В результате митоза из одной материнской клетки образуются две дочерние.

При этом число хромосом в обеих дочерних клетках такое же, как и в материнской клетке, т. е. дочерние и материнская клетки одинаковы.

В результате мейоза образуются не две, а четыре клетки, каждая из которых имеет вдвое меньше хромосом по сравнению с материнской клеткой.

Бесполое размножение

Бесполое размножение осуществляется при участии лишь одной родительской особи и происходит без образования гамет. Дочернее поколение у одних видов возникает из одной или группы клеток материнского организма, у других видов — в специализированных органах. Различают следующие способы бесполого размножения: деление, почкование, фрагментация, полиэмбриония, споро­образование, вегетативное размножение.

 

Деление — способ бесполого размножения, характерный для одноклеточных организмов, при котором материнская особь делится на две или большее количество дочерних клеток.


жно выделить: а) простое бинарное деление (прокариоты), б) митотическое бинарное деление (простейшие, одноклеточные водоросли), в) множественное деление, или шизогонию (малярийный плазмодий, трипаносомы). Во время деления парамеции (1) микронуклеус делится митозом, макронуклеус — амитозом. Во время шизогонии (2) сперва многократно митозом делится ядро, затем каждое из дочерних ядер окружается цитоплазмой, и формируются несколько самостоятельных организмов.

Почкование — способ бесполого размножения, при котором новые особи образуются в виде выростов на теле родительской особи (3). Дочерние особи могут отделяться от материнской и переходить к самостоятельному образу жизни (гидра, дрожжи), могут остаться прикрепленными к ней, образуя в этом случае колонии (коралловые полипы).

Фрагментация (4) — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается материнская особь (кольчатые черви, морские звезды, спирогира, элодея). В основе фрагментации лежит способность организмов к регенерации.

Полиэмбриония — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается эмбрион (монозиготные близнецы).

Вегетативное размножение — способ бесполого размножения, при котором новые особи образуются или из частей вегетативного тела материнской особи, или из особых структур (корневище, клубень и др.), специально предназначенных для этой формы размножения. Вегетативное размножение характерно для многих групп растений, используется в садоводстве, огородничестве, селекции растений (искусственное вегетативное размножение).


Спорообразование (6) — размножение посредством спор. Споры — специализированные клетки, у большинства видов образуются в особых органах — спорангиях. У высших растений образованию спор предшествует мейоз.

Клонирование — комплекс методов, используемых человеком для получения генетически идентичных копий клеток или особей.Клон — совокупность клеток или особей, произошедших от общего предка путем бесполого размножения. В основе получения клона лежит митоз (у бактерий — простое деление).


Половое размножение

 

Половое размножение осуществляется при участии двух родительских особей (мужской и женской), у которых в особых органах образуются специализированные клетки — гаметы. Процесс формирования гамет называется гаметогенезом, основным этапом гаметогенеза является мейоз. Дочернее поколение развивается из зиготы — клетки, образовавшейся в результате слияния мужской и женской гамет. Процесс слияния мужской и женской гамет называется оплодотворением. Обязательным следствием полового размножения является перекомбинация генетического материала у дочернего поколения.

В зависимости от особенностей строения гамет, можно выделить следующие формы полового размножения: изогамию, гетерогамию и овогамию.


Изогамия (1) — форма полового размножения, при которой гаметы (условно женские и условно мужские) являются подвижными и имеют одинаковые морфологию и размеры.

Гетерогамия (2) — форма полового размножения, при которой женские и мужские гаметы являются подвижными, но женские — крупнее мужских и менее подвижны.

Овогамия (3) — форма полового размножения, при которой женские гаметы неподвижные и более крупные, чем мужские гаметы. В этом случае женские гаметы называются яйцеклетками, мужские гаметы, если имеют жгутики, — сперматозоидами, если не имеют, — спермиями.

