков хромосомного набора (число, размер, форма хромосом), характерные для того или иного вида.

Особи разного пола (особенно у животных) одного и того же вида могут различаться по числу хромосом (различие чаще всего на одну хромосому).  Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.

Во второй половине 20 века в практику хромосомного анализа стали внедряться методы дифференциального окрашивания хромосом. Считается, что способность отдельных участков хромосом к окрашиванию связана с их химическими различиями.

 

4.     Ядрышко.  Кариоплазма.  Ядерный белковый матрикс

Ядрышко (нуклеола) — обязательный компонент клеточного ядра эукариотных организмов.  Однако имеются некоторые исключения.  Так ядрышки отсутствуют в высокоспециализированных клетках, в частности в некоторых клетках крови.  Ядрышко представляет собой плотное тельце округлой формы величиной 1-5 мкм.  В отличие от цитоплазматических органоидов ядрышко не имеет мембраны, которая окружала бы его содержимое.  Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках.  Ядрышко  является производным хромосомы.  В состав ядрышка входят белок, РНК и ДНК.  Концентрация РНК в ядрышках всегда выше концентрации РНК в других компонентах клетки.  Так концентрация РНК в ядрышке может быть в 2-8 раз выше, чем в ядре, и в 1-3 раза выше, чем в цитоплазме.  Благодаря высокому содержанию РНК, ядрышки хорошо окрашиваются основными красителями.  ДНК в ядрышке образует большие петли, которые носят название «ядрышковые организаторы».  От них зависит образование и количество ядрышек в клетках.  Ядрышко неоднородно по своему строению.  В нем выявляются два основных компонента: гранулярный и фибриллярный.  Диаметр гранул около 15-20 нм, толщина фибрилл – 6-8 нм.  Фибриллярный компонент может быть сосредоточен в центральной части ядрышка, а гранулярный — по периферии.  Часто гранулярный компонент образует нитчатые структуры — нуклеолонемы толщиной около 0, 2 мкм.  Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы — созревающие субъединицы рибосом.  Функция ядрышка заключается в образовании рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей в цитоплазме.  Механизм образования рибосом следующий: на ДНК ядрышкового организатора образуется предшественник рРНК, который в зоне ядрышка одевается белком.  В зоне ядрышка происходит сборка субъединиц рибосом.  В активно функционирующих ядрышках синтезируется 1500-3000 рибосом в минуту.  Рибосомы из ядрышка через поры в ядерной оболочке поступают на мембраны эндоплазматической сети.  Количество и образование ядрышек связано с активностью ядрышковых организаторов.  Изменения числа ядрышек могут происходить за счет слияния ядрышек или при сдвигах в хромосомном балансе клетки.  Обычно в ядрах содержится несколько ядрышек.  В ядрах некоторых клеток (ооциты тритонов) содержится большое количество ядрышек.  Это явление получило название амплификации. Оно заключается в организации систем управления качеством, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками.  Такой процесс необходим для накопления огромного количества рибосом на яйцеклетку. Благодаря этому обеспечивается развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом.  Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.

Судьба ядрышка при делении клеток.  По мере затухания синтеза р-РНК в профазе происходит разрыхление ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму.  При конденсации хромосом фибриллярный компонент ядрышка и часть гранул тесно ассоциируют с их поверхностью, образуя основу матрикса митотических хромосом. Этот фибриллярно-гранулярный материал переносится хромосомами в дочерние клетки.  В ранней телофазе по мере деконденсации хромосом происходит высвобождение компонентов матрикса.  Его фибриллярная часть начинает собираться в мелкие многочисленные ассоциаты — предъядрышки, которые могут объединяться друг с другом.  По мере возобновления синтеза РНК предъядрышки превращаются в нормально функционирующие ядрышки.

Кариоплазма (от греч.  < карион > – орех, ядро ореха), или ядерный сок, в виде бесструктурной полужидкой массы окружает хроматин и ядрышки.  Ядерный сок содержит белки и различные РНК.

Ядерный белковый матрикс (ядерный скелет) — каркасная внутриядерная система, которая служит для поддержания общей структуры интерфазного ядра объединения всех ядерных компонентов.  Представляет собой нерастворимый материал, остающийся в ядре после биохимических экстракций. Он не имеет четкой морфологической структуры и состоит на 98% из белков.

 

 

Источник: studizba.com

Тонкая структура клеточного ядра

Клеточное ядро

Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Образование субъединиц рибосом также происходит в ядре в специальных образованиях — ядрышках.

