От Земли до Неба

От Земли до Неба

Все о природе на Земле

  • Главная
  • Атмосфера
  • География
    • Тайга
    • Тундра
  • Природа
  • Жизнь
  • Млекопитающее
  • Насекомое
  • Другое
При фотосинтезе кислород образуется в результате

При фотосинтезе кислород образуется в результате



    Предполагают, что подобный процесс происходит при фотосинтезе, и кислород выделяется из воды, а не из СО2. [c.451]

    Хотя процессы горения, дыхания и гниения происходят беспрерывно, содержание кислорода в воздухе не уменьшается, так как в листьях зеленых растений на солнечном свету происходит фотосинтез, при котором выделяется кислород (воздух пополняется кислородом также за счет разложения воды под действием космических лучей в стратосфере). [c.379]

    Для пояснения этих затруднений кратко рассмотрим несколько типичных примеров, к которым мы ниже еще вернемся. Зеленые растения потребляют на свету СО 2 и выделяют кислород. Без применения меченого кислорода невозможно было установить, происходит ли выделяемый кислород из СОа или из воды. Сейчас эта задача решена.
дальше увидим, что до применения меченых атомов об этом вопросе, равно как и вообще о стадиях химических процессов фотосинтеза растений, существовали неверные представления. В некоторых органах и тканях животных содержатся отложения жиров, которые раньше считали инертными жировыми резервами, не участвующими в общем обмене при нормальном питании, когда поступление жиров с пищей отвечает потребностям организма. Только с помощью меченых атомов можно было показать, что эти жировые резервы на самом деле непрерывно и быстро обновляются, активно участвуя в общем жировом обмене организма. Та или иная аминокислота [c.304]

    Таким образом, почва состоит из минеральной и органической (гумуса) частей. Минеральная часть составляет от 90 до 99 % и более от всей массы почвы. В ее состав входят почти все элементы периодической системы Д. И. Менделеева. Однако основными составляющими минеральной части почв являются связанные в соединения кислород, кремний, алюминий и железо. Эти четыре элемента занимают около 93 % массы минеральной части. Гумус является основным источником питательных веществ для растений. Благодаря жизнедеятельности населяющих почву микроорганизмов происходит минерализация органического вещества с освобождением в доступной для растений форме азота, фосфора, серы и других необходимых для растений химических элементов. Органическое вещество оказывает большое влияние на формирование почв и изменение ее свойств.
и разложении органических веществ почвы выделяется углекислый газ, который пополняет приземную часть атмосферы и ассимилируется растениями в процессе фотосинтеза. Однако какой-бы богатой питательными веществами ни была почва, рано или поздно она начинает истощаться. Поэтому для поддержания плодородия в нее необходимо вносить питательные вещества (удобрения) органического или минерального происхождения. Кроме того, что удобрения поставляют растениям питательные вещества, они улучшают физические, физико-механические, химические и биологические свойства почв. Органические удобрения в значительной степени улучшают водно-воздушные и тепловые свойства почв. Способность почвы поглощать пары воды и газообразные вещества из внешней среды является важной характеристикой. Благодаря ей почва задерживает влагу, а также аммиак, образую- [c.115]

    Способность восстанавливать углеродные соединения с помощью солнечной энергии позволила появившемуся живому организму усваивать двуокись углерода, возможно в виде иона карбоната или бикарбоната, из окружающего первичного океана и использовать эту двуокись углерода в качестве источника атомов углерода для образования молекул сахаров и других питательных молекул. Эта реакция составляет сущность процесса фотосинтеза. В зеленых растениях при фотосинтезе происходит восстановление двуокиси углерода до альдегида (углевода), при котором вода служит первичным источником атомов водорода, а в атмосферу выделяется высвобождаемый при таком восстановлении кислород. Так же как и при анаэробном метаболизме (см. разд. Первичный метаболизм ), каждая реакция, входящая в процесс фотосинтеза, требует участия строго специфического фермента. [c.39]


