Эволюционная форма групп живых организмов делится на дивергенцию, конвергенцию, параллелизм.

 

1. Дивергенция — расхождение признаков внутри вида, которое приводит к образованию новых группировок особей. Чем больше различаются живые организмы по строению, способу существования, тем больше расходятся они на более разнообразные пространства. Обычно одну область или участок занимают животные с одинаковой потребностью к качеству и запасу пищи. Через определенное время, когда запас пищи заканчивается, животные вынуждены поменять местообитание, переселяться на новые места. Если на одной территории обитают животные с различной потребностью к условиям среды, то конкуренция между ними ослабевает. Так, Ч. Дарвин определил, что в природе на участке в 1 м2 встречается до 20 видов растений, принадлежащих к 18 родам и 8 семействам. В процессе дивергенции от зачинающейся популяции расходятся как бы ветви дерева нескольких форм. Например, можно назвать семь видов оленей, сформировавшихся в результате дивергенции: пятнистый олень, марал, северный олень, лось, косуля, лань, кабарга (рис. 37).

 


Многообразие видов оленей, возникших в результате дивергенции: 1 — пятнистый олень; 2 — марал; 3 — лань; 4 — северный олень; 5 — лось; 6' — косуля; 7 — кабарга

Рис. 37. Многообразие видов оленей, возникших в результате дивергенции: 1 — пятнистый олень; 2 — марал; 3 — лань; 4 — северный олень; 5 — лось; 6′ — косуля; 7 — кабарга


Под действием естественного отбора в бесконечном ряду поколений одни формы выживают, другие вымирают. Процессы вымирания и дивергенции тесно связаны между собой. Наиболее расходящиеся по признакам формы обладают большими возможностями оставлять плодовитое потомство и выживать в процессе естественного отбора, так как они меньше конкурируют между собой, чем промежуточные, которые постепенно редеют и вымирают.

В результате дивергенции популяция одного вида подразделяется на подвиды. Подвид, образовавшийся под действием естественного отбора, по признакам наследственного изменения превращается в вид.

 


2. Конвергенция — приобретение сходных признаков у различных, неродственных групп. Например, у акулы (класс рыб), ихтиозавров (класс пресмыкающихся), дельфинов (класс млекопитающих) формы тела сходны. Это связано с тем, что у них одинаковые среда обитания (вода) и условия жизни. Хамелеон и лазающая агама, относящиеся к разным подотрядам, внешне очень похожи. Сходство различных систематических групп обусловлено жизнью в сходной среде обитания. У организмов, обитающих в воздухе, имеются крылья. Крылья птицы и летучей мыши — измененные передние конечности, а крылья бабочки — выросты тела. Явление конвергенции широко распространено в животном мире.

 

3. Параллелизм (греч. parallelos — «рядом идущий») — эволюционное развитие генетически близких групп, заключающееся в независимом приобретении ими сходных черт строения на основании особенностей, унаследованных от общих предков. Параллелизм широко распространен среди различных групп организмов в процессе их исторического развития (филогенеза).

Например, приспособление к водному образу жизни в эволюции ластоногих развивалось в трех направлениях. У китообразных и ластоногих (моржи, ушастые и настоящие тюлени) в результате перехода к водному образу жизни, независимо друг от друга, появилось приспособление к воде — ласты. Преобразование передних крыльев у многих групп крылатых насекомых в надкрылья, развитие у кистеперых рыб признаков земноводных, возникновение признаков млекопитающих у зверозубых ящериц и т. д. Сходство в параллелизме указывает на единство происхождения организмов и наличие сходных условий существования.


 

Эволюция — необратимый процесс. У каждого организма, приспособленного к новым условиям, измененный орган исчезает. Вернувшись в прежнюю среду обитания, исчезнувший орган не восстанавливается. Еще Ч. Дарвин писал о необратимости эволюции: «Если даже среда обитания полностью повторяется, то вид никогда не может вернуться к прежнему состоянию». Например, дельфины, киты никогда не становились рыбами. При переходе наземных животных в водную среду конвергентно изменяются конечности — при этом конвергенция участвует лишь в изменении внешнего строения органов.

Во внутреннем строении плавников дельфина, кита сохранены признаки пятипалой конечности млекопитающих. Так как мутация приводит к обновлению генофонда популяции, она никогда не повторяет генофонд прошлого поколения. Так, если на каком-то этапе от примитивных земноводных возникли пресмыкающиеся, то пресмыкающиеся не могут вновь дать начало земноводным.

На стебле вечнозеленого кустарника — иглицы имеются блестящие толстые листья. На самом деле это видоизмененные ветви. Настоящие чешуевидные листья располагаются в центральной части этих видоизмененных стеблей. Ранней весной из пазухи чешуек появляются цветы, из которых в дальнейшем развиваются плоды.

