• Световая фаза фотосинтеза
    • Циклический транспорт электронов
    • Фотофосфорилирование и окислительное фосфорилирование
  • Темновая фаза фотосинтеза
    • Цикл Кальвина
    • Фотодыхание
    • C4-фотосинтез

Фотосинтез — это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них — каротиноиды и фикобилины.


В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие — органические.

Выделяют две фазы фотосинтеза — световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы — наиболее распространенного продукта фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2

Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.


Общая сфема фотосинтеза. Взаимосвязь световой и темновой фаз

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент — бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.


Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

iv>
Z-схема световой фазы фотосинтезаЭлектрон-транспортная цепь в тиллакоидной мембране хлоропласта

 

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование


Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

>

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO2 + H2O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Формула фосфоглицериновой кислоты

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.


В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO2 + 6H2O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.


Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.


Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) — CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.


C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Химическая формула оксалоацетата

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Схема C4-фотосинтеза

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

Источник: biology.su

Я ИДУ НА УРОК

А.Г. ЛЕБЕДЕВ,
учитель биологии и экологии ср. шк. No 554,
г. Москва

Окончание. См. No 48/2000, 2/2001

5. Фазы и процессы фотосинтеза (продолжение)

Рассмотренные нами в предыдущих частях два этапа фотосинтеза – физический и фотохимический – объединяют в так называемую световую фазу фотосинтеза. Теперь же речь пойдет о второй фазе фотосинтеза, часто называемой темновой фазой.

Темновая фаза – не совсем удачное название. Если мы говорим, что световая фаза названа так, чтобы подчеркнуть зависимость всех протекающих в ней реакций от света, то название «темновая фаза» означает, что все реакции, в ней протекающие, от света не зависят и проходят в темноте.

Но это не совсем точно. Очень многие реакции темновой фазы фотосинтеза зависят от света, так как ферменты, катализирующие эти реакции, индуцируются светом. Поэтому эту фазу фотосинтеза лучше называть путем превращения углерода, или циклом фиксации углерода, – по основному процессу, который в ней происходит.

(Здесь нужно обязательно пояснить, что происходит фиксация не чистого углерода, а углерода в составе углекислого газа СО2.)

Отметим, что разделение процесса фотосинтеза на две фазы происходит не только по отношению к свету, но и по месту протекания реакций. Реакции световой фазы протекают в тилакоидах гран и стромы, а реакции фиксации углерода протекают в матриксе (строме) хлоропластов.

Стоит обратить внимание учащихся на то, что в литературе встречается и другое название тилакоидов – ламеллы гран. Взаимосвязь терминов можно объяснить, зачитав отрывок из «Физиологии растений» Н.И. Якушкина: «Внутреннее пространство хлоропластов заполнено бесцветным содержимым – стромой – и пронизано мембранами (ламеллами). Ламеллы, соединенные друг с другом, образуют как бы пузырьки – тилакоиды. В хлоропластах тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их ламеллы – ламеллами гран. Между гранами параллельно друг другу располагаются длинные тилакоиды. Составляющие их ламеллы получили название ламеллы стром».

Рассматривая Z-схему, мы установили, что конечные продукты циклического и нециклического фосфорилирования – АТФ и НАДФ.Н – используются в темновых реакциях фотосинтеза. Как же они используются?

Если в световой фазе АТФ и НАДФ.Н являются конечными продуктами, то в процессе фиксации углерода они используются на самом первом этапе всего цикла фиксации углерода. Весь цикл фиксации углерода можно представить в виде следующих стадий.

  • Первая стадия – непосредственная фиксация углекислого газа – карбоксилирование.

  • Вторая стадия – образование 3-фосфоглицеринового альдегида (ФГА).

  • Третья стадия – образование продуктов фотосинтеза.

  • Четвертая стадия – восстановление первоначальных реагентов.

Перечисленные стадии выделены условно – вместе они составляют цикл фиксации углерода, или цикл Кальвина.

В отличие от световых реакций, которые протекали в строгой последовательности, реакции фиксации углерода могут протекать параллельно, за исключением первых двух – фиксации углекислого газа и образования ФГА. Рассмотрим каждую стадию цикла.

Карбоксилирование

Эта стадия – ключевая, потому что в ней участвует СО2. Молекула углекислого газа соединяется с молекулой пятиуглеродного сахара рибулезодифосфата (РДФ) с образованием нестойкого шестиуглеродного соединения, которое затем распадается на две молекулы 3-фосфоглицериновой кислоты (1).