 

Хроматин ядра

Хроматин ядра

Схема строения клеточного ядра.

Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Из этих белков построены нуклеосомы, структуры на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой.

Хроматин ядра

Хроматин ядра

Схема, показывающая цитоплазму, вместе с ее компонентами (или органеллами), в типичной животной клетке. Органеллы:
(1) Ядрышко
(2) Ядро
(3) рибосома (маленькие точки)
(4) Везикула
(5) шероховатый эндоплазматический ретикулум (ER)
(6) Аппарат Гольджи
(7) Цитоскелет
(8) Гладкий эндоплазматический ретикулум
(9) Митохондрия
(10) Вакуоль
(11) Цитоплазма
(12) Лизосома
(13) Центриоль и Центросома

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием.



Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

Ядерная оболочка, ядерная ламина и ядерные поры (кариолемма)

От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов. Под электронным микроскопом она видна как восемь связанных между собой белковых гранул с внешней и столько же с внутренней стороны ядерной оболочки.

Под электронным микроскопом в ядрышке выделяют несколько субкомпартментов. Так называемые Фибриллярные центры окружены участками плотного фибриллярного компонента, где и происходит синтез рРНК. Снаружи от плотного фибриллярного компонента расположен гранулярный компонент, представляющий собой скопление созревающих рибосомных субчастиц.

Источник: studopedia.su

ХРОМАТИН — материальный субстрат хромосом, представляющий собой многокомпонентную систему молекул, находящихся в определенных пространственных, химических и физических взаимоотношениях.

Основным структурным и химическим компонентом хроматина служит комплекс дезоксирибонуклеиновой кислоты (см.) с гистонами (см.) и негистоновыми белками (см. Нуклеопротеиды), иногда — с протаминами (см.). Другие компоненты хроматина — РНК (см. Рибонуклеиновые кислоты), липиды (см.), углеводы (см.), неорганические вещества прямо или косвенно связаны с белками (см.). Количественные соотношения компонентов хроматина существенно зависят от типа клеток; их относительное содержание чаще всего соответствует следующим величинам: ДНК 30—45%, гистоны 30—50%, негистоновые белки 2—35%, РНК и другие компоненты 1 —10%.

Термин «хроматин» был введен в 1880 году немецким ученым В. Флеммингом для обозначения окрашивающихся структур фиксированных ядер клеток (за исключением ядрышек). Преобладающая часть таких структур окрашивается основными красителями (базохроматин), а некоторые — кислотными (оксихроматин). Выделяемые в ядре хроматиновые структуры имеют вид глыбок или сети фибрилл, различающихся в одной клетке и в клетках разных объектов по степени дисперсности. Наиболее интенсивно окрашивающиеся глыбки — хромоцентры (кариосомы) иногда называли ложными ядрышками. Хромо центры имеют, по-видимому, повышенную адгезивную способность, поскольку они легко входят в контакт с ядерной оболочкой, а также агрегируют друг с другом.

Структура хроматина в ядрах интерфазных клеток, то есть клеток, находящихся в периоде между следующими друг за другом митозами (см.), зависит от стадии развития организма (см. Онтогенез, Эмбриональное развитие). У ряда исследованных объектов в первых 2—4-х бластомерах хроматиновые структуры не выявляются, на стадии 8—10 бластомеров в ядре выявляются мелкие хроматиновые глыбки, приобретающие в неделящихся дифференцированных клетках высокоспецифичный характер для каждого типа клеток (см. Деление клетки). В процессе старения этих клеток наблюдают усиление конденсации хроматина.

Изоэлектрическая точка (см.) хроматина зависит от количества белков, входящих в комплекс с ДНК, и находится в интервале значений pH 3,0—5,0. Патологические изменения хроматина как морфологические структуры сопровождаются изменениями pH, при которых находится изоэлектрическая точка. Это отмечают, например, при воздействиях ионизирующего излучения, старении и др. При различных патологических состояниях может меняться и степень дисперсности хроматина. Так, опухолевые клетки характеризуются наличием большого числа хромоцентров, имеющих иногда достаточно крупные размеры; при болезни Дауна (см. Дауна болезнь) хроматин по сравнению с нормой более конденсирован, изменены константы его связывания с красителями; при синдроме Блума (см. Пойкилодермия) хроматин имеет пылевидную или сегментированную структуру. При некоторых видах патологии отмечено усиление конденсации хроматина и концентрация его крупных глыбок на внутренней поверхности ядерной оболочки (гиперхроматоз).