Листья у иглицы исчезли еще в древности, в процессе приспособления к засухе. Затем при переходе опять в водную среду вместо листьев у них появились ветви, похожие на листья.

iv>

 

Неоднородность эволюции. В течение нескольких сотен миллионов лет на Земле существуют в неизменном виде саблехвост, кистеперые рыбы, гаттерия. Их называют «живыми ископаемыми». Однако некоторые растения и животные изменяются быстро. Например, на Филиппинах и в Австралии за 800 тыс. лет появилось несколько новых родов грызунов. Приблизительно за 20 млн. лет на Байкале возникло 240 видов раков, принадлежащих к 34 новым родам. Темпы эволюции не определяются астрономическим временем. Возникновение нового вида определяется необходимым числом поколений и приспособленностью.

Темпы эволюции снижаются и замедляются в одинаковых устойчивых условиях среды (глубоководные океаны, пещерные воды). На островах, где мало хищников, естественный отбор идет очень медленно. Наоборот, где проходит интенсивный отбор, эволюция также протекает быстрее. Например, в 30-х годах XX в. против вредителей использовали ядовитый препарат (ДДТ). Через несколько лет появились устойчивые к препарату формы, которые быстро распространились на Земле. Широкое применение антибиотиков — пенициллина, стрептомицина, грамицидина — в 40—50-х годах XX в. привело к появлению устойчивых форм микроорганизмов.

 

Дивергенция. Конвергенция. Параллелизм. Необратимый процесс. «Живые ископаемые».



1.Эволюционные формы групп живых организмов: дивергенция, конвергенция, параллелизм.

2.Эволюция — необратимый процесс, т. е. исчезнувший вид или орган никогда не может вернуться к прежнему состоянию.

3.Темпы эволюции меняются.

1.Объясните на примере процесс дивергенции.

2.Опишите конвергенцию, разберите ее на примере.

1.Объясните необратимость эволюции на примерах растений.

2.В чем причина исчезновения некоторых форм, приобретенных во время дивергенции?

1.Докажите на примере неоднородность эволюции.

2.Разберите с помощью схемы или таблицы дивергенцию, конвергенцию, параллелизм.

Источник: bioslogos.ru

Эволюционные изменения
Общая информация — Эволюция. Происхождение жизни. Наука и Вера.
Автор: В. Добров   

Эволюция может происходить за счет как малых, так и больших изменений в популяциях живых организмов

>

Исследователи эволюции открыли немало примеров структур, биохимических процессов, путей обмена веществ и форм поведения, очень слабо изменчивых в пределах видов и между видами. Некоторые виды не претерпели почти никаких явных изменений в строении тела за многие миллионы лет. Что касается ДНК, то и здесь некоторые гены, контролирующие ход тех или иных биохимических или химических реакций, жизненно важных для работы клеток, мало чем отличаются у многих видов, состоящих в довольно далеком родстве. (См., например, последовательности нуклеотидов двух разных генов, сходные как у близких видов, так и у далеких.

Однако естественный отбор может приводить к эволюционным событиям совершенно разного масштаба за разные промежутки времени. Смена всего нескольких поколений (а в некоторых известных науке случаях — лишь одного поколения) может привести к сравнительно небольшим микроэволюционным изменениям организмов. Например, многие болезнетворные бактерии вырабатывают в ходе эволюции повышенную устойчивость к антибиотикам. Если у бактерии произойдет мутация, увеличивающая ее способность противостоять действию антибиотика, такая бактерия может выжить и произвести множество потомков, в то время как другие бактерии, лишенные такой мутации, погибнут. Приобретение устойчивости к новым и новым антибиотикам бактериями, вызывающими туберкулез, менингит, стафилококковые и венерические заболевания, а также многие другие болезни, составляет одну из серьезнейших проблем медицины и здравоохранения.


Исследования гуппи

Другой пример микроэволюционных изменений касается исследований рыбок гуппи, обитающих в бассейне реки Арипо на острове Тринидад. Живущих в реке гуппи поедают крупные виды рыб, которые питаются и мальками и взрослыми, а на тех гуппи, что живут в маленьких притоках реки Арипо, могут нападать только мелкие рыбы, питающиеся по большей части молодыми мальками. Гуппи, живущие в реке, растут быстрее, имеют меньший размер и оставляют больше потомства, тоже меньшего размера, чем гуппи, живущие в притоках, потому что в реке такие признаки позволяют успешнее избегать хищников. Когда гуппи, отловленных в реке, вселили в один из притоков, где раньше не было популяции этого вида, то у них примерно за 20 поколений развились признаки, сходные с признаками других живущих в притоках гуппи.