    Наряду с процессами выделения двуокиси углерода идут процессы связывания ее. Так, в присутствии воды СО Связывается с карбонатами земной коры с пол ением бикарбонатов. Растения поглощают из воздуха СО2 и под действием солнечного света разлагают его на углерод и кислород. Кислород уходит в атмосферу, а из углерода, взаимодействующего с водой и минеральными солями, в растениях образуются различные органические соединения, в частности крахмал, растительные белки и другие вещества. Этот процесс создания органических веществ из СО2 и HgO, называемый процессом фотосинтеза, происходит только под действием солнечных лучей в зеленых частях растений, содержащих хлорофилловые зерна. Органические вещества растений служат материалом для построения животных организмов. При гниении животных и растительных организмов органические вещества разлагаются и СО2 снова выделяется в воздух. Так происходит постоянный круговорот углерода в природе. [c.227]

    В процессе фотосинтеза водоросли и цианобактерии выделяют кислород. В темновой стадии фотосинтеза в процессе дыхания они потребляют кислород.
ст растений происходит при положительном балансе фотосинтез — дыхание. Поскольку активность фотосинтеза, а следовательно и интенсивность образования кислорода меняется в зависимости от уровня освещенности, а активность дыхания и интенсивность потребления кислорода не изменяются в зависимости от прозрачности и глубины воды, то существует предельная глубина водоема, на которой еще возможен рост растений. Эта глубина называется уровнем компенсации. Он изменяется в зависимости от времени суток, прозрачности воды и времени года. В океанах в зависимости от широты уровень компенсации располагается на глубине 50-100 м. В пресных водоемах, особенно эвтрофных, уровень компенсации меньше. [c.80]

    К макрофитам относится высшая водная растительность, которая в водоемах и водотоках представлена большим количеством видов. В отличие от наземных дыхание у подводных растений происходит через всю оболочку листьев, проницаемую для газов. В результате фотосинтеза возрастает концентрация растворенного в воде кислорода и снижается содержание в ней свободной углекислоты. Одновре.менно наблюдается уменьшение ВПК и количества аммонийных солей, а также увеличение нитратов, нитритов и окисляемости (за счет растительных остатков). В воде, прошедшей через заросли высшей водной растительности, значительно снижается количество взвешенных веществ вследствие прилипания их к слизистым поверхностям растений. Макрофиты выделяют в воду вещества типа фитонцидов, под воздействием которых погибают микробы группы кишечной палочки и патогенные микробы. В присутствии высшей водной растительности наблюдается также торможение процесса цветения воды. Несмотря на [c.188]


    При сбросе сточных вод в небольшие водоемы наблюдается помутнение воды, вызываемое попавшими в нее вместе со сточной водой взвешенными веществами. Солнечный свет больше не может проникать сквозь толщу мутной воды, и водные растения не получают достаточного количества солнечной энергии. Поэтому они уже не могут перерабатывать загрязнения в количествах, необходимых для образования высших соединений. В ходе процессов, которые вследствие участия в них солнечного света называют фотосинтезом, растения выделяют кислород, растворяющийся в воде, и, таким образом, количество кислорода может быть увеличено в желаемых пределах. В результате помутнения воды, вызванного сильным загрязнением, с одной стороны, уменьшается количество вырабатываемого растениями кислорода, а с другой — из-за увеличения питания за счет разлагающихся веществ значительно увеличивается количество животных организмов, для жизнедеятельности которых требуется больше кислорода. Оба процесса ведут к сокращению количества кислорода в месте сброса сточных вод. Положение становится критическим, когда содержание растворенного кислорода снижается до 3—4 г/м , так как в этом случае погибает рыба. Гибель рыбы в водоеме всегда свидетельствует о превышении допустимых норм загрязнения водоемов сточными водами. Чем больше и разнообразнее мир живых организмов, принимающих участие в разложении органических загрязнений, тем быстрее происходят преобразования в водоемах. Для того чтобы вода в реке обладала [c.25]