Овогамия характерна для большинства видов животных и растений. Изогамия и гетерогамия встречаются у некоторых примитивных организмов (водоросли). Кроме вышеперечисленных, у некоторых водорослей и грибов имеются формы размножения, при которых половые клетки не образуются: хологамия и конъюгация. При хологамии происходит слияние друг с другом одноклеточных гаплоидных организмов, которые в данном случае выступают в роли гамет. Образовавшаяся диплоидная зигота затем делится мейозом с образованием четырех гаплоидных организмов. При конъюгации (4) происходит слияние содержимого отдельных гаплоидных клеток нитевидных талломов. По специально образующимся каналам содержимое одной клетки перетекает в другую, образуется диплоидная зигота, которая обычно после периода покоя также делится мейозом.

iv>

Источник: megaobuchalka.ru

В результате митоза из одной материнской клетки образуются две дочерние.

При этом число хромосом в обеих дочерних клетках такое же, как и в материнской клетке, т. е. дочерние и материнская клетки одинаковы.

В результате мейоза образуются не две, а четыре клетки, каждая из которых имеет вдвое меньше хромосом по сравнению с материнской клеткой.

Бесполое размножение

Бесполое размножение осуществляется при участии лишь одной родительской особи и происходит без образования гамет. Дочернее поколение у одних видов возникает из одной или группы клеток материнского организма, у других видов — в специализированных органах. Различают следующие способы бесполого размножения: деление, почкование, фрагментация, полиэмбриония, споро­образование, вегетативное размножение.

 

Деление — способ бесполого размножения, характерный для одноклеточных организмов, при котором материнская особь делится на две или большее количество дочерних клеток. Можно выделить: а) простое бинарное деление (прокариоты), б) митотическое бинарное деление (простейшие, одноклеточные водоросли), в) множественное деление, или шизогонию (малярийный плазмодий, трипаносомы). Во время деления парамеции (1) микронуклеус делится митозом, макронуклеус — амитозом. Во время шизогонии (2) сперва многократно митозом делится ядро, затем каждое из дочерних ядер окружается цитоплазмой, и формируются несколько самостоятельных организмов.


Почкование — способ бесполого размножения, при котором новые особи образуются в виде выростов на теле родительской особи (3). Дочерние особи могут отделяться от материнской и переходить к самостоятельному образу жизни (гидра, дрожжи), могут остаться прикрепленными к ней, образуя в этом случае колонии (коралловые полипы).

Фрагментация (4) — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается материнская особь (кольчатые черви, морские звезды, спирогира, элодея). В основе фрагментации лежит способность организмов к регенерации.

Полиэмбриония — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается эмбрион (монозиготные близнецы).

Вегетативное размножение — способ бесполого размножения, при котором новые особи образуются или из частей вегетативного тела материнской особи, или из особых структур (корневище, клубень и др.), специально предназначенных для этой формы размножения. Вегетативное размножение характерно для многих групп растений, используется в садоводстве, огородничестве, селекции растений (искусственное вегетативное размножение).

Спорообразование (6) — размножение посредством спор. Споры — специализированные клетки, у большинства видов образуются в особых органах — спорангиях. У высших растений образованию спор предшествует мейоз.

>

Клонирование — комплекс методов, используемых человеком для получения генетически идентичных копий клеток или особей.Клон — совокупность клеток или особей, произошедших от общего предка путем бесполого размножения. В основе получения клона лежит митоз (у бактерий — простое деление).


Половое размножение

 

Половое размножение осуществляется при участии двух родительских особей (мужской и женской), у которых в особых органах образуются специализированные клетки — гаметы. Процесс формирования гамет называется гаметогенезом, основным этапом гаметогенеза является мейоз. Дочернее поколение развивается из зиготы — клетки, образовавшейся в результате слияния мужской и женской гамет. Процесс слияния мужской и женской гамет называется оплодотворением. Обязательным следствием полового размножения является перекомбинация генетического материала у дочернего поколения.