Накапливающиеся эволюционные изменения могут, обычно за очень длительные промежутки времени, привести к появлению новых форм организмов, в том числе новых видов. Новые виды обычно образуются, когда представители одной подгруппы в пределах вида в течение продолжительного времени не скрещиваются с особями, не относящимися к этой подгруппе. Например, эта подгруппа может оказаться изолированной от остальных особей своего вида географически или в результате перехода к новому способу потребления ресурсов. Из-за того что представители подгруппы скрещиваются только между собой (репродуктивно изолированы от остальных), у них накапливаются генетические отличия от остальных особей этого вида. Если такая изоляция сохраняется достаточно долго, то представители этой подгруппы могут утратить склонность скрещиваться с теми особями, от которых они были долгое время изолированы. В конечном итоге генетические изменения станут столь существенны, что представители разных подгрупп совсем утратят способность производить плодовитое потомство, даже если скрестятся между собой. Таким образом, новые виды могут неоднократно «отпочковываться» от некоего давно существующего вида.

эволюция жизни

Череда видообразований может за долгое время привести к возникновению организмов, сильно отличающихся от своих предков. Хотя каждый новый вид похож на тот вид, от которого он происходит, последовательно возникающие новые виды могут отходить от предковой формы все дальше и дальше. Такое удаление от предковой формы (так называемая дивергенция) происходит особенно интенсивно, если эволюционные изменения позволяют группе организмов занять новое место обитания или перейти к новому способу потребления ресурсов.

общего предка всех современных четвероногих

Эволюционный переход от рептилий к млекопитающим

Возьмем, к примеру, непрерывно продолжавшуюся эволюцию позвоночных после их выхода на сушу. По мере того как возникали новые растения и покрывали собой Землю, четвероногие позвоночные тоже менялись, приобретая свойства, которые позволяли им успешно существовать в новых условиях. Первые наземные позвоночные были земноводными (амфибиями). Они проводили часть жизни на суше, но продолжали возвращаться в воду, чтобы отложить яйца. Около 340 миллионов лет назад в ходе эволюции возникли яйца, заключенные в твердую или кожистую скорлупу и содержащие зародышевые оболочки — дополнительные мембраны, помогающие зародышу выжить в сухой среде. Такие яйца стали одним из важнейших достижений эволюции пресмыкающихся. Древнейшие пресмыкающиеся разделились на несколько основных ветвей. Одна из них дала большинство современных пресмыкающихся, а также динозавров и птиц. Другая привела к возникновению млекопитающих в промежуток от 200 до 250 миллионов лет назад.

Эволюционный переход от рептилий к млекопитающим особенно хорошо отражен в палеонтологической летописи. Следовавшие друг за другом ископаемые обладают все более крупным мозгом и все более специализированными органами чувств, челюстями и зубами, приспособленными к более успешному жеванию, конечностями, пояса которых постепенно смещаются с боков на брюшную сторону тела, и половой системой самок, способной все лучше поддерживать питание и развитие детенышей внутри материнского организма. Многие биологические новшества, наблюдаемые у млекопитающих, вероятно, связаны с эволюцией теплокровности — свойства, которое позволяет вести активный образ жизни при широком диапазоне температур, недоступный предкам млекопитающих — холоднокровным пресмыкающимся. Наконец, в промежутке от 60 до 80 миллионов лет назад в палеонтологической летописи появляется группа млекопитающих, называемая приматами. Они обладали хватательными передними и задними конечностями, глазами на лицевой стороне головы и еще более крупным и более сложным мозгом. От этой эволюционной ветви впоследствии произошли древние и современные люди.

 

Источник: drDobrov.com

Подумайте!

Почему в природе чаще встречаются гибриды различных видов растений, чем различных видов животных?

 

Типы эволюционных изменений. Основными типами эволюционных изменений являются дивергенция, конвергенция, параллелизм и филетическая эволюция.

Дивергенция. Дивергенция (от лат. divergantia — расхождение) — это наиболее распространенный тип эволюционного процесса. Понято дивергенции ввел Ч. Дарвин, понимая под ним расхождение признаком в процессе эволюции. При этом происходит образование двух или более таксонов, происходящих от общего предка. Такое расхождение признаками групп происходит в том случае, если меняются условия обитания дочерней группы. Например, освоить наземную среду древним позвоночным животным помогло появление пятипалой конечности рычажного типа. Однако в зависимости от образа жизни и типа местообитания конечности разных групп позвоночных претерпели существенные изменения и выполняют сейчас разные функции. Такие органы, имеющие общее происхождение и выполняющие разные или сходные функции, называют гомологичными органами (см. также § 4.13).

Конвергенция. Конвергенция — это тип эволюционного изменения, в результате которого сходные признаки возникают у организмов, не родственных друг другу, т. е. имеющих различное происхождение. Чаще всего конвергенция возникает при заселении разными видами организмов сходных типов местообитаний. Таким образом, конвергентное сходство является результатом приспособлений к одинаковым условиям внешней среды. Похожи жабры рыбы и жабры рака, выполняющие дыхательные функции. Однако жабры рыбы развиваются на перегородках между жаберными щелями, пронизывающими глотку, а жабры рака — это нитевидные выросты конечностей груди. Крылья бабочек и летучих мышей, глаза человека и осьминога, роющие конечности кротов и медведок — все эти органы формируются из разных эмбриональных зачатков. Органы, выполняющие сходные функции, но имеющие разное происхождение, называют аналогичными (см. также § 4.13).

