Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.


Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.


Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро


Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.


В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Микротрубочки


Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.


Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.


Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии


Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть


Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.


Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Источник: biouroki.ru

Ядрышко – это производное хромосомы, один из ее локусов, активно функционирующий в интерфазе. Ядрышко клетки является местом образования рибосомных РНК и рибосом, на которых происходит синтез полипептидных цепей. У прокариотических клеток образование рибосом не связано с обособлением специального локуса в виде ядрышка, но, несмотря на отсутствие ядрышек у этих клеток, сам процесс синтеза рибосом во многом сходен.

В ядрышках содержатся белки нескольких типов:

  • кислые фосфопротеиды,
  • основные белки негистоновой природы.

Концентрация РНК в ядрышке может быть в 2 – 8 раз выше, чем в ядре, и в 1 – 3 раза выше, чем в цитоплазме. Ядрышковая РНК является предшественником цитоплазматической РНК. Так как от 70 до 90% цитоплазматической РНК является рибосомной, то ядрышко является местом синтеза рибосомной РНК (рРНК).

РНК ядрышек

На цистроне рибосомного гена первоначально синтезируется гигантская молекула – предшественник с коэффициентом седиментации 45 S (мол. вес 4,5 • 106), которая затем расщепляется на две части, дающие начало 18S и 28 S рРНК. При этом около половины первоначально синтезированной молекулы уничтожается. Из ядрышек выделены гетерогенные рибонуклеопротеидные частицы с различными коэффициентами седиментации от 40 S до 80 S и выше, что представляют собой рибонуклеопротеиды – предшественники рибосомных субъединиц. Начиная с 45 S РНК, белок ассоциирует с рРНК, при этом образуются сначала тяжелые предшественники рибосом (около 80 S и 90 S), а потом уже и субъединицы рибосом (60 S и 40 S).

ДНК ядрышек

Содержание ДНК в выделенных ядрышках составляет 5 – 12% от сухого веса и 6 – 17% от всей ДНК ядра. ДНК ядрышкового организатора – это та самая ДНК, на которой происходит синтез ядрышковой, т. е. рибосомной РНК. На основе анализа насыщения ДНК при гибридизации с рРНК делается вывод о том, что цистроны, отвечающие за синтез рРНК, располагаются компактно и, возможно, представлены в виде полицистронного участка, входящего в состав ядрышкового организатора. В ядрышке на ДНК вторичной перетяжки локализованы многочисленные одинаковые гены для синтеза рРНК. Синтез же идет путем образования огромного предшественника и дальнейшего его превращения (созревания) в более короткие молекулы РНК для большой и малой субъединиц рибосом.

Ультраструктура ядрышек

Отмечена волокнистая или сетчатая структура ядрышек, заключенная в более или менее плотную диффузную массу.

Волокнистая часть – нуклеолонема, диффузная, гомогенная часть – аморфное вещество, или аморфная часть. Оба эти участка ядрышка отрицательны. У некоторых клеток отдельные нити нуклеолонем сливаются и ядрышки могут быть совершенно однородными.

Основные структурные компоненты ядрышка:

  • плотные гранулы диаметром около 150 А,
  • тонкие фибриллы толщиной 40 – 80 А.

Во многих случаях фибриллярный компонент собран в плотную центральную зону (сердцевина), лишенную гранул, а гранулы занимают периферическую зону ядрышка. Между гранулами в этой зоне всегда наблюдаются рыхло расположенные фибриллы толщиной 40 – 80 А. В ряде случаев в этой гранулярной зоне не наблюдается никакой дополнительной структуризации. Но часто эта зона представлена обособленными нитчатыми структурами толщиной около 1500 – 2000 А, состоящими из гранулы и рыхло расположенных фибрилл. Фибриллярная часть ядрышка не всегда собрана в компактную центральную зону.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул падает, ядрышки превращаются в плотные фибриллярные тельца.

Источник: vseobiology.ru

14. Строение, свойства и функции хромосом.

Строение – состоят из ДНК и белков, образующих хроматин. Некоторые хромосомы имеют вторичную перетяжку(спутник).

Ультраструктура хромосом:

Каждая хромосома состоит из 2х хроматид ,хроматиды соединены первичной перетяжкой или центромерой.

Центромера делит хромосому на 2 плеча. Каждая хроматида состоит из 2х полухроматид.

Полухроматиды образованны хромонемами, которые состоят из микрофибрилл

Функции:

— Хранение и передача генетической информации.

— Использование генетической информации для поддержания клеточной организации.

— Регуляция считывания наследственной информации.

— Удвоение генетического материала.

Свойства хромосом:

— Парность.

— Индивидуальность (хромосомы отличаются друг от друга).

— Непрерывность (каждая хромосома образуется то хромосомы).

