Солнце языком цифр

Солнце, несмотря на то, что числится по классификации звезд «желтым карликом» так велико, что нам даже сложно представить. Когда мы говорим, что масса Юпитера — это 318 масс Земли, это кажется невероятным. Но когда мы узнаем, что 99,8% массы всего вещества Солнечной системы приходится на Солнце — это просто выходит за рамки понимания.

За прошедшие годы мы немало узнали о том как устроена «наша» звезда. Хотя человечество не изобрело (и вряд ли когда-то изобретет) исследовательский зонд, способный физически приблизиться к Солнцу и взять пробы его вещества, мы итак неплохо осведомлены об его составе.

Знание физики и возможности спектрального анализа дают нам возможность точно сказать, из чего состоит Солнце:  70% от его массы составляет водород, 27% — гелий, другие элементы  (углерод, кислород, азот, железо, магний и другие) — 2,5%.

Однако, только этой сухой статистикой наши знания, к счастью, не ограничиваются.

Что находится внутри Солнца


Согласно современным расчетам температура в недрах Солнца достигает 15 — 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.

Источник энергии Солнца — постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
«Зона ядерного синтеза» Солнца называется солнечным ядром и имеет радиус примерно 150—175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз — плотность самого плотного вещества на Земле: осмия.

Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл. На Солнце преимущественно протекает водородный цикл, который можно разбить на три этапа:

  • ядра водорода превращаются в ядра дейтерия (изотоп водорода)
  • ядра водорода превращаются в ядра неустойчивого изотопа гелия
  • продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).

Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.


Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.

Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции — перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.

Атмосфера Солнца

Выше зоны конвекции начинается атмосфера Солнца, в ней перенос энергии снова происходит с помощью излучения.

Фотосферой называют нижний слой солнечной атмосферы — видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единицы, а в абсолютных величинах фотосфера достигает толщины 100-400 км. Именно фотосфера является источником видимого излучения Солнца, температура составляет от 6600 К (в начале) до 4400 К (у верхнего края фотосферы).

На самом деле Солнце выглядит как идеальный круг с четкими границами только потому, что на границе фотосферы его яркость падает в 100 раз за менее чем одну секунду дуги. За счет этого края Солнечного диска заметно менее ярки нежели центр, их яркость всего 20% от яркости центра диска.

Хромосфера — второй атмосферный слой Солнца, внешняя оболочка звезды, толщиной около 2000 км, окружающая фотосферу. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К. Наблюдая Солнце с Земли, мы не видим хромосферу из-за малой плотности. Её можно наблюдать только во время солнечных затмений — интенсивное красное свечение вокруг краев солнечного диска, это и есть хромосфера звезды.


Солнечная корона — последняя внешняя оболочка солнечной атмосферы. Корона состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет до 2 млн К, но может доходить и до 20 млн К. Однако, как и в случае с хромосферой — с земли солнечная корона видна только во время затмений. Слишком малая плотность вещества солнечной короны не позволяет наблюдать её в обычных условиях.

Солнечный ветер

Солнечный ветер – поток заряженных частиц (протонов и электронов), испускаемых нагретыми внешними слоями атмосферы звезды, который простирается до границ нашей планетарной системы. Светило ежесекундно теряет миллионы тонн своей массы, из-за этого явления.

Около орбиты планеты Земля скорость частиц солнечного ветра достигает 400 километров в секунду (они перемещаются по нашей звездной системе со сверхзвуковой скоростью), а плотность солнечного ветра от нескольких до нескольких десятков ионизированных частиц в кубическом сантиметре.


Именно солнечный ветер нещадно «треплет» атмосферу планет, «выдувая» содержащиеся в ней газы в открытый космос, он же во многом ответственен за «хвосты» комет. Противостоять солнечному ветру Земле позволяет магнитное поле планеты, которое служит невидимой защитой от солнечного ветра и препятствует оттоку атомов атмосферы в открытый космос. При столкновении Солнечного ветра с магнитным полем планеты происходит оптическое явление, которое на Земле мы называем – полярное сияние, сопровождаемое магнитными бурями.

Впрочем, неоспорима и польза солнечного ветра — именно он «сдувает» из Солнечной системы и космическую радиацию галактического происхождения – а следовательно оберегает нашу звездную систему от внешних, галактических излучений.

Источник: starcatalog.ru

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют — феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру — грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца


Тонкий слой (400 км) — фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.


Протуберанцы

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Солнечная корона

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Характеристики Солнца


• Масса Солнца: 2∙1030 кг (332 946 масс Земли)
• Диаметр: 1 392 000 км
• Радиус: 696 000 км
• Средняя плотность: 1 400 кг/м3
• Наклон оси: 7,25° (относительно плоскости эклиптики)
• Температура поверхности: 5 780 К
• Температура в центре Солнца: 15 млн градусов
• Спектральный класс: G2 V
• Среднее расстояние от Земли: 150 млн. км
• Возраст: 5 млрд. лет
• Период вращения: 25,380 суток
• Светимость: 3,86∙1026 Вт
• Видимая звездная величина: 26,75m

Источник: kosmos-gid.ru

Ядро Солнца

В ядре Солнца гравитационное притяжение приводит к огромным температурам и давлению. Температура здесь может достигать 15 миллионов градусов по Цельсию. Атомы водорода в этой области сжимаются, и сливаются вместе для получения гелия в процессе, называемом ядерным синтезом. Ядерный синтез вырабатывает огромное количество энергии, которая излучается к поверхности Солнца и в впоследствии достигает Земли. Энергия от ядра проникает в конвективную зону.