    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Животных организмов на Земле насчитывается 11 типов, подразделяемых на 65 классов, большинство из которых обитают в море, и лишь 8 классов живут на суше.
оме того, насчитывают 17 типов и 33 класса растений, из которых 5 классов обитает в Мировом океане и 10 классов — в пресных и морских водах. К типам растений, распространенным в морях и океанах, относятся водоросли зеленые, бурые, красные, сине-зеленые, разножгутиковые, диатомовые. Характерная особенность растительных организмов— это способность преобразовывать неорганическое вещество в органическое в процессе фотосинтеза, т. е. при поглощении углекислого газа из воды, освещенной солнечными лучами, растения создают углеводы (органические вещества), необходимые для их жизнедеятельности. При проникновении солнечного света в воде происходит преобразование солнечной энергии в химическую, т. е. углекислый газ и вода как продукты полного окисления углерода и водорода входят в состав органического вещества, а освободившийся при разложении воды кислород выделяется в морскую воду. Животные не способны к синтезу органических веществ, но основным источником их питания служат органические вещества, синтезируемые растениями. В процессе фотосинтеза начинается преобразование неорганических веществ в органические отмирание и разложение морских растений и остатков поглотивших их животных определяют вновь переход органических веществ в неорганические. Так осуществляется круговорот веществ в морской воде. [c.172]

    Кроме того, газообразный кислород смешивается с водой в результате аэрации, которая происходит, если вода падает с плотин, перетекает через валуны и другие препятствия, образуя в результате водо-воздушную пену .
зообразный кислород попадает в природные водоемы в результате фотосинтеза — процесса, при котором зеленые растения у океанский планктон синтезируют углеводы из диоксида углерода и воды пря н.шичии солнечного света. В дневные часы водные зеленые растения постоянно синтезируют сахара. При этом также получается газообразный кислород, который выделяется из водных растений в окружающую воду. Суммарное химическое уравнение, описывающее образование глюкозы ((Ь5Н1205) и кислорода при фотосинтезе, может быть представлено следующим образом  [c.58]

    Реаэрация из атмосферы — главный источник поступления кислорода в реку. Кроме того, растворенный кислород могут содержать сбрасываемые в реку дождевые воды. Водоросли выделяют кислород при фотосинтезе, однако последний происходит не всегда этот процесс является ненадежным источником поступлення кислорода и не описывается математически. [c.125]

    Что нового внесло применение меченых атомов в науку о питании растений и использовании удобрений Прежде всего надо отметить, что при помощи тяжелого изотопа кислорода 18 доказана неверность существовавших долгое время представлений о ходе фотосинтеза в зеленых растениях. Более 100 лет в науке считали, что под влиянием энергии солнечных лучей в зеленом пигменте — хлорофилле происходит распад поступившего через устьица углекислого газа на углерод и кислород (СОг—+ Ог), причем кислород выделяется обратно в атмосферу, а углерод присоединяется к воде, давая начало простейшему органическому веществу — формальдегиду (С НгО = СНгО). Уплотнение шести молекул формальдегида приводило, согласно предположению, к возникновению простого сахара (бСНгО— СбН120б). [c.204]


    Все попытки осуществить фотосинтез с чистым хлорофиллом в различных растворителях остались безуспешными. Наоборот исследования, проведенные с хлоропластамп, выделенными из клеток, или даже с фрагментами хлоропластов (зернами), привели к интересным результатам. Взвешенные в воде и выдерживаемые на свету хлоропласты не способны восстанавливать двуокись углерода, но взаимодействуют с более легко восстанавливающимися веществами, как, например, с ионом трехвалентного железа, хиноном и некоторыми простыми красителями. При восстановлении образуются ион двухвалентного железа, гидрохинон и т.д. и выделяется экивалентное количество кислорода. При проведении этой реакции в воде, меченной 0 , оказалось возможным доказать, что выделенный кислород происходит из воды. Таким образом, реакция является фотохимическим разложением воды, происходящим только в присутствии акцептора (А) для образующихся атомов водорода (Р. Хилл, 1937 г.) [c.260]

