Понятие фотосинтезаФотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты — полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.


Сколько фаз фотосинтезаХлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов, которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент — каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы — световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Общая схема световой фазы фотосинтезаПервая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель.
конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;

  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой — отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ+ в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Общая схема темновых реакций фотосинтезаОбязательный компонент для этой стадии — углекислый газ, который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:


  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар — глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Источник: fikus.guru

Фотосинтез

Фотосинтез – это совокупность процессов синтеза органических соединений из неорганических благодаря преобразованию световой энергии в энергию химических связей. К фототрофным организмам принадлежат зеленые растения, некоторые прокариоты – цианобактерии, пурпурные и зеленые серобактерии, растительные жгутиковые.

Исследования процесса фотосинтеза начались во второй половине XVIII века. Важное открытие сделал выдающийся русский ученый К. А. Тимирязев, который обосновал учение о космической роли зеленых растений. Растения поглощают солнечные лучи и превращают световую энергию в энергию химических связей синтезированных ими органических соединений. Тем самым они обеспечивают сохранение и развитие жизни на Земле. Ученый также теоретически обосновал и экспериментально доказал роль хлорофилла в поглощении света в процессе фотосинтеза.


Хлорофиллы являются основными из фотосинтезирующих пигментов. По структуре они похожи на гем гемоглобина, но вместо железа содержат магний. Содержание железа необходимо для обеспечения синтеза молекул хлорофилла. Существует несколько хлорофиллов, которые отличаются своим химическим строением. Обязательным для всех фототрофов является хлорофилл а. Хлорофилл b встречается у зеленых растений, хлорофилл с – у диатомовых и бурых водорослей. Хлорофилл d характерен для красных водорослей.

Зеленые и пурпурные фотосинтезирующие бактерии имеют особые бактериохлорофиллы. Фотосинтез бактерий имеет много общего с фотосинтезом растений. Отличается он тем, что у бактерий донором водорода является сероводород, а у растений – вода. У зеленых и пурпурных бактерий нет фотосистемы II. Бактериальный фотосинтез не сопровождается выделением кислорода. Суммарное уравнение бактериального фотосинтеза:

6С02 + 12H2S → C6H12O6+ 12S + 6Н20.

В основе фотосинтеза лежит окислительно-восстановительный процесс. Он связан с перенесением электронов от соединений-поставщиков электронов-доноров к соединениям, которые их воспринимают – акцепторам. Световая энергия превращается в энергию синтезированных органических соединений (углеводов).


На мембранах хлоропластов есть особые структуры – реакционные центры, которые содержат хлорофилла. У зеленых растений и цианобактерий различают две фотосистемыпервую (I) и вторую (II), которые имеют разные реакционные центры и связаны между собой через систему перенесения электронов.

Две фазы фотосинтеза

Состоит процесс фотосинтеза из двух фаз: световой и темновой.

Световая фаза фотосинтеза

Происходит лишь при наличии света на внутренних мембранах митохондрий в мембранах особых структур – тилакоидов. Фотосинтезирующие пигменты улавливают кванты света (фотоны). Это приводит к «возбуждению» одного из электронов молекулы хлорофилла. С помощью молекул-переносчиков электрон перемещается на внешнюю поверхность мембраны тилакоидов, приобретая определенную потенциальную энергию.

Этот электрон в фотосистеме I может возвратиться на свой энергетический уровень и восстанавливать ее. Может также передаваться НАДФ (никотинамидадениндинуклеотидфосфат). Взаимодействуя с ионами водорода, электроны восстанавливают это соединение. Восстановленный НАДФ (НАДФ • Н) поставляет водород для восстановления атмосферного С02 до глюкозы.

Подобные процессы происходят в фотосистеме II. Возбужденные электроны могут передаваться фотосистеме I и восстанавливать ее. Восстановление фотосистемы II происходит за счет электронов, которые поставляют молекулы воды. Молекулы воды расщепляются (фотолиз воды) на протоны водорода и молекулярный кислород, который выделяется в атмосферу. Электроны используются для восстановления фотосистемы II. Уравнение фотолиза воды:


20 → 4Н+ + 02 + 2е.

При возвращении электронов из внешней поверхности мембраны тилакоидов на предыдущий энергетический уровень выделяется энергия. Она запасается в виде химических связей молекул АТФ, которые синтезируются во время реакций в обеих фотосистемах. Процесс синтеза АТФ с АДФ и фосфорной кислотой называется фотофосфорилированием. Некоторая часть энергии используется для испарения воды.