В зависимости от особенностей строения гамет, можно выделить следующие формы полового размножения: изогамию, гетерогамию и овогамию.

Изогамия (1) — форма полового размножения, при которой гаметы (условно женские и условно мужские) являются подвижными и имеют одинаковые морфологию и размеры.

Гетерогамия (2) — форма полового размножения, при которой женские и мужские гаметы являются подвижными, но женские — крупнее мужских и менее подвижны.


Овогамия (3) — форма полового размножения, при которой женские гаметы неподвижные и более крупные, чем мужские гаметы. В этом случае женские гаметы называются яйцеклетками, мужские гаметы, если имеют жгутики, — сперматозоидами, если не имеют, — спермиями.

Овогамия характерна для большинства видов животных и растений. Изогамия и гетерогамия встречаются у некоторых примитивных организмов (водоросли). Кроме вышеперечисленных, у некоторых водорослей и грибов имеются формы размножения, при которых половые клетки не образуются: хологамия и конъюгация. При хологамии происходит слияние друг с другом одноклеточных гаплоидных организмов, которые в данном случае выступают в роли гамет. Образовавшаяся диплоидная зигота затем делится мейозом с образованием четырех гаплоидных организмов. При конъюгации (4) происходит слияние содержимого отдельных гаплоидных клеток нитевидных талломов. По специально образующимся каналам содержимое одной клетки перетекает в другую, образуется диплоидная зигота, которая обычно после периода покоя также делится мейозом.

Источник: megaobuchalka.ru

Мейоз I

Стадии мейоза I: профаза, метафаза, анафаза, телофаза

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Схема кроссинговера

Конъюгация — процесс сцепления гомологичных хромосом. Кроссинговер — обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма.

Спаренные гомологичные хромосомы называются бивалентами, или тетрадами. Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие — к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.


Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом, он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.

Последовательность этапов второго мейотического деления


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизма полового размножения, при котором сохраняется постоянство числа хромосом у вида.

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов, благодаря которой возможна эволюция живых организмов.

Источник: biology.su

Дочерние клетки в митозе

Сколько дочерних клеток образуется при мейозе» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/митоз.jpg» alt=»» width=»500″ height=»219″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/07/митоз.jpg 1200w, https://natworld.info/wp-content/uploads/2017/07/митоз-300×131.jpg 300w, https://natworld.info/wp-content/uploads/2017/07/митоз-768×336.jpg 768w, https://natworld.info/wp-content/uploads/2017/07/митоз-500×219.jpg 500w» sizes=»(max-width: 500px) 100vw, 500px» />

Митоз — это этап клеточного цикла, который включает деление клеточного ядра и разделение хромосом. Процесс деления завершается цитокинезом, когда цитоплазма разделяется и образуются две разные дочерние клетки. До митоза клетка готовится к делению, реплицируя ДНК, увеличивает массу и количество органелл. Митоз включает несколько фаз: профазу, метафазу, анафазу и телофазу. На этих фазах хромосомы отделяются, перемещаются в противоположные полюсы клетки и включаются во вновь образованные ядра. В конце процесса деления, дублированные хромосомы разделяются поровну между двумя клетками. Эти дочерние клетки являются генетически идентичными диплоидными клетками, которые имеют одинаковое количество и тип хромосом.

Соматические клетки являются примерами клеток, делящихся посредством митоза. К ним относятся все типы клеток организма, за исключением половых клеток.

Раковые клетки, делящиеся через митоз, способны продуцировать три или более дочерних клетки. Эти клетки имеют либо слишком много, либо недостаточно хромосом из-за нерегулярного деления.