Конвективная зона


Эта зона простирается на 200 000 км и приближается к поверхности. Температура в этой зоне опускается ниже 2 миллионов градусов Цельсия. Плотность плазмы достаточно низка, чтобы создать конвективные токи и транспортировать энергию к поверхности Солнца. Тепловые колонны зоны создают отпечаток на поверхности Солнца, придавая ему гранулированный вид, называемый супергрануляцией в самом большом масштабе и грануляцией в наименьшем масштабе.

Фотосфера

Фотосфера — это внешняя излучающая оболочка Солнца. Большая часть энергии этого слоя полностью вытекает из Солнца. Толщина слоя составляет от десятков до сотен километров, а солнечные пятна на нем темнее и прохладнее, чем окружающий регион. В основе больших солнечных пятен температура может составлять 4 000 градусов Цельсия. Общая температура фотосферы составляет приблизительно 5 500 градусов Цельсия. Энергия Солнца обнаруживается как видимый свет в фотосфере.

Хромосфера

Хромосфера является одним из трех основных слоев атмосферы Солнца и имеет толщину от 3000 до 5000 км. Она расположена прямо над фотосферой. Хромосфера обычно не видна, если нет полного затмения, в течение которого ее красноватый свет окружает лунный диск. Слой обычно не наблюдается без специального оборудования из-за яркости фотосферы. Средняя температура хромосферы составляет около 4 320 градусов по Цельсию.

Корона

Корона простирается на миллионы километров в космос и, как хромосфера, легко видна во время затмения. Температура короны может достигать 2 миллионов градусов Цельсия, и именно эти высокие температуры придают ей уникальные спектральные особенности. Когда она остывает, теряя как радиацию, так и тепло, вещество сдувается в виде солнечного ветра.

Важность энергии Солнца


Солнечная энергия позволяет растениям в процессе фотосинтеза вырабатывать собственную пищу, которая, в свою очередь, потребляется другими живыми существами. Солнечный свет дает зрение и нагревает воду. Он необходим для образования угля и нефтепродуктов, а также является важным фактором в формировании витамина D, который незаменим для роста костей в организме человека.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

    Корона — в отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца обладает огромной протяженностью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а ее слабое продолжение уходит еще дальше.
    Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъеме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы, его атмосфера не должна быть высокой. В действительности она необычайно обширна.
ледовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1-2 млн градусов!
    Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить ее цвет.
    Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу ее часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна. Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны — с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластинкой специальный «радиальный» фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На таких снимках ее структуру можно проследить до расстояний во много солнечных радиусов.
    Уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные «дуги», «шлемы» и другие сложные образования, четко связанные с активными областями.
    Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Еще в 1897 г. пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11-летним циклом солнечной активности.
    С 11-летним периодом меняется как общая яркость, так и форма солнечной короны. В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щеточки. При этом общая яркость короны уменьшается. Эта интересная особенность короны, повидимому, связана с постепенным перемещением в течении 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30-40°. Затем зона пятнообразования постепенно опускается к экватору.
    Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существуют определенная связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается. Такую ее область называют обычно возбужденной. Она горячее и плотнее соседних, невозбужденных областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.
    Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях.
    На рубеже XIX-XX столетий, когда физика плазмы фактически еще не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые. Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску. С удалением от Солнца доля поляризованных лучей сначало увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удалось отождествить ни с одним из известных химических элементов.
    Оказалось, что главная причина всех этих особенностей короны — высокая температура сильно разреженного газа. При температуре свыше 1 млн градусов средние скорости атомов водорода превышают 100 км/с, а у свободных электронов они еще раз в 40 больше. При таких скоростях, несмотря на сильную разреженность вещества (всего 100 млн частиц в куб см, что в 100 млрд раз разреженнее воздуха на Земле!), сравнительно часты столкновения атомов, особенно с электронами. Силы электронных ударов так велики, что атомы легких элементов практически полностью лишаются всех своих электронов и от них остаются лишь «голые» атомные ядра. Более тяжелые элементы сохраняют самые глубокие электронные оболочки, переходя в состояние высокой степени ионизации.
    Итак, корональный газ — это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникающих при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжелых атомов. Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом.
    Белый цвет короны объясняется рассеиванием обычного солнечного света на свободных электронах. Они не вкладывают своей энергии при рассеивании: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необячным излучением высокоионизированных атомов железа, аргона, никеля, кальция и других элементов, возникающим только в условиях сильного разрежения. Наконец, линии поглощения во внешней короне вызваны рассеиванием на пылевых частицах, которые постоянно присутствуют в межзвездной среде. А отсутствие линии во внутренней короне связано с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают столь значительные изменения частот, что даже сильные фраунгоферовы линии солнечного спектра полностью «замываются».
    Итак, корона Солнца — самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потокак плазмы — солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-500 км/с, а порой достигает почти 1000 км/с. Распространяясь далеко за пределы орбит Юпитера и Сатурна, солнечный ветер образует гигантсткую гелиосферу, границащую с еще более разреженной межзвездной средой.
    Фактически мы живем окруженные солнечной короной, хотя и защищенные от ее проникающей радиации надежным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле (геофизические явления).


Как Солнце влияет на Землю

Источник: galspace.spb.ru