Исходными веществами для фотосинтеза являются

Реакция карбоксилирования очень интересна тем, что в зависимости от условий она может протекать с образованием различных конечных продуктов. Так, например, при наличии СО2 продуктом реакции будет только ФГК, а в присутствии О2 РДФ не присоединяет углекислый газ и распадается на ФГК и фосфогликолевую кислоту, которая используется в процессах фотодыхания. Фотодыхание – это процесс, протекающий лишь на свету и сопровождающийся поглощением О2 и выделением СО2. Такое изменение хода реакции объясняется тем, что участвующий в ней фермент обладает двойной каталитической активностью – по отношению к углегислому газу и кислороду.

Этот фермент называется рибулозо-1,5-бифосфаткарбоксилаза-оксигеназа (РуБФ-карбоксилаза). Этот фермент составляет около 50% всех растворимых белков в листьях и потому может считаться самым распространенным белком в природе. Фермент состоит из двух субъединиц – большой и малой. Интересно, что белки больших субъединиц кодируются ДНК хлоропластов, а белки малых субъединиц – ядерной ДНК. Большие субъединцы обладают каталитической активностью и в отсутствие малых, которые, по-видимому, играют регуляторную роль. Этот факт может служить подтверждением того, что хлоропласты произошли от прокариотических предков.

Таким образом, на первых этапах фиксации углерода имеет место конкуренция между двумя процессами – фиксацией углерода и фотодыханием. Для сдвига баланса в сторону фиксации углерода необходимы ионы Мg2+ (2).

Исходными веществами для фотосинтеза являются

Образование фосфоглицеринового альдегида

Образующаяся на первой стадии ФГК превращается в ФГА в два этапа (3 и 4). Сначала используется АТФ, синтезированная в световой фазе фотосинтеза. Затем используется НАДФ.Н, который тоже является продуктом световой фазы фотосинтеза.

 3.gif (4474 bytes)

Молекула ФГА является ключевым веществом для третьей стадии.

Образование продуктов фотосинтеза

Обычно продуктом фотосинтеза называют сахар. На самом деле продуктами фотосинтеза можно считать и другие вещества, о чем мы упоминали при рассмотрениии Z-схемы.

Молекула ФГА используется растением в цикле Кальвина в нескольких направлениях.

  • Во-первых, ФГА является основой для синтеза сахара.

  • Во-вторых, ФГА может быть использована для синтеза аминокислот.
    Среди продуктов фотосинтеза обнаружены такие аминокислоты, как аланин, серин, глютаминовая кислота, глицин. Синтез аминокислот происходит интенсивно при недостатке НАДФ.Н, в результате чего из ФГК образуется не ФГА, а пировиноградная кислота, которая является исходным соединением для синтеза аминокислот и одним из ключевых веществ цикла Кребса.

  • В-третьих, ФГА дает начало циклу превращений некоторых промежуточных продуктов в РДФ, который служит акцептором углекислого газа.

Наряду с углеводами и аминокислотами из промежуточных продуктов цикла Кальвина могут образовываться липиды и другие продукты.

Во всех уравнениях фотосинтеза в правой части пишется формула шестиуглеродного сахара. Как правило, его называют глюкозой. Но в действительности первым свободным сахаром является дисахарид сахароза, из которой образуются два моносахарида – глюкоза и фруктоза.

Восстановление первоначальных реагентов

Для того чтобы растение могло акцептировать новую молекулу углекислого газа, необходимо иметь РДФ, основной акцептор углекислого газа. РДФ образуется из ФГА в результате цепи реакций, в процессе которых образуются пяти- и семиуглеродные сахара. Надо отметить, что основная масса ФГА идет именно на восстановление нужного количества РДФ: из 12 образовавшихся молекул ФГА только две идут на образование продуктов фотосинтеза, т.е. сахарозы.

Подводя итог рассмотрению фаз фотосинтеза, можно составить обобщенную схему фотосинтеза (рис. 1).

 Рис. 1. Обобщенная схема фотосинтеза

Рис. 1. Обобщенная схема фотосинтеза

Учитывая реакции световой и темновой фаз фотосинтеза, можно привести следующее суммарное уравнение фотосинтеза.

Световые реакции:

Исходными веществами для фотосинтеза являются

Темновые реакции:

Исходными веществами для фотосинтеза являются

6. Виды фотосинтеза

В настоящее время известны три разных механизма темновых реакций фотосинтеза у высших растений. Но, по-видимому, правильнее говорить об одном основном процессе и двух вариантах.

Основной механизм – это фиксация углерода в цикле Кальвина. В последнее время этот цикл стали называть С3-путем, или С3-типом, фотосинтеза, а растения, осуществляющие только реакции этого цикла, называют С3-растениями. Такие растения обычно растут в областях умеренного климата; оптимальная дневная температура для фиксации углекислого газа у этих растений составляет от +15 до +25 °С.