Параллелизм. Параллелизм — это тип эволюционных изменений, при котором у бывших родственных форм, попавших в новые условия обитания, возникает вторичное сходство. Например, обтекаемая форма тела, характерная для рыб, вновь возникает у млекопитающих при переходе их от наземного образа жизни к водному. Сравните форму тела акул (первичноводных животных) и дельфинов (вторичноводных). Однако при параллельной эволюции степень сходства не отражает степени родства.

Филетическая эволюция. Филетическая эволюция — это такой тип эволюционных преобразований, при которых предковые таксоны посте пенно преобразуются в новые (дочерние) без образования боковых вeтвей. При этом образуется непрерывный ряд таксонов, в котором каждый является потомком предыдущего и предком последующего.



Главные направления эволюции. Развитие живой природы — это длительный и сложный процесс. В целом развитие органического мира происходило от простого к сложному. На основе простых одноклеточных форм появлялись многоклеточные организмы. Организмы усложнялись возникали ткани, органы и системы органов. Крупные эволюционные изменения позволяли организмам осваивать новые места обитания или новые источники питания. С помощью частных приспособлений организмы приспосабливались к конкретным условиям обитания. В некоторых случаях оказывалось более выгодно перейти к сидячему образу жизни или паразитизму, и это вело к упрощению организации. Так, зародившись в океане, жизнь постепенно заняла всю планету.

Анализируя историческое развитие живой природы и конкретные адаптации, возникающие в процессе эволюции, российские ученые Алексей Николаевич Северцов и Иван Иванович Шмальгаузен определили три главных направления прогрессивной эволюции: ароморфоз, дегенерация и идиоадаптация.

Ароморфоз (арогенез). Ароморфоз — это крупное эволюционное изменение, ведущее к общему усложнению организации. Ароморфозы позволяют организмам осваивать принципиально новые местообитания или существенно повышать свою конкурентоспособность в прежних местообитаниях. Они сохраняются в дальнейшей эволюции и приводят к появлению крупных систематических групп, рангом выше семейства.

Один из первых крупнейших ароморфозов — появление эукариотической клетки. Общими ароморфозами для всех царств эукариотов стали появление многоклеточности и полового размножения. В эволюции животных важнейшими ароморфозами можно считать формирование сквозной пищеварительной системы, образование первичной и вторичной полостей тела, замена гладкой мускулатуры (у червей) на поперечно-полосатую (у членистоногих), возникновение замкнутой системы кровообращения, оформление скелета (внутреннего или внешнего), развитие нервной системы, появление теплокровности, живорождения. В качестве примеров крупных ароморфозов в растительном царстве можно привести появление проводящей системы, связавшей части растения в единое целое, формирование семени (голосеменные и покрытосеменные растения), появление цветка.

Общая дегенерация (катагенез). Общая дегенерация — это эволюционное изменение, ведущее к упрощению организации, к утрате ряда систем и органов. Как правило, дегенерация возникает в связи с переходом организмов к паразитизму или малоподвижному образу жизни. У паразитических ленточных червей нет пищеварительной системы, слабо развита нервная система и органы чувств. Однако взамен у них появляются различные частные приспособления — присоски, крючки, которые помогают им удержаться в кишечнике хозяина. Наиболее прогрессивного развития у паразитов достигает половая система. Например, бычий цепень, паразитирующий в кишечнике человека, за свою жизнь (18—20 лет) образует около 11 млрд яиц. Высокая плодовитость и жизнь под защитой тела хозяина ведет к процветанию вида-паразита, однако ставит его в тесную зависимость от вида-хозяина.

Паразитизм в природе распространен очень широко у грибов, червей, бактерий и других организмов. Среди растений тоже есть свои паразиты, утратившие способность к фотосинтезу. Повилика — растение семейства Вьюнковые — паразитируют на льне, клевере, картофеле и других растениях. Обвиваясь вокруг растения-хозяина, она внедряет в его ткань «присоски» (гаустории) и питается его соками.

Редукция органов может происходить также при переходе к малоподвижному образу жизни или при резком сужении экологической ниши. Например, потеря зрения у животных, обитающих под землей (кроты), утрата способности к полету у ряда птиц и, как следствие, исчезновение киля (киви, страусы) и т. п.

Общая дегенерация — это тупиковый путь специализации. Утраченные органы и системы не могут возникнуть вновь, эволюция не имеет обратного пути. Однако в целом, общая дегенерация не исключает процветания вида и поэтому тоже является направлением прогрессивной эволюции.