    В.
ера. В слоистом озере вертикальное разделение Ф и Д происходит в результате того, что водоросли сохраняют способность к фотосинтезу только в эвтрофических верхних слоях. Осев на дно в результате гравитации, органическое вещество водорослей, синтезированное при избытке СО2 или НСОз в верхних слоях озера, биохимически окисляется. Большая часть кислорода, выделенного в процессе фотосинтеза, выделяется в атмосферу и становится недоступным для Д-организмов глубоких водных слоев (см. рис. 4). Чрезмерная продукция на поверхности озера (Д Ф) соответствует анаэробным условиям на дне озера (Ф Д). Это прогрессивное обогащение воды питательными веществами и повышение про- [c.24]

    В настоящее время известно, что этот процесс в основном совершается в зеленых листьях растений. Растения поглощают из воздуха углекислый 1 аз, выделяя обратно в атмосферу такой же объем кислорода. В присутствии зеленого вещества — хлорофилла, являющегося катализатором, углекпслый газ, взаимодействуя с водой, образует более сложные углеродистые соединения крахмал, клетчатку, сахар, жиры и, наконец, белки, из которых состоят тела растений и животных. Превращение углекислого газа и воды в сложные органические соединения есть эндотермический процесс, сопро-1юждающийся поглощением энергии. Источником энергии в этом процессе является солнечная энергия, которая и обусловливает сложные превращения. Так как процесс образования органического вещества в растениях происходит под влиянием света, он и получил название фотосинтеза. [c.205]

    Выделяющийся при фотосинтезе кислород получается из вступающей в реакцию воды, образующаяся же молекула воды отличается от тех двух молекул, которые подверглись фотолизу. На рис. 4.1 приведена схема, которая может помочь читателю нагляднее представить себе общий ход рассматриваемой реакции. Из этой схемы видно, что световая энергия используется для разложения воды. При этом выделяется кислород и образуй ется также водород (или восстановительная сила ), расходуемый 1) на восстановление СОг до конечного продукта фотог синтеза (СНгО) и 2) на образование новой молекулы воды . Конечно, это самое краткое описание фотосинтеза, и в каждой из представленных здесь простых реакций в действительности имеется много промежуточных этапов. Одни из этих этапов связаны с превращением световой энергии в химическую, другие же могут происходить как на свету, так и в темноте. Эти последние называются темповыми реакциями фотосинтеза. [c.107]


Смотреть страницы где упоминается термин Кислород, выделяющийся при фотосинтезе, происходит из воды: [c.20]    [c.125]    [c.109]    [c.95]    [c.206]    [c.144]    [c.166]    [c.190]   


Смотреть главы в:

Биохимия Т.2 -> Кислород, выделяющийся при фотосинтезе, происходит из воды

Источник: www.chem21.info

Фотосинтез

Воду и минеральные вещества растения получают с помощью корней. Листья обеспечивают органическое питание растений. В отличие от корней они находятся не в почве, а в воздушной среде, поэтому осуществляют не почвенное, а воздушное питание.

Из истории изучения воздушного питания растений

Знания о питании растений накапливались постепенно.

Около 350 лет назад голландский ученый Ян Гельмонт впервые поставил опыт по изучению питания растений. В глиняном горшке с почвой он выращивал иву, добавляя туда только воду. Опадавшие листья ученый тщательно взвешивал. Через пять лет масса ивы вместе с опавшими листьями увеличилась на 74,5 кг, а масса почвы уменьшилась всего на 57 г. На основании этого Гельмонт пришел к выводу, что все вещества в растении образуются не из почвы, а из воды. Мнение о том, что растение увеличивается в размерах только за счет воды, сохранялось до конца XVIII века.

В 1771 г. английский химик Джозеф Пристли изучал углекислый газ, или, как он его называл, «испорченный воздух» и сделал замечательное открытие. Если зажечь свечу и накрыть оо стеклянным колпаком, то, немного погорев, она погаснет.