Во время световой фазы фотосинтеза образуются богатые энергией соединения: АТФ и НАДФ • Н. При распаде (фотолизе) молекулы воды в атмосферу выделяется молекулярный кислород.

Темновая фаза фотосинтеза

Реакции протекают во внутренней среде хлоропластов. Могут происходить как при наличии света, так и без него. Синтезируются органические вещества (С02 восстанавливается до глюкозы) с использованием энергии, которая образовалась в световой фазе.

Процесс восстановления углекислого газа является циклическим и называется циклом Кальвина. Назван в честь американского исследователя М. Кальвина, который открыл этот циклический процесс.


Начинается цикл с реакции атмосферного углекислого газа с рибулезобифосфатом. Катализирует процесс фермент карбоксилаза. Рибулезобифосфат – это пятиуглеродный сахар, соединенный с двумя остатками фосфорной кислоты. Происходит целый ряд химических преобразований, каждое из которых катализирует свой специфический фермент. Как конечный продукт фотосинтеза образуется глюкоза, а также восстанавливается рибулезобифосфат.

Суммарное уравнение процесса фотосинтеза:

6С02 + 6Н20 → С6Н12О6 + 602

Значение фотосинтеза

Благодаря процессу фотосинтеза поглощается световая энергия Солнца и происходит преобразование ее в энергию химических связей синтезированных углеводов. По цепям питания энергия передается гетеротрофным организмам. В процессе фотосинтеза поглощается углекислый газ и выделяется кислород. Весь атмосферный кислород имеет фотосинтетическое происхождение. Ежегодно выделяется свыше 200 млрд. тонн свободного кислорода. Кислород защищает жизнь на Земле от ультрафиолетового излучения, создавая озоновый экран атмосферы.

Процесс фотосинтеза малоэффективен, так как в синтезированное органическое вещество переводится лишь 1-2 % солнечной энергии. Связано это с тем, что растения недостаточно поглощают свет, часть его поглощается атмосферой и т. п. Большая часть солнечного света отражается от поверхности Земли назад в космос.

Источник: xn—-9sbecybtxb6o.xn--p1ai

Общие сведения


Органом фотосинтеза у высших растений является лист. В качестве органоидов выступают хлоропласты. В мембранах их тилакоидов присутствуют фотосинтетические пигменты. Ими являются каротиноиды и хлорофиллы. Последние существуют в нескольких видах (а, с, b, d). Главным из них считается а-хлорофилл. В его молекуле выделяется порфириновая «головка» с атомом магния, расположенным в центре, а также фитольный «хвост». Первый элемент представлен в виде плоской структуры. «Головка» является гидрофильной, поэтому располагается на той части мембраны, которая направлена к водной среде. Фитольный «хвост» является гидрофобным. За счет этого он удерживает хлорофилльную молекулу в мембране. Хлорофиллами поглощается сине-фиолетовый и красный свет. Они также отражают зеленый, за счет чего растения имеют характерный для них цвет. В мембранах тилактоидов молекулы хлорофилла организованы в фотосистемы. Для синезеленых водорослей и растений характерны системы 1 и 2. Фотосинтезирующие бактерии имеют только первую. Вторая система может разлагать Н2О, выделять кислород.

Световая фаза фотосинтеза

Процессы, происходящие в растениях, отличаются сложностью и многоступенчатостью. В частности, выделяют две группы реакций. Ими являются темновая и световая фаза фотосинтеза.
следняя протекает при участии фермента АТФ, белков, переносящих электроны, и хлорофилла. Световая фаза фотосинтеза происходит в мембранах тилактоидов. Хлорофилльные электроны возбуждаются и покидают молекулу. После этого они попадают на внешнюю поверхность мембраны тилактоида. Она, в свою очередь, заряжается отрицательно. После окисления начинается восстановление молекул хлорофилла. Они отбирают электроны у воды, которая присутствует во внутрилакоидном пространстве. Таким образом, световая фаза фотосинтеза протекает в мембране при распаде (фотолизе): Н2О + Q света → Н+ + ОН

Ионы гидроксила превращаются в реакционноспособные радикалы, отдавая свои электроны:

ОН → •ОН + е

•ОН-радикалы объединяются и образуют свободный кислород и воду:

4НО• → 2Н2О + О2.