Первый вариант – это С4-путь (или С4-тип фотосинтеза), называемый также циклом Хетча–Слэка. Растения, осуществляющие данный тип фотосинтеза, распространены в тропических и субтропических областях.

Второй вариант – процесс, известный под названием метаболизма органических кислот по типу толстянковых (МОКТ- или САМ-фотосинтез). Растения с таким типом фотосинтеза часто встречаются в засушливых пустынных областях.

С3-растения превращают СО2 в углеводы только в реакциях цикла Кальвина. С4-растения и МОКТ-растения также осуществляют цикл Кальвина, но в них поглощение СО2 и превращение его в углеводы включает в себя и другие реакции. С4-растения и МОКТ отличаются друг от друга природой этих дополнительных реакций, временем суток, когда они происходят, и тем, в каких клетках находятся вещества, участвующие в этих реакциях.

У С3-растений фотосинтез происходит только в клетках мезофилла листа, а у С4-растений – в клетках мезофилла и в клетках обкладки сосудистых пучков.

С4-тип фотосинтеза

В самых общих чертах путь углерода в реакциях С4-типа фотосинтеза показан на рис. 2.

Рис. 2. Схематическое изображение пути углерода при С4-фотосинтезе. С3-соединения содержат три атома углерода в молекуле, С4-соединения – четыре

Рис. 2. Схематическое изображение пути углерода при С4-фотосинтезе. С3-соединения содержат три атома углерода в молекуле, С4-соединения – четыре

Цикл Кальвина у данного типа растений осуществляется в клетках обкладки сосудистого пучка и протекает так же, как у С3-растений.

Фиксация углекислого газа у С3— и С4-растений значительно различается. Если у С3-растений молекула углекислого газа присоединялась к пятиуглеродной молекуле РДФ, то у С4-растений акцептором углекислого газа является трехуглеродная молекула, чаще всего – это фосфоенолпировиноградная кислота (ФЕП). Соединяясь с углекислым газом ФЕП превращается в щавелевоуксусную кислоту (ЩУК), которая и поступает в хлоропласт клеток мезофилла. В хлоропластах ЩУК при наличии НАДФ.Н превращается в яблочную кислоту (ЯК), которая поступает в клетки обкладки сосудистых пучков. В клетках обкладки сосудистых пучков ЯК отдает молекулу углекислого газа в цикл Кальвина, превращаясь в пировиноградную кислоту (ПВК). ПВК, в свою очередь, возвращается в хлоропласты мезофилла, превращается в ФЕП, и начинается новый цикл (рис. 3).

Рис. 3. Фотосинтез С4-типа (на примере кукурузы)

клетка мезофилла

клетка обкладки сосудистого пучка

Рис. 3. Фотосинтез С4-типа (на примере кукурузы)

Увеличение числа реакций для фиксации углекислого газа у С4-растений на первый взгляд может показаться излишним и бессмысленным. Но это только на первый взгляд. Растениям с С4-типом фотосинтеза приходится концентрировать углекислый газ в клетках обкладки, т.к. по сравнению с С3-растениями в их клетках углекислого газа содержится значительно меньше. Это связано с тем, что С4-растения обитают в более жарком и сухом климате, чем С3-растения, поэтому для уменьшения потерь воды им приходится уменьшать транспирацию. За счет этого создаются трудности в поглощении углекислого газа, что и приводит к необходимости его концентрации. В настоящее время считается, что С4-тип фотосинтеза является эволюционным приспособлением к более жарким и сухим климатическим условиям.

Метаболизм органических кислот по типу толстянковых (МОКТ)

Растения с данным типом фотосинтеза являются в основном суккулентами.

Для МОКТ-растений характерны следующие особенности.

1. Их устьица обычно открыты ночью (т.е. в темноте) и закрыты в течение дня.

2. Фиксация углекислого газа происходит в темное время суток. При этом образуется значительное количество яблочной кислоты.

3. Яблочная кислота запасается в больших вакуолях, которые характерны для клеток МОКТ-растений.

4. В светлое время суток яблочная кислота отдает углекислый газ в цикл Кальвина, где она превращается в сахарозу или запасной углевод глюкан.

5. В темновой период суток часть запасенного глюкана распадается с образованием молекул-акцепторов для темновой фиксации углекислого газа (рис. 4).

Рис. 4. Схема МОКТ-типа фотосинтеза

Рис. 4. Схема МОКТ-типа фотосинтеза

Таким образом у МОКТ-растений существует суточный ритм: ночью содержание запасного глюкана падает и содержание яблочной кислоты повышается, а днем происходят противоположные изменения.

