Не так давно мы с детками начали разговаривать о том, где мы живем. Город, улица, дом — это быстро становится очевидным даже маленьким деткам, а мы решили сделать еще один шаг вперед и поговорить о нашей планете.
Вот так выглядит наша планета из космоса:

Планета Земля фото. Вид из космоса.

Она имеет форму шара и из космоса Земля кажется голубой, потому что почти три четверти ее поверхности покрыты морями и океанами.
А что же находится внутри этого загадочного шара под названием Земля?

Планета Земля в разрезе фото.

Земля в разрезе:
Внутреннее строение
Земля имеет слоистое строение. Она состоит из твёрдых силикатных оболочек (коры и мантии) и металлического ядра. Внешняя часть ядра жидкая, а внутренняя — твёрдая.


Земная кора
Земная кора — это верхняя часть твёрдой земли. Бывает два типа коры — континентальная и океаническая. В строении континентальной коры выделяют три геологических слоя: осадочный чехол, гранитный и базальтовый. Океаническая кора сложена преимущественно породами основного состава, плюс осадочный чехол. Земная кора разделена на различные по величине литосферные плиты, двигающиеся относительно друг друга.

Мантия земли
Мантия — это силикатная оболочка Земли, ссостоящая из силикатов магния, железа, кальция и др. Мантия составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5 — 70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км. Выше границы 660 километров находится верхняя мантия, а ниже, соответственно, нижняя. Эти две части мантии имеют различный состав и физические свойства. Хотя сведения о составе нижней мантии ограничены, и число прямых данных весьма невелико, можно уверенно утверждать, что её состав со времен формирования Земли изменился значительно меньше, чем верхней мантии, породившей земную кору.

Ядро Земли
Ядро состоит из железо-никелевого сплава с примесью других элементов. Оно состоит из двух частей — твёрдой внутренней, диаметром около 2400 км, и жидкой наружной, диаметром около 7000 км.

Мы решили сделать такую же можель Земли из пластилина.
Для этого я купила пластилин 16 цветов:


Пластилин 16 цветов.

Мы выбрали те цвета, которые пригодятся нам в работе:

Желтый — внутреннее ядро
Оранжевый — внутреннее
Малиновый — мантия
Коричневый — земная кора, материки
Синий и голубой — моря и океаны
Зеленый — для материков
Белый — ледники

Пластилин для модели Земли.

И приступили к созданию нашей планеты. Для начала слепили желтый шарик, затем облепили его оранжевым пластилином, малиновым, коричневым, синим, и наконец, налепили материки из зеленого, коричневого, белого.

Получился вот такой маленький глобус:

Глобус из пластилина.

Интересно узнать, что получилось в разрезе?
Прежде чем резать нашу планету, мы положили ее ненадолго в холодильник. Пластилин застыл и резать его стало проще.

Вырезаем кусочек Земли.

Планета Земля в разрезе фото. пластилиновая модель


Источник: www.moi-detki.ru

Земля, так же, как и многие другие планеты, имеет слоистое внутреннее строение. Наша планета состоит из трех основных слоев. Внутренний слой – это ядро, наружный – земная кора, а между ними размещена мантия.

Ядро представляет собой центральную часть Земли и расположено на глубине 3000-6000 км. Радиус ядра составляет 3500 км. По мнению ученых, ядро состоит из двух частей: внешней – вероятно, жидкой, и внутренней — твердой. Температура ядра составляет около 5000 градусов. Современные представления о ядре нашей планеты получены в ходе длительных исследований и анализа полученных данных. Так, доказано, что в ядре планеты содержание железа достигает 35%, что обусловливает его характерные сейсмические свойства. Внешняя часть ядра представлена вращающимися потоками никеля и железа, которые хорошо проводят электрический ток.vnutrennee_stroenie_zemliПроисхождение магнитного поля Земли связано именно с этой частью ядра, так как глобальное магнитное поле создается электрическими токами, протекающими в жидком веществе внешнего ядра.
-за очень высокой температуры внешнее ядро оказывает значительное влияние на соприкасающиеся с ним участки мантии. В некоторых местах возникают громадные тепломассопотоки, направленные к поверхности Земли. Внутреннее ядро Земли твердое, также имеет высокую температуру. Ученые полагают, что такое состояние внутренней части ядра обеспечивается очень высоким давлением в центре Земли, достигающим 3 млн. атмосфер. При увеличении расстояния от поверхности Земли повышается сжатие веществ, при этом многие из которых переходят в металлическое состояние.

Промежуточный слой – мантия – покрывает ядро. Мантия занимает около 80% объема нашей планеты, это самая большая часть Земли. Мантия расположена кверху от ядра, но не достигает поверхности Земли, снаружи она соприкасается с земной корой. В основном, вещество мантии находится в твердом состоянии, кроме верхнего вязкого слоя толщиной примерно 80 км. Это астеносфера, в переводе с греческого языка означает «слабый шар». По мнению ученых, вещество мантии непрерывно движется. При увеличении расстояния от земной коры в сторону ядра происходит переход вещества мантии в более плотное состояние.

Снаружи мантию покрывает земная кора – внешняя прочная оболочка. Ее толщина варьирует от нескольких километров под океанами до нескольких десятков километров в горных массивах. На долю земной коры приходится всего 0,5% общей массы нашей планеты. В состав коры входят оксиды кремния, железа, алюминия, щелочных металлов. Континентальная земная кора делится на три слоя: осадочный, гранитный и базальтовый. Океаническая земная кора состоит из осадочного и базальтового слоев.


Литосферу Земли формирует земная кора вместе с верхним слоем мантии. Литосфера слагается из тектонических литосферных плит, которые как будто «скользят» по астеносфере со скоростью от 20 до 75 мм в год. Двигающиеся друг относительно друга литосферные плиты различны по величине, а кинематику передвижения определяет тектоника плит.

