Ядрышко образовано специализированными участками (петлями) хромосом, которые называются ядрышковыми организаторами. У человека такие участки имеются в пяти хромосомах — 13-й, 14-й, 15-й, 21-й и 22-й, где располагаются многочисленные копии генов, кодирующих рибосомальные РНК (рРНК). Ядрышко исчезает в профазе митоза, когда ядрышковые организаторы "растаскиваются" в ходе конденсации соответствующих хромосом, вновь формируясь в телофазе.

Функции ядрышка заключаются в синтезе рРНК и ее сборке предшественники рибосомальных субъединиц.

При транскрипции генов ядрышковых организаторов изначально формируется очень крупная молекула предшественника рРНК, которая связывается с белками, синтезированными в цитоплазме и импортированными в ядро с образованием РНП. Далее предшественник расщепляется на 3 вида РНК, которые выявляются в рибосомах. Два из них соединяются с добавочными белковыми молекулами, образуя предшественники большой субъединицы рибосомы, третий формирует предшественник малой субъединцы. Предшественники рибосомальных субъединяиц далее поотдельности транспортируются через ядерные поры в цитоплазму, где окончательно созревают.


Ядрышко выявляется в интерфазном ядре на светооптическом уровне как мелкая плотная гранула диаметром 1-3 мкм, интенсивно окрашивающаяся основными красителями. Оно располагается в центре ядра или эксцентрично, содержит высокие концентрации РНП. Размеры и число ядрышек увеличиваются при повышении функциональной активности клетки. Особенно крупные ядрышки характерны для эмбриональных и активно синтезирующих белки клеток, а также клеток быстрорастущих злокачественных опухолей.

Под электронным микроскопом в ядрышке обнаруживают три компонента – фибриллярный, гранулярный и аморфный.

1. Фибриллярный компонент состоит из множества тонких (диаметром 5-8 нм) нитей и располагается преимущественно во внутренней части ядрышка. Он представлен преимущественно совокупностью первичных транскриптов рРНК.

2. Гранулярный компонент образован скоплением плотных частиц диаметром 10-20 нм, которые соответствуют наиболее зрелым предшественникам субъединиц рибосом.

3. Аморфный компонент, в отличие от первых двух, окрашивается бледно. Он содержит участки расположения ядрышковых организаторов (по некоторым данным, они сосредоточены в фибриллярном компоненте) со специфическими РНК-связывающими белками и крупными петлями ДНК, активно участвующими в транскрипции рибосомальной


Фибриллярный и гранулярный компоненты ядрышка образуют так называемую ядрышковую нить (нуклеолонему) толщиной 60-80 нм, которая в пределах ядрышка формирует широкопетлистую сеть, выделяющуюся большей плотностью на фоне менее плотного матрикса.

Ядрышко окружено перинуклеолярным хроматином, небольшое количество хроматина проникает с периферии внутрь ядрышка (интрануклеолярный хроматин).

Источник: studopedia.su

С помощью светового микроскопа в ядре интерфазной клетки легче всего выявляется ядрышко. Многие детали его морфологии были изучены хорошо, но его функции и роль в клетке оставались неизвестными до 60-х г. Размер ядрышка может меняться не только в разных клетках одного организма, но и в одной клетке.
В растительной клетке, продуцирующей большое количество белков, ядрышко может составлять четверть объема всего ядра. В покоящихся клетках ядрышко очень мало. Размер и число ядрышек меняются в зависимости от фазы клеточного цикла. В начале деления клетки ядрышки уменьшаются в размерах, затем они исчезают совсем, появляясь к концу деления, при этом в ядре наблюдается несколько ядрышек.
После деления клетки число ядрышек уменьшается до одного, а его размер увеличивается. Функции ядрышка были выявлены с помощью метода меченых атомов, для чего использовали уридин, меченый тритием. Уридин – предшественник урацила, который входит в состав РНК.
Через различные промежутки времени, прошедшие со времени включения метки, клеточное содержимое фракционировали и выделяли ядрышки.


сперименты показали, что ядрышко – это центр образования рибосом. В составе ядрышка были выявлены большие петли ДНК в составе хромосом, содержащие гены рибосомной РНК – ядрышковые организаторы. В клетках каждого вида существует не менее двух хромосом, имеющих в своем составе такие гены. Эти гены располагаются комплексами из нескольких идентичных копий – кластерами.
В клетках человека содержится около 200 копий гена рибосомальной РНК на гаплоидный геном, которые распределены кластерами по пяти хромосомам, соответственно в диплоидном наборе хромосом ядрышковых организоторов будет 10. Они расположены в виде серии повторяющихся последовательностей, расположенных одна за другой, тандемно.
Тандемные повторы разделены особым участком ДНК – спейсером, который не считывается вместе с рибосомальными генами. Большое количество генов, контролирующих синтез р-РНК, связано с тем, что эукариотическая клетка должна за короткое время синтезировать огромное количество молекул белка, и, следовательно, должна иметь большое число рибосом, примерно 10 млн на одну генерацию.

Источник: media.ls.urfu.ru

Источник: chem21.info

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Строение клеточного ядра

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Типы хромосом

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Источник: animals-world.ru

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Строение клеточного ядра

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Типы хромосом

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Источник: animals-world.ru