Дочерние клетки в мейозе

Сколько дочерних клеток образуется при мейозе» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-мейоза-дочерние-клетки-e1500029547893.jpg» alt=»» width=»499″ height=»298″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/07/-мейоза-дочерние-клетки-e1500029547893.jpg 499w, https://natworld.info/wp-content/uploads/2017/07/-мейоза-дочерние-клетки-e1500029547893-300×179.jpg 300w, https://natworld.info/wp-content/uploads/2017/07/-мейоза-дочерние-клетки-e1500029547893-164×99.jpg 164w» sizes=»(max-width: 499px) 100vw, 499px» />

В организмах, способных к половому размножению, дочерние клетки продуцируются мейозом. Мейоз — это процесс, состоящий из двух этапов, которые продуцируют гаметы. Делящаяся клетка дважды проходит через профазу, метафазу, анафазу и телофазу. В конце мейоза и цитокинеза четыре гаплоидные клетки продуцируются из одной диплоидной клетки. Эти гаплоидные дочерние клетки имеют половину числа хромосом от родительской клетки и генетически не идентичны ей. Во время полового размножения гаплоидные гаметы объединяются при оплодотворение и становятся диплоидной зиготой. Зигота продолжает разделяться митозом и развивается в полностью функционирующий организм.

Дочерние клетки и хромосомное движение

Сколько дочерних клеток образуется при мейозе» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/схема-метафазы-I-мейоза.jpg» alt=»» width=»300″ height=»300″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/07/схема-метафазы-I-мейоза.jpg 300w, https://natworld.info/wp-content/uploads/2017/07/схема-метафазы-I-мейоза-150×150.jpg 150w» sizes=»(max-width: 300px) 100vw, 300px» />

Как дочерние клетки заканчивают деление с соответствующим числом хромосом? Ответ на этот вопрос касается устройства веретена деления, состоящего из микротрубочек и белков, которые манипулируют хромосомами во время деления клеток. Волокна веретена прикрепляются к реплицированным хромосомам, перемещая и разделяя их, когда это необходимо.

Митотические и мейотические веретена перемещают хромосомы в противоположные полюса клеток, гарантируя, что каждая дочерняя клетка получит правильное количество хромосом. Веретено деления также определяет расположение метафазной пластины — плоскость, на которой клетка в конечном счете разделается.

Дочерние клетки и цитокинез

Сколько дочерних клеток образуется при мейозе» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549542684271-300×184.png» alt=»» width=»300″ height=»184″ />

Последний этап в деления клеток происходит в цитокинезе. Этот процесс начинается во время анафазы и заканчивается после телофазы. Во время цитокинеза делящаяся клетка разделяется на две дочерние с помощью веретена деления. В клетках животных устройство веретена определяет местоположением важной структуры в процессе деления клеток, называемой сократительным кольцом. Сократительное кольцо образовано из филаментов, белков актина и микротрубочек, включая моторный белок миозин. Миозин сжимает кольцо актиновых нитей, образуя глубокую бороздку, называемую бороздкой расщепления. Поскольку сократительное кольцо продолжает сжиматься, оно делит цитоплазму и разделяет клетку на две вдоль бороздки расщепления.

Процесс цитокинеза отличается в растительных клетках. Растительные клетки не содержат астры, звездообразные микротрубочки, которые помогают определить место бороздки расщепления. На самом деле в цитокинезе растительных клеток не образуется спайная бороздка. Вместо этого дочерние клетки разделяются клеточной пластиной, образованной везикулами, которые высвобождаются из органелл аппарата Гольджи. Клеточная пластина расширяется в поперечном направлении и соединяется с клеточной стенкой растения, образуя перегородку между вновь разделенными дочерними клетками. Когда клеточная пластинка созревает, она в конечном итоге превращается в клеточную стенку.

Дочерние хромосомы

Сколько дочерних клеток образуется при мейозе» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/схема-анафазы-I-мейоза.jpg» alt=»» width=»300″ height=»300″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/07/схема-анафазы-I-мейоза.jpg 300w, https://natworld.info/wp-content/uploads/2017/07/схема-анафазы-I-мейоза-150×150.jpg 150w» sizes=»(max-width: 300px) 100vw, 300px» />

Хромосомы в дочерних клетках называются дочерними хромосомами. Они являются результатом разделения сестринских хроматид, которое происходит в анафазе митоза и анафазы II мейоза. Дочерние хромосомы развиваются из репликации одноцепочечных хромосом в фазе синтеза (S-фаза) клеточного цикла.