— Постоянство числа.

15. Нуклеиновые кислоты их виды строение локализация в клетке значение.

Нуклеиновые кислоты – биологические полимеры.

ДНК – биологический полимер, состоящий из 2 нуклеотидных цепей. Мономером является нуклеотид.

Строение: Азотистое основание(аденин ,гуанин,цитазин,тими), дезоксирибоза, остаток фосфорной кислоты. ДНК находится в хромосомах, митохондриях, пластидах.

Значение:

— Хранение наследственной информации.

— Передача наследств информ.

— Реализация наследственной информ в ходе биологического синтеза.

РНК – одноцепочечный биологический полимер. Мономером является нуклеотид.

Строение: Азотистое основание(аденин ,гуанин,цитозин,урацил), рибоза, остаток фосфорной кислоты. РНК находится в ядрах и рибосомах.

Виды:

— Т-РНК – транспортировка аминокислот к рибосоме. (10%).

— Р-РНК – структурный компонент рибосом и полисом. Контролирует начало и конец синтеза белка. (85%).

-И-РНК – содержит информацию о строении белковой молекулы

16. Генетический код. Его сущность, свойства. Понятие о кодоне.

Генетический код – это схема расположения следующих друг за другом азотистых оснований в ДНК, определяющих место аминокислот в молекуле белка.

Свойства:

— Триплетность – три азотистых основания, следующих друг за другом.(одна аминокислота кодирует три нуклеотида молекулы ДНК)

— Избыточность-могут кодировать одну и туже аминокислоту несколькими триплетами или кодонами.

— Специфичность – определённую аминокислоту, кодируют строго определённые триплеты.

— Неперерываемость – считывание информации в гене происходит последовательно, триплет за триплетом.

Универсальность – генетический код является единым для всех живых организмов на земле.

— Колленеарность – последовательность ДНК строго соответствует последовательности аминокислот в молекуле белка.

— Непрерывность – между нуклеотидами в ДНК нет никаких дополнительных знаков, разделяющих эти нуклеотиды.

Кодон – тройка рядом стоящих нуклеотидов.

Источник: StudFiles.net

Функции ядрышка в клетке каковы? Ядрышко: строение и функции

При большом увеличении электронного микроскопа в гранулярном компоненте видно множество гранул высокой электронной плотности. Располагается между фибриллярными структурами и по периферии ядрышка.

Зону ядрышкового организатора иногда выявляют в центре фибриллярного компонента в виде светлого участка. Вокруг ядрышкового организатора в интерфазу образуется ядрышко. В период митоза зона ядрышкового организатора соответствует области вторичной перетяжки хромосомы.

Зона неактивной ДНК вокруг ядрышка отличается высокой степенью конденсации в виде околоядрышкового гетерохроматина. Предположительно эти зоны являются частями хромосом, которые образуют ядрышко.

Ядрышки значительно изменяются в различные стадии митоза. В конце профазы митоза они исчезают, а находящийся в ядрышках хроматин начинает конденсироваться. С конца профазы до середины телофазы митоза ядрышко содержит в себе только хроматин ядрышкового организатора, что указывает на его низкую активность. Затем этот хроматин деконденсируется и вокруг него формируется плотный фибриллярный материал, содержащий скопление рРНК. Рост ядрышка продолжается до конца телофазы за счет увеличения содержания фибриллярных структур, а затем вокруг них формируется гранулярный компонент. К концу телофазы строение ядрышка близко к таковому в интерфазном ядре, и проявляются признаки нарастающей синтетической активности с образованием новых рибосом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Google+

Одноклассники

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс — всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) — жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью. Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом). С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины. Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки.

Какую функцию выполняет ядро клетки?

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней. Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом. Здесь происходит синтез рРНК (рибосомальной РНК).

ЯДРЫШКО(nucleolus) — составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

Ядрышко впервые описано в 1838— 1839 годы М. Шлейденом в растительных и Т. Шванном — в животных клетках.

Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) — так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) — кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом — РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рР НК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками — рибонуклеопро-теидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклео-протеид.

Рис. Электронограмма ядрышка клетки НЕр-2: 1— гранулярный компонент; 2— фибриллярный компонент (нуклеолонема); з— фибриллярный центр; 4— аморфный матрикс; X 70 ООО.

Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150— 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4—8 нм. На срезах нуклеолонемы видны относительно светлые участки — так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопро-теидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке — так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны — так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

См. также Рибонуклеиновые кислоты.

Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю, Ультраструктура клеточного ядра, с. 50, М., 1974; В о u t e i 1 1 e М. a. D и-puy-Go in А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a.

Ядрышко в клетке

Smetana K. The nucleolus, N. Y.— L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien — N. Y., 1985, bibliogr.

