Какие из перечисленных организмов способны к фотосинтезу?
a)дрожжи и белый гриб
б)инфузория-туфелька и белая планария
в)пихта и цианобактерия
г)амеда и холерный вибрион


Молекулы хлорофилла расположены
а) в строме хлоропласта
б) на мембранах тилакоидов
в)на наружной мембране хлоропласта
г)в цитоплазме

В основе фотосинтеза лежит процесс
превращения энергии
а) света в энергию неорганических вещест&#.
; неорганических соединений

Какие процессы происходят в световую вазу фотосинтеза Выберите 3 ответа
а) образование кислорода
б)синтез углеводов углекислого газ.
8;Ф
д)синтез углеводов за счет энергии АТФ
е)образование НАДФ*Н

Сколько стадий в себя включает процесс фотосинтеза
а)2
б)3
в)4
г)5

Благодаря фотосинтезу в органических молекулах
запасается … энергия Солнца,получаемой зелеными растениями.


а)1-1,5
б)5-10
в)40-50
г)90-100

Фотосинтез является

а)биосинтезом белков
б)биосинтезом углеводов
в)биосинтезом жиров
г)процессом давления клетки

Источник: a-otvet.ru

Первые фотосинтезирующие организмы

Мы очень мало знаем о самых ранних источниках и организмах фотосинтеза.
ли многочисленные предложения относительно того, где и как возник этот процесс, но нет прямых доказательств для подтверждения любого из возможных происхождений. Имеются внушительные доказательства того, что первые фотосинтезирующие организмы появились на Земле примерно от 3,2 до 3,5 млрд лет назад в виде строматолитов, слоистых структур, подобных формам, которые образуют некоторые современные цианобактерии. Существует также изотопное доказательство автотрофной фиксации углерода около 3,7-3,8 миллиарда лет назад, хотя нет ничего, что указывало бы на то, что эти организмы были фотосинтезирующими. Все эти утверждения о раннем фотосинтезе весьма противоречивы и вызвали множество споров в научном сообществе.

Хотя считается, что жизнь впервые появилась на Земле около 3,5 миллиардов лет назад, вероятно, ранние организмы не метаболизировали кислород. Вместо этого они полагались на минералы, растворенные в горячей воде вокруг вулканических жерл. Возможно, что цианобактерии начали производить кислород в качестве побочного продукта фотосинтеза. По мере роста концентрации кислорода в атмосфере, он начал отравлять многие другие формы ранней жизни. Это привело к эволюции новых организмов, которые могли использовать кислород в процессе, известном как дыхание.

Современные фотосинтезирующие организмы

К основным организмам, которые перерабатывают энергию солнца в органические соединения относятся:

  • Растения;
  • Водоросли (диатомовые водоросли, фитопланктон, зеленые водоросли);
  • Эвглена;
  • Бактерии — цианобактерии и аноксигенные фотосинтетические бактерии.

Фотосинтез в растениях

Фотосинтез растений происходит в специализированных органеллах растительных клеток, называемых хлоропластами. Хлоропласты встречаются в листьях растений и содержат пигмент хлорофилл. Этот зеленый пигмент поглощает световую энергию, необходимую для процесса фотосинтеза. Хлоропласты содержат внутреннюю мембранную систему, состоящую из структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию. Двуокись углерода превращается в углеводы в процессе, известном как фиксация углерода или цикл Кальвина. Углеводы могут хранится в виде крахмала, используемого во время дыхания или для производства целлюлозы. Кислород, который образуется в процессе, выделяется в атмосферу через поры в листьях растений, называемые устьицами.

Растения и цикл питательных веществ

Растения играют важную роль в цикле питательных веществ, в частности, углерода и кислорода. Водные и наземные растения (цветущие растения, мхи и папоротники) помогают регулировать углерод в атмосфере, удаляя углекислый газ из воздуха. Растения также важны для производства кислорода, который выделяется в воздух как ценный побочный продукт фотосинтеза.

Водоросли и фотосинтез

Водоросли представляют собой эукариотические организмы, которые имеют характеристики как растений, так и животных.
к и животные, водоросли способны питаться органическим материалом в окружающей их среде. Некоторые водоросли также содержат органеллы и структуры, обнаруженные в клетках животных, такие как жгутики и центриоли. Как и растения, водоросли содержат фотосинтетические органеллы, называемые хлоропластами. Хлоропласты содержат хлорофилл — зеленый пигмент, который поглощает световую энергию для фотосинтеза. Водоросли также имеют другие фотосинтетические пигменты, такие как каротиноиды и фикобилины.