Одноцепочечные хромосомы превращаются в двухцепочечные хромосомы, которые удерживаются вместе в области, называемой центромера. Двухцепочечные хромосомы известны как сестринские хроматиды. Сестринские хроматиды в конечном счете разделяются и делятся между вновь образованными дочерними клетками. Каждая отдельная хроматида известна как дочерняя хромосома.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

§23. Мейоз и его биологическое значение
Решебник "Биология 10"

 


 


 

1. Сколько дочерних клеток и с каким набором хромосом образуется из одной диплоидной клетки в результате: а) митоза; б) мейоза?

Две гаплоидные, две диплоидные, четыре гаплоидные, четыре диплоидные.

а) В результате митоза – две диплоидные клетки.

б) В результате мейоза – четыре гаплоидные клетки.

 

2. Что представляет собой конъюгация хромосом? В какую фазу мейоза происходит кроссинговер? Какое значение имеет этот процесс?

Конъюгация хромосом наблюдается в профазе мейоза I. Это – процесс сближения гомологичных хромосом. При конъюгации хроматиды гомологичных хромосом в некоторых местах перекрещиваются. Кроссинговер также происходит в профазе мейоза I и представляет собой обмен участками между гомологичными хромосомами. Кроссинговер ведёт к перекомбинации наследственного материала и является одним из источников комбинативной изменчивости, благодаря которой потомки не являются точными копиями своих родителей и отличаются друг от друга.

 

3. Какие события, протекающие в мейозе, обеспечивают уменьшение вдвое набора хромосом в дочерних клетках?

Уменьшение хромосомного набора происходит в анафазе I мейоза вследствие того, что к разным полюсам делящейся клетки расходятся не сестринские хроматиды (как в анафазе митоза и анафазе II мейоза), а двухроматидные гомологичные хромосомы. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадёт только одна. В конце анафазы I набор хромосом у каждого полюса клетки уже является гаплоидным (1n2c).

 

4. Каково биологическое значение мейоза?

У животных и человека мейоз приводит к образованию гаплоидных половых клеток – гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путём мейоза образуются споры.

Процессы, протекающие в мейозе (кроссинговер, независимое расхождение хромосом и хроматид), служат основой комбинативной изменчивости организмов.

 

5. Сравните митоз и мейоз, выявите черты сходства и различия. В чём заключается главное отличие мейоза от митоза?

Главным отличием является то, что в результате мейоза происходит уменьшение в 2 раза набора хромосом дочерних клеток по сравнению с материнской.

Сходство:

● Представляют собой способы деления эукариотических клеток, требуют затрат энергии.

● Сопровождаются точным и равномерным распределением наследственного материала между дочерними клетками.

● Сходные процессы подготовки клетки к делению (репликация, удвоение центриолей и т.п.).

● Сходные процессы, протекающие в соответствующих фазах деления (спирализация хромосом, распад ядерной оболочки, формирование веретена деления и т. д.) и, как следствие, одинаковые названия фаз (профаза, метафаза, анафаза, телофаза). Второе деление мейоза протекает по тому же механизму, что и митоз гаплоидной клетки.

Различия:

● В результате митоза дочерние клетки сохраняют набор хромосом, присущий материнской клетке. В результате мейоза набор хромосом дочерних клеток уменьшается в 2 раза.

● Митоз представляет собой одно деление клетки, а мейоз – два последовательных деления (мейоз I и мейоз II). Поэтому в результате митоза из одной материнской клетки образуются две дочерние, а в результате мейоза – четыре.

● В отличие от митоза, в мейозе происходит конъюгация гомологичных хромосом и кроссинговер. Примечание: на самом деле существует и митотический кроссинговер (открыт К. Штерном в 1936 г), но его изучение не предусмотрено школьной программой.