В заключение надо добавить, что фотосинтез по МОКТ-типу считается самым поздним приспособлением растений в процессе эволюции.

 

Источник: bio.1september.ru

§27. Фотосинтез
Решебник "Биология 10"

 


 


 

1. Фотосинтез относится к процессам пластического или энергетического обмена? Почему?

Фотосинтез относится к процессам пластического обмена т.к. сопровождается:

● синтезом сложных органических соединений из более простых веществ, а именно: из неорганических веществ (Н2О и СО2) синтезируется глюкоза (С6Н12О6);

● поглощением световой энергии.

 

2. В каких органоидах растительной клетки происходит фотосинтез? Что представляет собой фотосистема? Какую функцию выполняют фотосистемы?

Фотосинтез происходит в зелёных пластидах – хлоропластах.

Фотосистемы – особые пигмент-белковые комплексы, расположенные в мембранах тилакоидов хлоропластов. Существует два типа фотосистем – фотосистема I и фотосистема II. В состав каждой из них входит светособирающая антенна, образованная молекулами пигментов, реакционный центр и переносчики электронов.

Светособирающая антенна функционирует наподобие воронки: молекулы пигментов поглощают свет и передают всю собранную энергию в реакционный центр, где находится молекула-ловушка, представленная хлорофиллом а. Поглотив энергию, молекула-ловушка переходит в возбуждённое состояние и отдаёт один из своих электронов специальному переносчику, т.е. окисляется. Таким образом, фотосистемы выполняют функцию поглощения света и преобразования световой энергии в химическую.

 

3. Каково значение фотосинтеза на Земле? Почему без фототрофных организмов существование биосферы было бы невозможным?

Фотосинтез – единственный процесс на планете, в ходе которого происходит преобразование световой энергии Солнца в энергию химических связей синтезируемых органических веществ. При этом исходными соединениями для синтеза органических веществ служат бедные энергией неорганические вещества – углекислый газ и вода.

Образованные в ходе фотосинтеза органические соединения передаются в составе пищи от фототрофных организмов к растительноядным, затем – к хищным, являясь источником энергии и строительным материалом для синтеза других веществ, для образования новых клеток и структур. Следовательно, благодаря деятельности фототрофов удовлетворяются пищевые потребности гетеротрофных организмов.

Кроме того, фотосинтез является источником молекулярного кислорода, необходимого для дыхания большинства живых организмов. Из кислорода сформировался и поддерживается озоновый слой, защищающий живые организмы планеты от губительного воздействия коротковолнового ультрафиолетового излучения. Благодаря фотосинтезу поддерживается относительно постоянное содержание СО2 в атмосфере.

 

4. Охарактеризуйте световую и темновую фазы фотосинтеза по плану:

1) место протекания; 2) исходные вещества; 3) происходящие процессы; 4) конечные продукты.

Какие продукты световой фазы фотосинтеза используются в темновой фазе?

Световая фаза фотосинтеза.

1) Место протекания: мембраны тилакоидов.

2) Исходные вещества: Н2О, окисленный НАДФ (НАДФ+), АДФ, Н3РО4. Для протекания световой фазы также необходимы фотосинтетические пигменты (хлорофиллы и др.), однако их нельзя назвать исходными веществами световой фазы.

3) Происходящие процессы: поглощение света фотосистемами, фотолиз воды, транспорт электронов на внешнюю сторону тилакоида и накопление протонов внутри тилакоида (т.е. возникновение электрохимического потенциала на мембране тилакоида), синтез АТФ, восстановление НАДФ+.

4) Конечные продукты: АТФ, восстановленный НАДФ (НАДФ•Н+Н+), побочный продукт – молекулярный кислород (О2).

Темновая фаза фотосинтеза.

1) Место протекания: строма хлоропласта.

2) Исходные вещества: СО2, АТФ, восстановленный НАДФ (НАДФ•Н+Н+).

3) Происходящие процессы: синтез глюкозы (восстановление СО2 до органических веществ), в ходе которого происходит гидролиз АТФ и окисление НАДФ•Н+Н+.

4) Конечные продукты: глюкоза (С6Н12О6), окисленный НАДФ (НАДФ+), АДФ, Н3РО4.

В темновой фазе фотосинтеза используются такие продукты световой фазы как НАДФ•Н+Н+ (служит источником атомов водорода для синтеза глюкозы) и АТФ (служит источником энергии для синтеза глюкозы).

 

5. Сравните фотосинтез и аэробное дыхание. Укажите черты сходства и различия.