Видео презентация «Внутреннее строение Земли»:

Презентация «География как наука»

Похожие материалы:

 

Источник: geografya.ru

Метод исследования недр

 

Однако определенные знания о глубинах нашей планеты все-таки установлены. Ученые изучили ее внутреннее строение с помощью сейсмического метода. Основой данного метода, является измерение колебаний во время землетрясения или искусственных взрывов производимых в недрах Земли. Вещества с разной плотностью и составом, пропускали через себя колебания с определенной скоростью. Что позволило с помощью специальных приборов измерить эту скорость и проанализировать полученные результаты.

Мнение ученых


Исследователями было установлено, что наша планета имеет несколько оболочек: земную кору, мантию и ядро. Ученые считают, что примерно 4,6 млрд. лет назад началось расслоение недр Земли и продолжает расслаиваться, по сей день. По их мнению, все тяжелые вещества спускаются к центру Земли, присоединяясь к ядру планеты, а более легкие вещества поднимаются вверх и становятся земной корой. Когда внутреннее расслоение закончится, наша планета превратиться в холодную и мертвую.

Земная кора

Является самой тонкой оболочкой планеты. Ее доля составляет 1% от общей массы Земли. На поверхности земной коры обитают люди и добывают из нее все необходимое для выживания. В земной коре, во многих местах, имеются шахты и скважины. Ее состав и строение изучается с помощью образцов собранных с поверхности.

Мантия

Представляет собой самую обширную оболочку земли.  Ее объем, и масса составляет 70 – 80% всей планеты. Мантия состоит из твердого вещества, но менее плотного, чем вещество ядра. Чем глубже располагается мантия, тем больше становиться ее температура и давление. Мантия имеет частично расплавленный слой. С помощью этого слоя твердые вещества перемещаются к ядру земли.

Источник: SpaceGid.com

Кора Земли — объяснение для детей


Земная кора содержит такие элементы как: кислород (47%), кремний (27%), алюминий (8%), железо (5%), кальций (4%), и по 2% магния, калия и натрия. Она создана в виде гигантских пластин, которые двигаются по жидкой мантии. Важно объяснить детям, что, хотя мы и не замечаем, но плиты не прекращают движения. Когда они сталкиваются, мы ощущаем землетрясения, а если одна наедет на другую, то образуется глубокий окоп или горы. Эти движения описывает теория тектоники плит.

Слои земли по порядку в разрезе рисунокМантия Земли — объяснение для детей

Далее, толщиною в 2890 км, располагается мантия. Она представлена силикатными породами, богатыми на магний и железо. Из-за интенсивного тепла создаются скалы. Затем они остывают и снова возвращаются к ядру. Полагают, что именно это приводит тектонические плиты в движение. Когда мантии удается пробиться сквозь кору, вы видите извержение вулкана.

Ядро Земли — объяснение для детей


Наверняка, даже для самых маленьких понятно, что внутри Земли расположено ядро. Интересно, что оно состоит из двух половинок: внутреннее (твердое) с радиусом в 1220 км окружено внешним (жидкое – сплав никеля и железа) с толщиною в 2180 км. Пока планета вращается в привычном темпе, внутреннее ядро делает обороты отдельно, образуя магнитное поле. Можно также рассказать детям о том, как формируются полярные сияния. Ведь для этого заряженным частичкам солнечного ветра нужно пройти в молекулы воздуха над магнитными полюсами планеты и тогда эти молекулы начинают сиять.

Теперь вы знаете из чего состоит Земля. Если детям или школьникам любого возраста будет любопытно узнать больше интересных фактов и подробностей о третьей планете от Солнца, то обязательно посетите остальные страницы раздела. Не забудьте воспользоваться 3D-моделью Солнечной системы, где показаны все планеты, а также карта Венеры, ее поверхность и особенности вращения по орбите. В остальном вам всегда помогут наши, фото, картинки, рисунки, а также онлайн телескоп, функционирующий в режиме реального времени. Строение Земли невероятно просто понять, если следовать визуальному ряду.

Источник: v-kosmose.com

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы.
trong>Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал  методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами, главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные.
одольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary — первичные), более «медленные» поперечные волны называют S-волны (от англ. secondary — вторичные). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

  Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты — если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Сейсмическая модель Земли

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Сейсмическая модель Земли

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км. 

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км. На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга, хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км, делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора, ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой, состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная, или кристаллическая, кора, образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет  мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» — сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.

Слои земли по порядку в разрезе рисунок

Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой — подкоровая мантия — простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» — слабый и «sphair» — сфера); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone. Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом.м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы — твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии, отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Масса оболочек ЗемлиОсновная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см3; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см3.  В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см3 в подкоровой части до 5,5 г/см3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см3 — происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см3.

Слои земли по порядку в разрезе рисунок

Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

  1. сжатием за счет веса вышележащих оболочек (литостатическое давление);

  2. фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

  3. различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*109 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С. Средняя величина геотермического градиента в верхней части коры составляет 30 0С/км и колеблется от 200 0С/км в областях современного активного магматизма до 5 0С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0С/км, а в мантии – менее 1 0С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.

Температура

Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации, т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло, возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 • 10–4 %, в осадочных породах – 3,2 • 10–4 %, в то время как в океанической коре она ничтожно мала: около 1,66 • 10–7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло, сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы, обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0С, на глубине 410 км – 1500 0С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0С, на глубине 5150 км – 3300 0С, в центе Земли – 3400 0С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 900) и наименьшим на экваторе (7-80).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe2O4), гематит (Fe2O3), ильменит (FeTiO2), пирротин (Fe1-2S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию — изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака.  Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

 

Источник: popovgeo.sfedu.ru