● В анафазе митоза к разным полюсам клетки расходятся сестринские хроматиды, а в анафазе I мейоза – гомологичные хромосомы.

…и (или) другие существенные признаки.

 

6. Клетка корня берёзы содержит 18 хромосом.

1) Диплоидная клетка пыльника берёзы претерпела мейоз. Образовавшиеся при этом микроспоры поделились митозом. Сколько клеток образовалось? Сколько хромосом содержится в каждой из них?

2) Определите число хромосом и общее количество хроматид в клетках берёзы во время мейотического деления:

а) в экваториальной плоскости клетки в метафазе I;

б) в метафазе II;

в) у каждого полюса клетки в конце анафазы I;

г) у каждого полюса клетки в конце анафазы II.

1) Клетка корня берёзы – соматическая, значит у берёзы 2n = 18. В результате мейоза из одной материнской клетки образуется 4 клетки с уменьшенным в два раза набором хромосом. Следовательно, из диплоидной клетки пыльника образовались 4 гаплоидных микроспоры (n = 9).

Затем каждая микроспора поделилась митозом. В результате митоза из каждой микроспоры образовались по две дочерние клетки с таким же набором хромосом. Таким образом, всего образовалось 8 гаплоидных клеток.

Ответ: Образовалось 8 клеток, в каждой содержится по 9 хромосом.

2) Формула наследственного материала, находящегося в экваториальной плоскости клетки в метафазе I – 2n4c, что для берёзы составляет 18 хромосом, 36 хроматид. Клетка, находящаяся в метафазе II, имеет набор 1n2c – 9 хромосом, 18 хроматид. В конце анафазы I у каждого полюса клетки находится набор 1n2c – 9 хромосом, 18 хроматид, а в конце анафазы II – 1n1c – 9 хромосом, 9 хроматид.

Ответ: а) 18 хромосом, 36 хроматид; б) 9 хромосом, 18 хроматид; в) 9 хромосом, 18 хроматид; г) 9 хромосом, 9 хроматид.

 

7. Почему мейоз не наблюдается у организмов, которым не свойственно половое размножение?

В цикле развития всех организмов, которым свойственно половое размножение, имеет место процесс оплодотворения – слияния двух клеток (гамет) в одну (зиготу). Фактически, оплодотворение увеличивает хромосомный набор в 2 раза. Поэтому должен также существовать механизм, уменьшающий набор хромосом в 2 раза, и этим механизмом является мейоз. Без мейоза хромосомные наборы удваивались бы с каждым следующим поколением.

У организмов, которым не свойственно половое размножение, нет и процесса оплодотворения. Поэтому у них не наблюдается мейоз, в нём нет необходимости.

 

8. Для чего нужно второе деление мейоза, ведь уменьшение числа хромосом в 2 раза уже произошло в результате первого деления?

Дочерние клетки, образовавшиеся в результате первого деления мейоза, имеют набор 1n2c, т.е. уже являются гаплоидными. Однако каждая хромосома такой клетки состоит не из одной хроматиды, как должно быть у молодой клетки, вступающей в новый клеточный цикл, а из двух – как в зрелой клетке, готовой к делению. Следовательно, клетки с набором 1n2c не смогут нормально пройти клеточный цикл (и, прежде всего, репликацию в S-периоде). Поэтому практически сразу после первого деления мейоза начинается второе, в ходе которого происходит расхождение сестринских хроматид с образованием «нормальных» однохроматидных хромосом, характерных для молодых дочерних клеток.

Кроме того, в результате мейоза у животных и человека образуются гаметы, а у растений – споры. Вследствие того, что мейоз представляет собой не одно, а два последовательных деления, количество образующихся гамет (или спор) возрастает в 2 раза.

Дашков М.Л.

Сайт: dashkov.by

Вернуться к оглавлению

 


Источник: dashkov.by


Adblock
detector