Я. E. Хесин.

Ядрышко клетки

Ядро обеспечивает важнейшие метаболические и генетические функции клетки. Большинство клеток содержит одно ядро, изредка встречаются многоядерные клетки (некоторые грибы, простейшие, водоросли, поперечно-полосатые мышечные волокна и др.). Лишенная ядра клетка быстро погибает. Однако некоторые клетки в зрелом (дифференцированном) состоянии утрачивают ядро. Такие клетки либо живут недолго и заменяются новыми (например, эритроциты), либо поддерживают свою жизнедеятельность за счет притока метаболитов из тесно примыкающих к ним клеток – "кормилец" (например, клетки флоэмы у растений). По форме ядро может быть шаровидным, овальным, лопастным, линзовидным и т.д. Размер, форма и структура ядер изменяются в зависимости от функционального состояния клеток, быстро реагируя на изменение внешних условий. Ядро обычно перемещается по клетке пассивно с током окружающей его цитоплазмы, но иногда оно способно самостоятельно передвигаться, совершая движения амебоидного типа.

Ядро – самая крупная органелла клетки, ее важнейший регулирующий центр. Как правило, клетка имеет одно ядро, но существуют клетки двухядерные и многоядерные. В некоторых организмах могут встречаться клетки, лишенные ядер. К таким безъядерным клеткам относятся, например, эритроциты млекопитающих, тромбоциты, клетки ситовидных трубок растений и некоторые другие типы клеток. Обычно безъядерными бывают высокоспециализированные клетки, утратившие ядра на ранних стадиях развития.

Ядро содержит ядрышко, а иногда и несколько ядрышек. Ядрышко – компактная структура в ядре интерфазных клеток.

Ядрышко – структура, составленная из расположенных рядом участков нескольких различных хромосом.

13. Строение ядра. Ядрышко строение и функции.

Эти участки представляют собой большие петли ДНК, содержащие гены рибосомальной РНК (рРНК). Такие петли называются ядрышковым организатором.
Ядрышко является центром образования рибосом, т.к. здесь осуществляется синтез рРНК и соединение этих молекул с белками, т.е. происходит формирование субъединиц рибосом, которые затем поступают в цитоплазму, где и завершается сборка рибосом.

первые ядрышки были обнаружены Фонтана в 1774 г. В живых клетках они выделяются на фоне диффузной организации хроматина из-за своей светопреломляемости. Последнее свойство связано с тем, что ядрышки являются наиболее плотными структурами в клетке. Они обнаруживаются практически во всех ядрах эукариотических клеток за редким исключением. Это говорит об обязательном присутствии этого компонента в клеточном ядре.

В клеточном цикле ядрышко присутствует в течение всей интерфазы, в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает и отсутствует в мета- и анафазе, вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.

Долгое время функциональное значение ядрышка было непонятно. Вплоть до 1950-х годов исследователи считали, что вещество ядрышка представляет собой своего рода запас, который используется и исчезает в момент деления ядра.

Еще в 1930-х годах рядом исследователей (МакКлинток, Хейтц, С.Г. Навашин) было показано, что возникновение ядрышек связано топографически с определенными зонами на особых, ядрышкообразующих хромосомах. Эти зоны были названы ядрышковыми организаторами, а сами ядрышки представлялись как структурное выражение хромосомной активности. Позднее, в 1940-х годах, когда было найдено, что ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным (щелочным) красителям вследствие кислой природы РНК. По данным цитохимических и биохимических исследований, основным компонентом ядрышка является белок: на его долю приходится до 70—80% от сухой массы. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).

Уже в 1950-х годах при изучении ультраструктуры ядрышек в их составе были выявлены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы — с рибосомами. Следующим этапом в изучении ядрышка было открытие принципиального факта — «ядрышковый организатор» является вместилищем генов рибосомных РНК.

В ядрышке различают:

фибриллярный центр – слабоокрашенный компонент (ДНК, кодирующая РНК),

фибриллярный компонент, где протекают ранние стадии образования предшественников рРНК; состоит из тонких (5 нм) рибонуклеопотеиновых фибрилл и транскрипционно активных участков ДНК;

гранулярный компонент – содержит зрелые предшественники рибосомных СЕ, имеющих диаметр 15 нм.

Основные функции ядрышка – синтез рРНК (транскрипция и процессинг рРНК) и образование СЕ рибосом.

Транскрипция рРНК происходит в хромосомах 13, 14, 15, 21 и 22. Петли ДНК этих хромосом, содержащие соответствующие гены, формируют ядрышковый организатор, получивший название в связи с тем, что восстановление ядрышка в фазу G1 клеточного цикла начинается с этой структуры.



Источник: magictemple.ru