Идиоадаптация (аллогенез).Идиоадаптации — это конкретные адаптации к определенным специфическим условиям обитания, полезные в борьбе за существование, но не изменяющие общего уровня организации. Идиоадаптации облегчают выживание и повышают конкурентоспособность организмов в данных условиях обитания.

Путем идиоадаптации в процессе эволюции возникают мелкие систематические группы: виды, роды, семейства.

Появление крыла у птиц является ароморфозом, а форма крыльев и способы полета — идиоадаптациями; цветок — это крупнейший ароморфоз в эволюции растительного мира, а формы, размеры, окраска цветка идиоадаптации. Покровительственная окраска животных, плоская форма тела придонных рыб, отличия в строении конечностей у представителей одного отряда млекопитающих — всё это многочисленные примеры идио- адаптаций.

Крайнюю степень приспособления к ограниченным условиям существования называют специализацией.Специализация резко снижает межвидовую конкуренцию, но приводит к тому, что вне этих узких условий организмы жить не могут. Таковы, например, колибри, которые питаются только нектаром тропических цветков, или коалы, питающиеся исключительно побегами и листьями эвкалипта. Специализация снижает эволюционные возможности вида, поэтому если условия жизни меняются, то специализированный вид обычно вымирает.

 

Источник: studopedia.su

Фенотипическая пластичность — это способность организма формировать разные фенотипы в ответ на различные условия среды. Пластичность может выражаться на уровне анатомии, физиологии или поведения. В современной биологии аспекты влияния фенотипической пластичности на эволюционные процессы — в качестве движущего или ограничивающего фактора (или обоих одновременно) — вызывают большой интерес. Как и во многих других случаях, важным ключом к решению загадок природы в условиях эксперимента является подбор подходящего модельного объекта. Для ученых Индианского университета этим объектом оказались жуки-навозники: они демонстрируют широкий спектр пластичности в морфологических, физиологических и поведенческих признаках. В марте этого года вышли сразу две статьи, посвященные этому вопросу. Основной результат: изучение фенотипической пластичности в эксперименте действительно позволяет предсказывать некоторые, но отнюдь не все (это было бы слишком просто) изменения, протекающие при адаптации к новым средам за несколько поколений.

В традиционной эволюционной биологии основное внимание уделяется генам и изменению генов и частот генов в ряду поколений. Онтогенетическое развитие рассматривается как некое промежуточное звено на пути от генотипа к фенотипу — но не как особый фактор, способный предопределить ход эволюции. В последнее десятилетие, однако, угол зрения начал существенно меняться. Появилась сначала формула эво-дево («эволюция плюс развитие», от англ. evolutionary developmental biology), а затем — и эко-эво-дево («экология плюс эволюция плюс развитие»), которые развиваются как теоретические концепции, стремящиеся учесть сложные обоюдонаправленные взаимовлияния между всеми составляющими.

Экологическая составляющая здесь подразумевает неоднозначность программы реализации развития: организм может менять ход реализации программы в ответ на определенные изменения параметров среды. Более того, организм сам вносит вклад в изменение среды, в одних случаях — с ущербом для себя, а во многих других эти изменения носят выраженный адаптивный характер. К примеру, люди научились разводить мясных и молочных животных, тем самым обеспечивая себя постоянным бесперебойным источником питания. На этом же примере можно видеть и обратное — влияние подобных средо-преобразующих стратегий поведения на эволюцию самого организма, ведь именно появление практики разведения и доения коров стало предпосылкой для распространения генов усвоения лактозы у взрослых людей.

Исследователи под руководством Армина Мочека (Armin P. Moczek) из Индианского университета в Блумингтоне опубликовали две работы, которые демонстрируют влияние разных аспектов пластичности поведения жуков-навозников на процессы эволюции и диверсификации в данной группе.

Жуки-навозники относятся к Скарабеинам — одному из разнообразнейших подсемейств (около 5000 видов из около 300 000 видов жуков всего), представители которого распространены на всех континентах, за исключением Антарктиды. Все виды навозников используют навоз в качестве основного источника питательных веществ как на стадии личинки, так и на стадии имаго (взрослого насекомого). Все они демонстрируют косвенную заботу о потомстве (то есть эта забота не подразумевает непосредственного контакта родителей с потомками), которая выражается у разных видов в трех основных формах. Наиболее простой вариант — самка откладывает яйца прямо в кучу навоза. Второй вариант — скатывание навозных шариков. Шарики закатываются в специально подготовленные ямки, и в каждый шарик самка откладывает по одному яйцу. Таким образом, каждый шарик должен обеспечить необходимое питание для роста и метаморфоза одной личинки. Третий вариант — рытье туннеля под навозной кучей, куда потом затаскиваются кусочки навоза, опять же, представляющие собой заготовки для питания личинок, развивающихся из отложенных самкой яиц. Схематично эти стратегии показаны на рис. 2.