Водоросли могут быть одноклеточными или существовать в виде больших многоклеточных организмов. Они живут в различных местах обитания, включая соленые и пресные водные среды, влажную почву или породы. Фотосинтезирующие водоросли, известные как фитопланктон, встречаются как в морской, так и в пресноводной среде. Морской фитопланктон состоит из диатомей и динофлагеллятов. Пресноводный фитопланктон включает зеленые водоросли и цианобактерии. Фитопланктон плавает вблизи поверхности воды, чтобы получить лучший доступ к солнечному свету, который необходим для фотосинтеза. Фотосинтетические водоросли жизненно важны для глобального цикла веществ, таких как углерод и кислород. Они поглощают углекислый газ из атмосферы и генерируют более половины кислорода на планетарном уровне.

Эвглена

Эвглена — одноклеточные протисты, которые были классифицированы по типу эвгленовые (Euglenophyta) с водорослями из-за своей способности к фотосинтезу. В настоящее время, ученые считают, что они не являются водорослями, а приобрели свои фотосинтетические способности через эндосимбиотические отношения с зелеными водорослями. Таким образом, эвглена была помещена в типологию эвгленозои (Euglenozoa).


Фотосинтетические бактерии:

Цианобактерии

Цианобактерии — это кислородные фотосинтетические бактерии. Они собирают солнечную энергию, поглощают углекислый газ и выделяют кислород. Как растения и водоросли, цианобактерии содержат хлорофилл и превращают углекислый газ в глюкозу через фиксацию углерода. В отличие от эукариотических растений и водорослей, цианобактерии являются прокариотическими организмами. Им не хватает окруженного мембраной ядра, хлоропластов и других органелл, обнаруженных в клетках растений и водорослей. Вместо этого цианобактерии имеют двойную наружную клеточную мембрану и сложенные внутренние тилакоидные мембраны, которые используются при фотосинтезе. Цианобактерии также способны к фиксации азота, процесс превращения атмосферного азота в аммиак, нитрит и нитрат. Эти вещества абсорбируются растениями для синтеза биологических соединений.

Цианобактерии встречаются в различных наземных биомах и водных средах. Некоторые из них считаются экстремофилами, потому что обитают в чрезвычайно суровых условиях, например горячие источники и гиперсоленные водоемы. Цианобактерии также существуют как фитопланктон и могут жить в других организмах, таких как грибы (лишайники), простейшие и растения. Они содержат пигменты фикоэритрин и фикоцианин, которые отвечают за их сине-зеленый цвет. Эти бактерии иногда ошибочно называют сине-зелеными водорослями, хотя они вообще к ним не принадлежат.


Аноксигенные бактерии

Аноксигенные фотосинтетические бактерии представляют собой фотоавтотрофы (синтезируют пищу с использованием солнечного света), которые не продуцируют кислород. В отличие от цианобактерий, растений и водорослей, эти бактерии не используют воду в качестве донора электронов в транспортной цепи электрона при производстве АТФ. Вместо этого они используют водород, сероводород или серу в качестве основных доноров электронов. Аноксигенные бактерии также отличаются от цианобактерий тем, что у них нет хлорофилла для поглощения света. Они содержат бактериохлорофилл, который способен поглощать более короткие волны света, чем хлорофилл. Таким образом, бактерии с бактериохлорофиллом, как правило, обнаруживаются в глубоких водных зонах, куда могут проникать более короткие длины волн света.

Примеры аноксигенных фотосинтетических бактерий включают пурпурные и зеленые бактерии. Пурпурные бактериальные клетки бывают разных форм (сферические, стержневые, спиральные), и они могут быть подвижными или не подвижными. Пурпурные серные бактерии обычно встречаются в водных средах и серных источниках, где присутствует сероводород и отсутствует кислород. Пурпурные несерные бактерии используют более низкие концентрации сульфида, чем пурпурные серные бактерии. Зеленые бактериальные клетки обычно имеют сферическую или стержнеобразную форму, и в основном не подвижны. Зеленые серные бактерии используют сульфид или серу для фотосинтеза и не могут жить при наличии кислорода. Они процветают в богатых сульфидами водных средах и иногда образуют зеленоватый или коричневый окрас в своих местах обитания.


Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info