Структуры хроматина и половой хроматин (см.) наблюдают с помощью световой микроскопии. Форма и размер этих структур зависят от способа фиксации клеток. Это свидетельствует о том, что выявляемая после фиксации морфология хроматина отражает не его истинную структуру в живой клетке, а лишь возможность разных способов его организации. В ядрах живых клеток, как правило, компоненты, соответствующие хроматиновым структурам, не выявляются. Однако незначительные повреждения (раздражения) в ряде случаев приводят к обратимому появлению таких структур в прежде гомогенном ядре (напр., при воздействии наркотических анальгетиков и др.). Известен и противоположный эффект — обратимая «гомогенизация» структур, выявляемая в норме в ядрах живых клеток. Естественно, что оптическая гомогенность ядра не тождественна структурной гомогенности хроматина на уровнях более низких, чем позволяет видеть разрешающая способность световой микроскопии. Поэтому сейчас термин «хроматин» утрачивает свое морфологическое содержание, его чаще относят к химическому субстрату хромосом (см.) — сложному комплексу биополимеров. Организующие этот комплекс в единую систему в основном слабые (нековалентные) взаимодействия, равно как и конформация (см.) образующих его молекул, существенным образом зависят от хим. состава, количественного соотношения взаимодействующих компонентов и внешних факторов. Это определяет возможность различных способов организации комплекса в целом и (или) благодаря структурной динамике организации его отдельных структурных компонентов. Полагают, что набор таких способов организации (состояний) ограничен, а переходы между ними имеют характер фазовых переходов. Реализация состояния хроматина, по тем или иным причинам не соответствующего состоянию данной клетки в норме, является признаком патологии.

Установлено существование, по крайней мере, двух классов хроматина: 1) эухроматина, который деконденсируется во время интерфазы и конденсируется в митозе; 2) гетерохроматина, который остается компактным не только в митозе, но и в интерфазе, где его микроскопически идентифицируют в виде хромоцентров. Эухроматин является основной информационной частью генома, в которой преимущественно локализованы структурные гены с соответствующими регуляторными областями. Для гетерохроматина характерна поздняя репликация (см.) ДНК, входящей в его состав. В отличие от эухроматина гетерохроматин в структурном отношении более лабилен: иногда наблюдают его деконденсацию при голодании, действии низких температур и др. Установлено, что при воздействии ряда мутагенных факторов (см. Мутагены) химической и физической природы структурные повреждения чаще локализуются в гетерохроматиновых областях хромосом. Различают два типа гетерохроматина. Первым из них является структурный, постоянно конденсированный хроматин. Как правило, в нем не содержится генов (см. Ген), его ДНК представлена в основном короткими повторяющимися нуклеотидными последовательностями (у некоторых организмов — сателлитной ДНК). При пространственном сближении в результате хромосомных перестроек участков структурного гетерохроматина и эухроматина в ряде случаев ингибируется фенотипическое проявление генов (так называемый эффект положения гена). Активация генов, локализованных в эухроматине, при пространственном разобщении последнего с гетерохроматином может быть, согласно некоторым представлениям, одной из причин активации онкогенов, локализованных в ДНК хромосомы. В целом роль структурного гетерохроматина недостаточно ясна. Полагают, что он существен для процессов конъюгации хромосом (см.), взаимного расположения хромосом в ядре, прикрепления участков хромосом к ядерной оболочке, укладки хроматиновых фибрилл, защиты жизненно важных элементов хромосом, сближения ядрышкообразующих хромосом, эволюции кариотипа и др. Таким образом, предполагаемая роль структурного гетерохроматина заключается в регуляции пространственной организации и соответственно — функциональной активности хромосом.

У человека структурный гетеро-хроматин локализован в центромерных участках всех хромосом, в районах вторичных перетяжек хромосом 1, 9, 16-й пар, коротких плечах акроцентрических хромосом, в дистальной части длинного плеча Y -хромосомы и обрамляет блоки генов рибосомной РНК (ядрышкообразующие районы). На долю структурного гетерохроматина у человека приходится 10—15% всего хроматина. У разных лиц количество структурного гетерохроматина варьирует даже в пределах гомологичных хромосом. Обнаружено, что полиморфные варианты структурного гетерохроматина (см. Полиморфизм в генетике) у людей могут коррелировать с некоторыми наследственными заболеваниями, а возможно определять их или указывать на предрасположенность к ним.