Двурогий калоед (Onthophagus taurus, рис. 1), как и прочие представители обширного рода Onthophagus, относится к когорте туннельщиков. Именно этот вид стал объектом исследования в обсуждаемых далее работах. Естественным первичным местообитанием для него является Средиземноморье. Одна из любопытных особенностей данного вида — полифенизм (см. Polyphenism) самцов, то есть наличие у них двух альтернативных фенотипов. У большинства самцов есть пара красивых изогнутых рогов, и внешне и по назначению схожих с рогами быков. При помощи этих орудий самцы оберегают своих самок (рога у которых отсутствуют, вместо них есть лишь небольшие бугорки) от посягательств других самцов. Однако часть самцов рождается безрогими и использует другую тактику размножения: они не охраняют своих самок, а оплодотворяют чужих, маскируясь под них и не вызывая подозрений у самцов-телохранителей.

Какой будет стратегия у конкретного самца — определяется на этапе личиночного развития и зависит не от генетических различий, а от количества питания: рога формируются только при условии, что к определенному моменту развития масса личинки превышает некоторое пороговое значение (рис. 3). Есть весомые основания предполагать, что регуляторный механизм этих процессов включает в себя инсулиноподобные гормоны, концентрация которых зависит от количества получаемых питательных веществ и интенсивности метаболических процессов (показано, что такие механизмы есть у насекомых, хотя и не конкретно у данного вида; см. D. J. Emlen et al., 2006. Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle ‘horns’).

Около 50 лет назад (в начале 1970-х годов) жуки этого вида были завезены в Австралию в качестве биологического средства борьбы с избытком навоза, производимого рогатым скотом, который был завезен в Австралию еще раньше. Примерно в это же время (в 1971 году) двурогий калоед попал и в восточные области США — на этот раз непреднамеренно. За прошедшее время (прошло около 100 смен поколений) и в Америке, и в Австралии жуки успели сформировать заметные отличия от исходной европейской формы — как по внешним (морфологическим) признакам, так и по особенностям поведения и развития, предоставив замечательный материал для работы эволюционных биологов. Достоверно установленные различия затрагивают 6 признаков:
    1) Размер тела: американские жуки крупнее, а австралийские мельче, чем европейские.
    2) Средний относительный размер рогов (у самцов, имеющих рога): у американских жуков они больше, а у австралийских меньше, чем у европейских.
    3) Размеры (масса) заготавливаемых навозных шариков: в среднем у австралийских они больше, у американских — меньше, чем у европейских.
    4) Глубина камер, в которых размещаются шарики: «австралийцы» делают их в среднем менее глубокими, а «американцы» — более глубокими, чем «европейцы».
    5) В лабораторных условиях в течение одного репродуктивного сезона (за несколько дней) самки австралийских жуков заготавливают в среднем больше навозных шариков (и, соответственно, откладывают больше яиц), чем американские.
    6) Доля выживших личинок, успешно развившихся во взрослых жуков (в условиях лаборатории, где каждая самка размещается в индивидуальном контейнере и располагает достаточным количеством навоза, за который не приходится конкурировать), у австралийских жуков выше, у американских ниже. По последним двум показателям, как, впрочем, и по всем остальным, европейские жуки занимают промежуточное положение.

Целью проведенных исследований было выявление связей между фенотипической пластичностью (Phenotypic plasticity) и формированием разнообразия фенотипов жуков-навозников.

Первое исследование, опубликованное в журнале Animal behavior, было сделано на выборке жуков исходной средиземноморской формы, собранных на территории Испании. Сами эксперименты проводились в США, в лаборатории Индианского университета. Авторы обращают внимание на то, что все описанные формы жуков обитают в близких широтах (в районе 33–37 градусов северной или южной широты) и, соответственно, схожих климатических условиях. Вместе с тем, плотность популяций, а следовательно, и уровень конкуренции для жуков из Америки и из Австралии различается очень существенно: в Америке на кучу навоза приходится всего несколько жуков, каждая куча лежит несколько дней и успевает засохнуть, прежде чем разберется жуками. В Австралии же на одной куче может жить больше сотни особей, и уничтожается она полностью за каких-нибудь 4–5 часов. Логично предположить, что именно разницей в плотности населения и объясняются вышеуказанные фенотипические различия между формами.

Исследователи решили поставить эксперимент с искусственно созданной разной плотностью населения на европейских жуках. Задача состояла в выяснении следующих вопросов:
    1) Будут ли европейские жуки демонстрировать фенотипические изменения в ответ на изменения плотности населения по всем или только по некоторым из параметров, отличающих американские и австралийские формы?
    2) Совпадут ли направления фенотипических изменений по признакам в экспериментальных условиях с отклонениями признаков в природных популяциях?
    3) Различаются ли уровни фенотипической и эволюционной пластичности в зависимости от типа признака (морфология, материнское поведение, размножение)?

