Локализация

Первое отличие световой фазы фотосинтеза от темновой – в её локализации. Она проходит в тилакоидах – мембранных цистернах, расположенных внутри хлоропластов.

Внутреннее строение хлоропласта

Рис. 1. Внутреннее строение хлоропласта.

Хлорофилл

На тилакоидных мембранах находится пигмент зелёного цвета хлорофилл. По химической природе он является магниевой солью пиррола.

В процессе световой фазы фотосинтеза хлорофилл выполняет функцию фотосенсибилизатора – вещества, поглощающего свет, с помощью энергии которого осуществляются различные химические превращения.

Поглощая свет, хлорофилл переходит в «возбуждённое», более богатое энергией состояние, в котором сам теряет электрон и становится способен отнимать водород или электрон у других веществ.

Фотолиз воды


Возбуждённый хлорофилл присоединяет к себе водород воды, вызывая её разложение (фотолиз):

2Н₂О → 4Н⁺ + 4е¯ + О₂

Кислород выделяется из клетки. Протоны водорода переносятся веществами-передатчиками на НАДФ, восстанавливая его до НАДФН₂.

Это один из продуктов световой фазы, который будет использоваться для образования органических веществ во второй фазе фотосинтеза.

Другим таким продуктом является АТФ. Это энергоёмкое соединение, которое является универсальным внутриклеточным источником энергии для многих реакций, в том числе, реакций темновой фазы фотосинтеза.

Формула АТФ

Рис. 2. Формула АТФ.

Образование АТФ происходит в результате реакции фотосинтетического фосфорилирования:

АДФ + Н₃РО₄ + 2hv → АТФ

Схема световой фазы фотосинтеза

Рис. 3. Схема световой фазы фотосинтеза.

Таким образом, продуктами световых реакций являются:

  • кислород;
  • АТФ;
  • НАДФН₂.

При этом, кислород рассматривается как побочный продукт фотосинтеза, а образование АТФ и НАДФН₂ как подготовка к процессам темновой фазы.

Влияние интенсивности света

Фотосинтез возможен при различной интенсивности света. Он не прекращается во время летних белых ночей на севере, идёт при свете зари. При увеличении интенсивности света возрастает и интенсивность фотосинтеза, которая выражается количеством связываемого СО₂.

Однако при определённых значениях интенсивности света наступает световое насыщение фотосинтеза и его интенсивность не растёт.

При значениях, превышающих показатели светового насыщения, фотосинтетический аппарат может разрушаться вследствие действия фотоокисления и остановки процессов катализации.

Источник: obrazovaka.ru

Фотосинтез — уникальная система процессов создания с помощью хлоро­филла и энергии света органических веществ из неорганических и выделения кислорода в атмосферу, реализуемая в огромных масштабах на суше и в воде.

Фотосинтез происходит в клетках зелёных растений с помо­щью пигментов, главным образом хлорофилла, находящегося в хлоропластах клетки. Его продуктами являются мономеры углеводов (моносахариды: глюко­за, фруктоза и др.).


В основе фотосинтеза лежит окислительно-восстановительный процесс, в котором электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (CO2 , ацетат и др.) с образованием восстановлен­ных соединений (углевода) и выделением кислорода, если окисляется вода. Фотосинтезирующие бактерии часто используют другие доноры, а не воду, кислород при этом они не выделяют.

В системе процессов фотосинтеза различают два цикла реакций, как две фазы, последовательно и непрерывно идущие друг за другом — световую и темновую (рис. 62).

Световая фаза фотосинтеза характеризуется тем, что здесь все процес­сы происходят только при участии энергии света, поэтому её и называют све­товой. Связывание солнечной (электромагнитной) энергии происходит пре­имущественно на мембранах тилакоидов хлоропласта. Размещающийся здесь хлорофилл и другие пигменты собраны в функциональные единицы-комплексы — пигментные системы, получившие название фотосистемы.

Световая фаза фотосинтеза протекает в
Рис. 62. Схема фотосинтеза

Таким образом, светособирающие и пигментно-белковые комплексы фотосистемы I и фотосистемы II обеспечивают процесс фотосинтеза необходимой энергией в ви­де макроэнергетических соединений НАДФ•Н и АТФ. В этом заключается ос­новная функция световой фазы фотосинтеза. Она реализуется только при участии света и с помощью пигментов, размещённых в тилакоидной мембра­не хлоропластов.

Темновая фаза фотосинтеза проходит в строме хлоропласта без непо­средственного поглощения света, в любое время суток. В процессе световой фа­зы фотосинтеза накапливается достаточно высокий уровень АТФ и НАДФ•Н. Однако сами по себе эти высокоэнергетические соединения не способны синте­зировать углеводы из CO2. Поэтому становится очевидным, что и темновая фа­за фотосинтеза — сложный процесс, включающий большое количество реакций. Материал с сайта http://doklad-referat.ru

Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют высокоэнергетические ве­щества (АТФ и НАДФ•Н), образующиеся с участием энергии света, во время световой фазы фотосинтеза. В процессе темновой фазы энергия макроэнергетических связей АТФ преобразуется в химическую энергию органических соединений молекул углеводов. Это значит, что энергия солнечного света как бы консервируется в химических связях между атомами органических ве­ществ, что имеет огромное значение в энергетике биосферы и конкретно для жизнедеятельности всего живого населения нашей планеты.


Фотосинтез происходит в хлоропластах клетки и представляет собой синтез углеводов в хлорофиллоносных клетках, идущий с потреблением энергии сол­нечного света. Различают световую и темповую фазы фотосинтеза. Световая фаза при непосредственном потреблении квантов света обеспечивает про­цесс синтеза необходимой энергией в виде НАДН и АТФ. Темновая фаза — без участия света, но путем многочисленного ряда химических реакций (цикл Кальвина) обеспечивает образование углеводов, главным образом глюкозы. Значение фотосинтеза в биосфере огромно.

Источник: doklad-referat.ru

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды.
ществует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Фотосинтез

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:


Н2О + Qсвета → Н+ + ОН.

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН → •ОН + е.

Радикалы •ОН объединяются, образуя воду и свободный кислород:

4НО• → 2Н2О + О2.

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ+ (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+ + 2е + НАДФ → НАДФ·Н2.


Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:


6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:


О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез   Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

   

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe2+ → Fe3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

 

Источник: licey.net