Сходство:

● Сложные многостадийные процессы, протекающие с участием ферментов.

● Фотосинтез и заключительный (кислородный) этап аэробного дыхания протекают в двумембранных органоидах (хлоропластах и митохондриях соответственно).

● Окислительно-восстановительные процессы, которые сопровождаются переносом электронов по электрон-транспортным цепям внутренних мембран соответствующих органоидов, возникновением разности потенциалов на этих мембранах, работой АТФ-синтетазы и синтезом АТФ.

Различия:

● Процесс фотосинтеза относится к пластическому обмену т.к. сопровождается синтезом органических веществ из неорганических и происходит с поглощением световой энергии. Процесс аэробного дыхания относится к энергетическому обмену, поскольку происходит расщепление сложных органических веществ и высвобождение заключённой в них энергии.

● Фотосинтез протекает только в клетках фототрофных организмов, а аэробное дыхание – в клетках большинства живых организмов (в том числе и фототрофов).

● Различные исходные вещества и конечные продукты. Если рассматривать суммарные уравнения фотосинтеза и аэробного дыхания, то можно заметить, что продукты фотосинтеза фактически являются исходными веществами для аэробного дыхания и наоборот.

● Переносчиками атомов водорода в процессе дыхания служат НАД и ФАД, в фотосинтезе – НАДФ.

…и (или) другие существенные признаки.

 

6. Человек за сутки потребляет примерно 430 г кислорода. Дерево средней величины поглощает около 30 кг углекислого газа в год. Сколько деревьев необходимо, чтобы обеспечить одного человека кислородом?

● За год человек потребляет: 430 г × 365 = 156 950 г кислорода.

● Рассчитаем химическое количество углекислого газа, поглощаемого за год одним деревом:

М (СО2) = 12 + 16 × 2 = 44 г/моль. n (СО2) = m : М = 30 000 г : 44 г/моль ≈ 681,8 моль.

● Суммарное уравнение фотосинтеза:

6СО2 + 6Н2О → С6Н12О6 + 6О2

Поглощение 6 моль углекислого газа сопровождается выделением 6 моль кислорода. Значит, поглощая за год 681,8 моль углекислого газа, дерево выделяет 681,8 моль кислорода.

● Найдём массу кислорода, выделяемого деревом за год:

М (О2) = 16 × 2 = 32 г/моль. m (О2) = n × M = 681,8 моль × 32 г/моль = 21 817,6 г

● Определим, сколько деревьев необходимо, чтобы обеспечить одного человека кислородом. Количество деревьев = 156 950 г : 21 817,6 ≈ 7,2 дерева.

Ответ: для того, чтобы обеспечить одного человека кислородом, в среднем понадобится 7,2 дерева (допустимыми ответами будут «8 деревьев» или «7 деревьев»).

 

7. Исследователи разделили растения пшеницы на две группы и выращивали их в лаборатории в одинаковых условиях, за исключением того, что растения первой группы освещали красным светом, а растения второй группы — зелёным. У растений какой группы фотосинтез протекал более интенсивно? С чем это связано?

Фотосинтез протекал более интенсивно у растений, освещаемых красным светом. Это связано с тем, что основные фотосинтетические пигменты – хлорофиллы – интенсивно поглощают красный свет (а также сине-фиолетовую часть спектра), а зелёный отражают, что и обусловливает зелёную окраску этих пигментов.

 

8*. С помощью какого эксперимента можно доказать, что кислород, выделяющийся при фотосинтезе, образуется именно из молекул воды, а не из молекул углекислого газа или какого-либо другого вещества?

Если для осуществления фотосинтеза использовать воду, меченную радиоактивным кислородом (молекулы вместо стабильного нуклида 16О содержат радионуклид кислорода), то радиоактивную метку можно будет обнаружить в выделяющемся молекулярном кислороде. Если же использовать для фотосинтеза любое другое вещество, содержащее радионуклид кислорода, то выделяющийся О2 не будет содержать радиоактивную метку. В частности, радиоактивный кислород, содержащийся в молекулах поглощаемого углекислого газа, будет обнаруживаться в составе синтезированных органических веществ, но не в составе О2.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Дашков М.Л.

Сайт: dashkov.by

Вернуться к оглавлению

 


Источник: dashkov.by

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Фотосинтез

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н2О + Qсвета → Н+ + ОН.

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН → •ОН + е.

Радикалы •ОН объединяются, образуя воду и свободный кислород:

4НО• → 2Н2О + О2.

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ+ (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+ + 2е + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез   Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

   

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe2+ → Fe3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

 

Источник: licey.net