До начала эксперимента жуки (200–300 особей) содержались две недели при 24°С в большом контейнере с почвой, куда регулярно порционно подкладывался свежий коровий навоз. Эксперименты проводили на насекомых, которые сами были рождены уже в лаборатории, дабы индивидуальный опыт диких матерей и отцов не внес помехи в получаемые результаты. В рамках эксперимента были созданы небольшие искусственные популяции с низкой плотностью, имитирующие условия, близкие к условиям естественной среды американских жуков (одна самка и один самец на двухлитровый контейнер диаметром 15 см) и с высокой плотностью, имитирующие естественные условия жизни австралийских популяций (по 10 самок и самцов на такой же контейнер). Глубина слоя почвы в контейнере составляла 7 см — это слишком мелко, чтобы самка считала целесообразным приступать к рытью тоннелей и откладке яиц.

По прошествии трех недель всех самок в паре с самцом из каждого экспериментального контейнера рассадили в глубокие индивидуальные контейнеры (глубина слоя почвы 28 см), снабженные достаточной порцией навоза (по 200 г на контейнер), и дали 5 дней на спаривание и откладку яиц. Далее исследователи пересчитывали и взвешивали навозные шарики, замеряли глубину туннелей, а дав завершить развитие личинкам, определяли все остальные вышеперечисленные параметры: размер тела, относительный размер рогов у самцов и долю успешно развившихся жуков. Всего в анализе оказалось задействовано 6 пар, содержавшихся в условиях низкой плотности, и около 30 пар, содержавшихся в условиях повышенной плотности.

Результаты вышли следующими: два из шести оцениваемых признаков — относительный размер рогов и глубина туннелей — никакой статистически значимой разницы в зависимости от плотности содержания не показали. Однако глубина кладки в любом случае варьировала в очень широких пределах (рис. 4).

Для остальных четырех признаков достоверная зависимость от плотности популяции была выявлена. При этом только два из них изменялись в том же направлении, что и в соответствующих природных популяциях: количество заготавливаемых шаров было больше при более высокой плотности, а размер тела был больше при меньшей плотности популяции.

Оставшиеся два признака — размеры заготавливаемых шаров и доля выживающих личинок — тоже зависели от плотности насекомых при содержании, но изменялись противоположным образом, чем вк природных популяциях. Развитие считали не завершенным успешно, если жук не появлялся из заготовленного навозного шарика через 7 недель после кладки (это время было эмпирически определено заранее как предельно возможное время развития у двурогих калоедов). Весьма вероятно, что эта пара признаков находится в прямой зависимости друг от друга (ведь для успешного развития личинка должна получить достаточное питание). Как уже было сказано, в природе австралийские жуки делают более крупные шары, причем авторы ссылаются на более раннюю работу, показавшую, что данное поведение у жуков этой популяции генетически закреплено и не зависит от плотности при содержании. Между тем испанские жуки, содержавшиеся в контейнерах с повышенной плотностью населения, делали шары меньшего размера.

Точные причины такого рассогласования установлены не были, но авторы предлагают несколько вариантов объяснений. Во-первых, могло быть неполное соответствие условий эксперимента природной обстановке: ведь на этапе собственно репродукции пары отделялись в обособленные контейнеры, в то время как в природе насекомые остаются на всех этапах в условиях высокой скученности и жесткой конкуренции. Во-вторых, возможно, что этот показатель может находиться под влиянием отбора со стороны других факторов среды, действующих в Австралии и не учтенных в данном эксперименте (химический состав навоза местных коров, например). В-третьих, всё дело может быть просто в том, что искусственно созданная экстраординарная для испанского вида ситуация повышенной скученности требует иного ответа (в рамках фенотипической пластичности), нежели ответ, оптимальный (и поддерживаемый отбором) в условиях постоянной высокой плотности популяции на протяжении множества поколений.

Таким образом, можно подвести следующий итог: если направление изменений по механизму фенотипической пластичности оказывается стабильно полезным для успешного воспроизводства в новых условиях, можно ожидать появления дополнительных мутаций, стабилизирующих соответствующие уклонения при постоянном сохранении данных условий от поколения к поколению. Такой процесс предсказывался теоретическими моделями и еще в 50-х годах был продемонстрирован в экспериментах на дрозофилах Конрадом Уоддингтоном (C. H. Waddington, 1953. Genetic assimilation of an acquired character). Он же предложил термин для его обозначения: генетическая ассимиляция. Если же реализуемые механизмами фенотипической пластичности отклонения в новых условиях в долгосрочной перспективе оказываются контрадаптивными, то ожидаемо, напротив, закрепление компенсаторных мутаций, которые будут изменять характер реакции в обратную сторону.