Мышь под таким колпаком начинает задыхаться. Однако если под колпак вместе с мышью поместить ветку мяты, то мышь не задыхается и продолжает жить. Значит, растения «исправляют» воздух, испорченный дыханием животных, то есть превращают углекислый газ в кислород.

При фотосинтезе кислород образуется в результате

В 1862 г. немецкий ботаник Юлиус Сакс с помощью опытов доказал, что зеленые растения не только выделяют кислород, но и создают органические вещества, служащие пищей всем другим организмам.

Фотосинтез

Главное отличие зеленых растений от других живых организмов — наличие в их клетках хлоропластов, содержащих хлорофилл. Хлорофилл обладает свойством улавливать солнечные лучи, энергия которых необходима для создания органических вещсств. Процесс образования органического вещества из углекислого газа и воды с помощью солнечной энергии называется фотосинтезом (греч. рЬо1оз свет). В процессе фотосинтеза образуются не только органические вещества — сахара, но и выделяется кислород.

Схематически процесс фотосинтеза можно изобразить так:

При фотосинтезе кислород образуется в результате

Вода поглощается корнями и по проводящей системе корней и стебля передвигается к листьям. Углекислый газ — составная часть воздуха. Он поступает в листья через открытые устьица. Поглощению углекислого газа способствует строение листа: плоская поверхность листовых пластинок, увеличивающая площадь соприкосновения с воздухом, и наличие большого числа устьиц в кожице.

Образующиеся в результате фотосинтеза сахара превращаются в крахмал. Крахмал это органическое вещество, которое не растворяется в воде. Кго легко обнаружить с помощью раствора йода.

Доказательства образования крахмала в листьях на свету

Докажем, что в зеленых листьях растений из углекислого газа и воды образуется крахмал. Для этого рассмотрим опыт, который в свое время был поставлен Юлиусом Саксом.

Комнатное растение (герань или примулу) выдерживают двое суток в темноте, чтобы весь крахмал израсходовался на процессы жизнедеятельности. Затем несколько листьев закрывают с двух сторон черной бумагой так, чтобы была прикрыта только их часть. Днем растение выставляют на свет, а ночью его дополнительно освещают с помощью настольной лампы.

Через сутки исследуемые листья срезают. Чтобы выяснить, в какой части листа образовался крахмал, листья кипятят в воле (чтобы набухли крахмальные зерна), а затем выдерживают в горячем спирте (хлорофилл при этом растворяется, и лист обесцвечивается). Затем листья промывают в воде и действуют на них слабым раствором йода. Тс участки листьев, которые были на свету, приобретают от действия йода синюю окраску. Это означает, что крахмал образовался в клетках освещенной части листа. Следовательно, фотосинтез происходит только на свету.

При фотосинтезе кислород образуется в результате

Доказательства необходимости углекислого газа для фотосинтеза

Чтобы доказать, что для образования крахмала в листьях необходим углекислый газ, комнатное растение также предварительно выдерживают в темноте. Затем один из листьев помещают в колбу с небольшим количеством известковой воды. Колбу закрывают ватным тампоном. Растение выставляют на свет. Углекислый газ поглощается известковой водой, поэтому его в колбе не будет. Лист срезается, и так же, как в предыдущем опыте, исследуется на наличие крахмала. Он выдерживается в горячей воде и спирте, обрабатывается раствором йода. Однако в этом случае результат опыта будет иным: лист не окрашивается в синий цвет, т.к. крахмал в нем не содержится. Следовательно, для образования крахмала, кроме света и воды, необходим углекислый газ.

Таким образом, мы ответили на вопрос, какую пищу получает растение из воздуха. Опыт показал, что это углекислый газ. Он необходим для образования органического вещества.

Организмы, самостоятельно создающие органические вещества для построения своего тела, называются автотрофамн (греч. autos — сам, trofe — пища).