При этом кислород удаляется в окружающую (внешнюю) среду, а внутри тилактоида идет накопление протонов в особом «резервуаре». В результате там, где протекает световая фаза фотосинтеза, мембрана тилактоида за счет Н+ с одной стороны получает положительный заряд. Вместе с этим за счет электронов она заряжается отрицательно.

Фосфирилирование АДФ

Там, где протекает световая фаза фотосинтеза, присутствует разность потенциалов между внутренней и наружной поверхностями мембраны. Когда она достигает 200 мВ, начинается проталкивание протонов сквозь каналы АТФ-синтетазы. Таким образом, световая фаза фотосинтеза происходит в мембране при фосфорилировании АДФ до АТФ. При этом атомарный водород направляется на восстановление особого переносчика никотинамидадениндинуклеотидфосфата НАДФ+ до НАДФ•Н2:

+ + 2е + НАДФ → НАДФ•Н2

Световая фаза фотосинтеза, таким образом, включает в себя фотолиз воды. Его, в свою очередь, сопровождают три важнейших реакции:

  1. Синтез АТФ.
  2. Образование НАДФ•Н2.
  3. Формирование кислорода.

Световая фаза фотосинтеза сопровождается выделением последнего в атмосферу. НАДФ•Н2 и АТФ перемещаются в строму хлоропласта. На этом световая фаза фотосинтеза завершается.

Другая группа реакций

Для темновой фазы фотосинтеза не нужна световая энергия. Она идет в строме хлоропласта. Реакции представлены в виде цепочки последовательно происходящих преобразований поступающего из воздуха углекислого газа. В итоге образуются глюкоза и прочие органические вещества. Первой реакцией является фиксация. В качестве акцептора углекислого газа выступает рибулозобифосфат (пятиуглеродный сахар) РиБФ. Катализатором в реакции является рибулозобифосфат-карбоксилаза (фермент). В результате карбоксилирования РиБФ формируется шестиуглеродное неустойчивое соединение. Оно практически мгновенно распадается на две молекулы ФГК (фосфоглицериновой кислоты). После этого идет цикл реакций, где она через несколько промежуточных продуктов трансформируется в глюкозу. В них используются энергии НАДФ•Н2 и АТФ, которые были преобразованы, когда шла световая фаза фотосинтеза. Цикл указанных реакций именуется «циклом Кальвина». Его можно представить следующим образом:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О

Помимо глюкозы, в ходе фотосинтеза образуются прочие мономеры органических (сложных) соединений. К ним, в частности, относят жирные кислоты, глицерин, аминокислоты нуклеотиды.

С3-реакции

Они представляют собой тип фотосинтеза, при котором в качестве первого продукта образуются трехуглеродные соединения. Именно он описан выше как цикл Кальвина. В качестве характерных особенностей С3-фотосинтеза выступают:

  1. РиБФ является акцептором для углекислого газа.
  2. Реакция карбоксилирования катализирует РиБФ-карбоксилаза.
  3. Образуется шестиуглеродное вещество, которое впоследствии распадается на 2 ФГК.

Фосфоглицериновая кислота восстанавливается до ТФ (триозофосфатов). Часть из них направляется на регенерацию рибулозобифосфата, а остальная — превращается в глюкозу.

С4-реакции

Для этого типа фотосинтеза характерно появление четырехуглеродных соединений в качестве первого продукта. В 1965 году было выявлено, что С4-вещества появляются первыми у некоторых растений. Например, это было установлено для проса, сорго, сахарного тростника, кукурузы. Эти культуры стали именовать С4-растениями. В следующем, 1966-м, Слэк и Хэтч (австралийские ученые) выявили, что у них почти полностью отсутствует фотодыхание. Также было установлено, что такие С4 растения намного эффективнее осуществляют поглощение углекислого газа. В результате путь трансформации углерода в таких культурах стали именовать путем Хэтча-Слэка.

Заключение

Значение фотосинтеза очень велико. Благодаря ему из атмосферы ежегодно поглощается углекислый газ в огромных объемах (миллиардами тонн). Вместо него выделяется не меньшее количество кислорода. Фотосинтез выступает в качестве основного источника формирования органических соединений. Кислород участвует в образовании озонового слоя, обеспечивающего защиту живых организмов от воздействия коротковолновой УФ-радиации. В процессе фотосинтеза лист поглощает только 1% всей энергии света, падающего на него. Его продуктивность находится в пределах 1 г органического соединения на 1 кв. м поверхности за час.

Источник: www.syl.ru