Помимо всего прочего в ходе эксперимента выявилась еще одна любопытная закономерность: навозные шары, в которые были заключены личинки самцов, оказались достоверно больше тех шаров, в которых развивались самки. Выходит, матери навозников заранее знают пол откладываемого яйца? Это более чем неожиданно, и авторы, не берясь за объяснения, оставляют этот вопрос для будущих исследований.

Второе исследование, опубликованное в журнале Oikos, касалось пластичности материнского поведения и индивидуального развития в зависимости от температурных параметров среды. На этот раз эксперименты проводились со всеми тремя разновидностями жуков — испанской, австралийской и американской. Каждый эксперимент предусматривал содержание пар (самца и самки) либо в нормальных условиях (24°С), либо в условиях повышенной температуры (контейнер помещался под нагревающую лампу, так что у поверхности насыпанной почвы температура составляла 32°С, а по мере углубления плавно снижалась до 27°С у дна). Глубина почвы в контейнере составляла 21 см.

Ученые предоставляли жукам все необходимые условия для скрещивания и откладки яиц — само собой, включая хорошую порцию свежего навоза и достаточное время (5 дней). Затем столбики почвы разбивали на трети по высоте (7 см верхнего слоя, средняя треть и 7 сантиметров у дна), в каждой трети подсчитывали и взвешивали обнаруженные шары, а потом каждый шарик помещали в небольшую чашку со стерильной почвой и инкубировали до вылупления потомства. При этом как в контрольной, так и в экспериментальной группе половину шаров инкубировали при 24°С, а половину — при 32°С. Далее с вылупившихся жуков (первое поколение, F1) снимали мерки. От них, уже при нормальных условиях (24°С), получали второе поколение (F2), чтобы оценить потенциальные эффекты негенетического наследования проявлений фенотипической пластичности, индуцированной температурным стрессом. Вся эта схема изображена на рис. 5.

В результате выяснилось следующее (рис. 6):
    1) В контейнерах с повышенной температурой поверхности почвы самки всех трех разновидностей достоверно чаще закапывали навозные шары на большей глубине — там, где температура более низкая (более близкая к оптимальным 24°С).
    2) Все три географические разновидности демонстрировали однотипные ответы на инкубирование личинок поколения F1 при повышенной температуре (32°С): снижение выживаемости личинок (в разной степени), сокращение сроков завершения развития и более мелкие размеры вылупившихся жуков.
    3) При последующем раунде размножения мелкие самки поколения F1 из выборки, подвергшейся воздействию высокой температуры на этапе личиночного развития, имели общую тенденцию заготавливать меньшие навозные шары и размещать их на меньшей глубине (по-видимому, им просто было трудно делать более крупные шары и рыть более глубокие туннели). Потомство F2 от таких самок также было склонно к ускоренному развитию и более мелким размерам тела, хотя их развитие протекало уже при нормальной температуре. Таким образом, здесь налицо признаки негенетического наследования.

Здесь авторы обращают внимание на то, что все описанные эффекты в естественной природе легко можно было бы принять за генетически обусловленные (например, устойчивые различия географических рас по размерам тела), в то время как реальность может быть сложнее и интереснее.

И еще можно обратить внимание на следующий момент: поскольку матери отвечают на повышенную температуру поверхности тем, что заглубляют туннели туда, где температура более низкая, они могут компенсировать негативные влияния воздействия неоптимальных температур. Таким образом, пластичность поведения матерей может содействовать более широким возможностям расселения с освоением новых климатических зон. Все эти моменты очень существенны для понимания механизмов эволюции новых внутривидовых и надвидовых форм.

Источники:
1) Anna L. M. Macagno, Eduardo E. Zattara, Onye Ezeakudo, Armin P. Moczek, Cristina C. Ledón-Rettig. Adaptive maternal behavioral plasticity and developmental programming mitigate the transgenerational effects of temperature in dung beetles // Oikos. 2018. DOI: 10.1111/oik.05215.
2) Sofia Casasa, Armin P. Moczek. The role of ancestral phenotypic plasticity in evolutionary diversification: population density effects in horned beetles // Animal Behavior. 2018. DOI: 10.1016/j.anbehav.2018.01.004.

См. также о фенотипической пластичности и генетической ассимиляции:
1) Неадаптивная фенотипическая пластичность затрудняет видообразование, «Элементы», 09.12.2015.
2) Неадаптивная пластичность ускоряет адаптивную эволюцию, «Элементы», 07.09.2015.
3) Сообразительность помогает синицам-гаичкам выживать в суровых зимних условиях, «Элементы», 05.05.2015.
4) А. Марков. Ненаследственная изменчивость тоже влияет на эволюцию.
5) Большие синицы и без естественного отбора приспосабливаются к более раннему наступлению весны, «Элементы», 14.05.2008.
6) Выведена гусеница, меняющая цвет при нагревании, «Элементы», 09.02.2006.

Татьяна Романовская

Источник: elementy.ru