Вторым типом гетерохроматина принято считать факультативный гетерохроматин, или инактивированный эухроматин. Этот тип хроматина сходен с гетерохроматином только в морфол. отношении: микроскопически он выявляется в интерфазном ядре в виде интенсивно красящихся глыбок разного размера. Основываясь на молекулярной организации и функциях, его правильнее считать одним из типов эухроматина. Он содержит структурные гены, фенотипически инактивированные путем конденсации (гетерохроматини-зации) эухроматина. Одним из типичных примеров факультативного гетерохроматина являются тельца Барра (X-хроматин).

Таким образом, функционирование хроматина как системы, в которой происходит начальный этап реализации наследственной информации, в значительной степени определяется пространственным распределением ее взаимозависимых конденсированных и де-конденсированных зон (согласно представлениям о физических процессах, лежащих в основе самоорганизации пространственной структуры хроматина,— микрофазовое расслоение системы). Распределение конденсированных и деконденсированных зон является отражением состояния системы в целом, что не исключает, однако, относительной автономности этих участков в ряде процессов. Известны случаи, когда путем конденсации хроматина осуществляется инактивация целых хромосом (например, одной из X-хромосом у женщин) или почти всего генома (напр., в эритроцитах птиц). В большинстве типов клеток доля активного хроматина составляет 2— 15%. По данным молекулярно-биол. анализа, в ряде случаев инактивация связана с появлением определенных подфракций гистона Н1 или замещением последнего другими гистонами, в частности гистоном Н5 (см. Нуклеопротеиды). В сперматозоидах некоторых животных репрессия генома реализуется на фоне замещения гистонов протаминами или подобными им белками.

Существенную роль в организации транскрипции (см.), в том числе через дифференциальную деконденсацию хроматина, отводят негистоновым белкам хроматина (НГБ). В их число входят также ферментные комплексы, ответственные за репарацию (см. Репарация генетических повреждений), репликацию, транскрипцию и модификацию нуклеиновых кислот (см.) и за некоторые ферментативные превращения ряда хромосомных белков. В ядрах клеток, в которых не происходит активной транскрипции, количество негистоновых белков хроматина существенно уменьшено. Например, зрелые гаметы в значительной степени освобождены от таких белков. Полагают, что в организации или поддержании транскрипции принимают участие негистоновые белки хроматина, прочно связанные с ДНК, среди которых, по-видимому, находится компонент, специфически связывающий комплекс гормон — рецептор, а также тесно связанные с нуклеосомами белки HMG14 и HMG17. Последние способны ингибировать деацетилирование гистонов, а этот процесс наряду с недометилированием ДНК представляет собой модификации, характерные для компонентов активных участков хроматина.

Важным для структурных переходов хроматина является способность белка хроматина А24 к расщеплению на гистон Н2а и полипептид убиквитин. Общей характеристикой участков транскрипционно активного хроматина из разных источников является повышенная чувствительность их ДНК к воздействию ряда нуклеаз (см.). При активации транскрипции такая чувствительность распространяется на участок молекулы ДНК в составе хроматина по протяженности примерно на два порядка больше, чем занимает ген. Все изложенное выше свидетельствует о значении в организации транскрипции более высоких уровней упаковки хроматина, чем его элементарная фибрилла, видимая в электронный микроскоп. Последняя при участии гистона Н1, расположенного наряду с негистоновыми белками хроматина HMG1 и HMG2 в основном на межнуклеосомной ДНК, представляет волокно диаметром около 10 нм. При этом монотонность нуклеосомной организации дезоксирибонуклеопротеидного (ДНП) волокна может нарушаться благодаря структурной динамике нуклеосом (см. Клетка), модификации гистонов при их фосфорилировании, ацетилировании, метилировании и рибозилировании.