При фотосинтезе кислород образуется в результате

Доказательства образования кислорода в процессе фотосинтеза

Чтобы доказать, что при фотосинтезе растения во внешнюю среду выделяют кислород, рассмотрим опыт с водным растением элодеей. Побеги элодеи опускают в сосуд с водой и сверху накрывают воронкой. На конец воронки надевают пробирку с водой. Растение выставляют на свет на двое-трое суток. На свету элодея выделяет пузырьки газа. Они скапливаются в верхней части пробирки, вытесняя воду. Для того чтобы выяснить, какой это газ, пробирку аккуратно снимают и вносят в нее тлеющую лучинку. Лучинка ярко вспыхивает. Это значит, что в колбе накопился газ, поддерживающий горение кислород.

При фотосинтезе кислород образуется в результате

Космическая роль растений

Растения, содержащие хлорофилл, способны усваивать солнечную энергию. Поэтому К.А. Тимирязев назвал их роль на Земле космической. Часть энергии Солнца, запасенная в органическом веществе, может долго сохраняться. Каменный уголь, торф, нефть образованы веществами, которые в далекие геологические времена были созданы зелеными растениями и вобрали в себя энергию Солнца. Сжигая природные горючие материалы, человек освобождает энергию, запасенную миллионы лет назад зелеными растениями.

Источник: a-viptravel.ru

Определение фотосинтеза

Фотосинтез — это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

При фотосинтезе кислород образуется в результате» data-layzr=»https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза.jpg» alt=»» width=»700″ height=»350″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза.jpg 700w, https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза-300×150.jpg 300w, https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза-500×250.jpg 500w» sizes=»(max-width: 700px) 100vw, 700px» />

Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей — АТФ и НАДФН — для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные — несколько. Листовая пластинка — одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис — слой клеток, который является покровной тканью листа. Его главная функция — защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл — это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний — палисадный и нижний — губчатый.

  • Защитные клетки

Защитные клетки — специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны — они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа — устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез — это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Источник: natworld.info

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Фотосинтез

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н2О + Qсвета → Н+ + ОН—.

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН— → •ОН + е—.

Радикалы •ОН объединяются, образуя воду и свободный кислород:

4НО• → 2Н2О + О2.

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ+ (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

2Н+ + 2е— + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез   Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

   

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe2+ → Fe3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

 

Источник: licey.net


Полезные статьи по теме:

Виды фотосинтезаВиды фотосинтеза Бородач птица фотоБородач птица фото Морская рыба фото и названия для едыМорская рыба фото и названия для еды Лист рябины фото осеньюЛист рябины фото осенью Ковыль в степи фотоКовыль в степи фото Спаривание львов фотоСпаривание львов фото

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Свежие записи

  • Клеточная стенка растительных клеток содержит
  • Картинки солнышко для детского сада
  • Джигита дерево
  • Змеиные яйца фото
  • Самая дорогая порода собак в мире фото

Содержание

  • 1 Фотосинтез
  • 2 Из истории изучения воздушного питания растений
  • 3 Фотосинтез
  • 4 Доказательства образования крахмала в листьях на свету
  • 5 Доказательства необходимости углекислого газа для фотосинтеза
  • 6 Доказательства образования кислорода в процессе фотосинтеза
  • 7 Космическая роль растений
  • 8 Определение фотосинтеза
  • 9 Фазы фотосинтеза
  • 10 Строение листьев растений
  • 11 Условия, необходимые для фотосинтеза
  • 12 Где происходит фотосинтез?
  • 13 Углекислый газ в процессе фотосинтеза
  • 14 Свет в процессе фотосинтеза
  • 15 Вода в процессе фотосинтеза
  • 16 Значение фотосинтеза в природе
  • 17 Фотосинтез
  • 18 Световая фаза
  • 19 Темновая фаза
  • 20 С3-фотосинтез
  • 21 Фотодыхание
  • 22 С4-фотосинтез
  • 23 Значение фотосинтеза
  • 24 Хемосинтез

Ссылки на другие статьи

  • Липкие листья
  • Продолжительность жизни волнистых попугаев в домашних условиях
  • Какие птицы прилетают с юга первыми
  • Слои литосферы
  • Представители птиц