Существенную роль отводят меж-молекулярным контактам, способным регулировать конденсацию ДНК на уровне нуклеосом. Нек-рые структурные переходы нуклеосом происходят при изменении ионной силы среды. В ядре клетки количество низкомолекулярных противоионов (ионов К+, Na+ и др.) по порядку величины равно числу фиксированных на макромолекулах (например, фосфатные группы ДНК) зарядов. Поэтому небольшие колебания в абсолютном количестве низкомолекулярных противоионов в ядре (например, при увеличении или уменьшении объема последнего) должны вызвать структурные переходы нуклеосом. Наконец, гистон Н1 может замещаться другими гистонами или их комплексами, имеющими большее сродство к ДНК, с соответствующей реорганизацией структуры фибриллы. Таким образом, возможность различных способов упаковки хроматина заложена уже на уровне различных полиморфных структурных вариантов элементарной фибриллы хроматина. Стабильность следующего уровня организации хроматина — неравномерных по диаметру (20—30 нм) фибрилл — обеспечивается, по-видимому, и гистоном Н1. Дальнейшая упаковка хроматиновых фибрилл реализуется, как полагают, путем самоорганизации системы с образованием конденсированных (глобулярных) зон и петель или независимых суперспирализованных областей (доменов). Домены характеризуются участком двойной спирали ДНК, специальным образом расположенным в пространстве, концы этой двойной спирали фиксированы, что ограничивает или исключает возможность ее вращения. Длина петли ДНК по контуру для разных объектов соответствует мол. весу (массе) ДНК порядка 10 000000— 100 000000. Изменение степени суперспирализации ДНК является еще одним важным фактором регуляции процессов экспрессии генов (см. Экспрессивность гена) через модификацию надмолекулярных систем хроматина. Суперспирализация ДНК изменяется также при действии ионизирующего излучения, некоторых химических соединений, активации нуклеаз и др. Указанные факторы вызывают однонитевые разрывы в молекулах ДНК, что приводит к релаксации в отдельных петлях ее исходной суперспиральной структуры. Этот процесс может вызывать перераспределение белков хроматина, поскольку ряд белков имеет различные константы связывания с линейной, кольцевой и суперспиральной ДНК.

Воздействие агентов, вызывающих диссоциацию белков, в частности гистонов хроматина (некоторые химимечсие мутагены, ионизирующие излучение, высокие концентрации солей, ионов водорода и др.), также приводит к изменению степени суперспиральности, поскольку сам процесс образования нуклеосом связан с реорганизацией суперспирали ДНК.

Полагают, что динамические возможности структуры хроматина нельзя рассматривать только как один из факторов, регулирующих транскрипцию. Действие всех остальных факторов регуляции, как внутри-, так и внеклеточных, реализуется через создание структуры хроматина, специфичной для каждого типа клеток, различающихся по характеру синтеза РНК. В этой связи все воздействия, изменяющие нормальные взаимоотношения между компонентами хроматина и тем самым — его структуру, должны приводить к патологическому функционированию этой системы. Существенное значение имеют изменения структуры хроматина, предрасполагающие к последующему генетическому неблагополучию. Так, полагают, что важное значение может иметь реализация состояний хроматина, при которых снижена вероятность узнавания ферментами репарации повреждений ДНК — явления, которое, по-видимому, служит одной из ведущих причин феномена нестабильности хромосом и характерной для них группы наследственных болезней (см. Хромосомные болезни). Отмечена связь некоторых изменений структуры хроматина с увеличением частоты конъюгации негомологичных хромосом — одной из возможных причин анеуплоидий (см. Мутация). При действии генетически опасных агентов на клетки и организмы кроме генетических повреждений самой ДНК (генные мутации) и указанных выше перестроек структуры хроматина как системы возникают многочисленные нарушения во взаимодействиях между компонентами хроматина: частичная диссоциация белков хроматина, образование межмолекулярных «сшивок» между ДНК и белками, распад фибриллы хроматина на нуклеосомы и др., что в свою очередь усиливает патологический эффект такого агента.

Библиогр.: Андрееве. Г. и Спитковский Д. М. Биофизические модели самоорганизации пространственной структуры хроматина, Докл. АН СССР, т. 269, № 6, с. 1500, 1983; Г е о р г и е в Г. П. и БакаевВ. В. Три уровня структурной организации хромосом эукариот, Молек. биол., т. 12, № 6, с. 1205, 1978, библиогр.; H е й ф а х А. А. и Т и м о ф e е в а М. Я. Проблемы регуляции в молекулярной биологии развития, М., 1978; Прокофье-ва-Бе льговская А. А. Значение негистоновых белков в преобразованиях и генетическом функционировании хромосом, Молек. биол., т. 16, Na 4, с. 771, 1982; Теоретические проблемы медицинской генетики, под ред. А. Ф. Захарова, с. 52, М., 1979; Chromatin structure and function, ed. by C. A. Nicolini, N. Y. —L., 1979.

Источник: xn--90aw5c.xn--c1avg