Существуют два типа автотрофных организмов — фототрофы (фотосинтезирующие) и хемотрофы (хемосинтезирующие). Большую часть автотрофных организмов доставляют фототрофы, роль которых в биосфере трудно переоценить. Достаточно сказать, что процесс фотосинтеза — это основной путь, по которому энергия Солнца аккумулируется в биосфере. При этом каждый год в процессе фотосинтеза на земном шаре образуется более 150 млрд т сахаров, необходимых для всех гетеротрофных организмов.

Вклад хемотрофов в синтез питательных веществ на Земле ничтожен, поскольку имеющиеся в их распоряжении ресурсы химической энергии крайне малы по сравнению с огромным потоком солнечной энергии на Землю. Важнейший для всего живого процесс преобразования энергии поглощенного света в химическую энергию органических веществ, синтезируемых из CO2 и Н2O (фотосинтез), осуществляется в зеленых пластидах — хлоропластах.


Хлоропласты являются характерными органеллами растительных клеток. Их форма и размеры очень разнообразны, но чаще всего это овальные тельца длиной 5—10 мкм и диаметром 2-3 мкм. В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы. Хлоропласты образуются из про пластид — мельчайших бесцветных недифференцированных телец, обнаруживаемых в спорах, яйцеклетках, эмбриональных клетках. Они имеют зеленый цвет, обусловленный присутствием фотосинтезирующего пигмента хлорофилла. Кроме того, в состав хлоропластов входят оранжевые пигменты — каротиноиды.

Хлоропласты покрыты оболочкой, состоящей из наружной и внутренней мембран. Внутренняя мембрана отграничивает внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы, запасные вещества (липидные капли, крахмальные и белковые зерна) и, кроме того, ферменты, участвующие в фиксации диоксида углерода. Внутренняя мембрана в период формирования хлоропласта образует утолщенные замкнутые впячивания — тилакоиды, которые отделяются от мембраны. Они располагаются в строме и имеют форму дисков.


сколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами гран. Другие тилакоиды, связывающие между собой граны и (или) не контактирующие с ними, называются тилакоидами стромы. В мембранах тилакоидов локализованы светочувствительные пигменты (хлорофиллы и каротиноиды), а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света. Биохимические системы синтеза и превращения углеводов функционируют в строме хлоропластов. В ней же откладывается крахмал.

В зависимости от степени освещенности хлоропласта способны перемещаться в толще цитоплазмы таким образом, чтобы слабый свет воздействовал на возможно большую фотосинтезирующую поверхность (усилие фотосинтеза), а сильный – на минимальную (защита от разрушительного действия прямых солнечных лучей). В последнем случае хлоропласта располагаются вдоль клеточных стенок, параллельных световому потоку.

Источник: jbio.ru

выполняемым функциям, образуют 1) Ткани; 2) органы; 3) системы органов; 4) единый организм. А2. В процессе фотосинтеза растения 1) Обеспечивают себя органическими веществами 2) окисляют сложные органические вещества до простых 3) Поглощают кислород и выделяют углекислый газ 4) Расходуют энергию органических веществ.


. В клетке происходит синтез и расщепление органических веществ, поэтому её называют единицей 1) Строения 2) жизнедеятельности 3) роста 4) размножения. А4. Какие структуры клетки распределяются строго равномерно между дочерними клетками в процессе митоза? 1) Рибосомы; 2) митохондрии; 3) хлоропласты; 4) хромосомы. А5. Дезоксирибоза является составной частью 1) Аминокислот 2) белков 3) и РНК 4) ДНК. А6. Вирусы, проникая в клетку хозяина, 1) Питаются рибосомами; 2) поселяются в митохондриях; 3) Воспроизводят свой генетический материал; 4) Отравляют её вредными веществами, образующимися в ходе их обмена веществ. А7. Каково значение вегетативного размножения? 1) способствует быстрому увеличению численности особей вида; 2) ведет к появлению вегетативной изменчивости; 3) увеличивает численность особей с мутациями; 4) приводит к разнообразию особей в популяции. А8. Какие структуры клетки, запасающие питательные вещества, не относят к органоидам? 1) Вакуоли; 2) лейкопласты; 3) хромопласты; 4) включения. А9. Белок состоит из 300 аминокислот. Сколько нуклеотидов в гене, который служит матрицей для синтеза белка? 1) 300 2) 600 3) 900 4) 1500 А10. В состав вирусов, как и бактерий, входят 1) нуклеиновые кислоты и белки 2) глюкоза и жиры 3) крахмал и АТФ 4) вода и минеральные соли А11. В молекуле ДНК нуклеотиды с тимином составляют 10 % от общего числа нуклеотидов. Сколько нуклеотидов с цитозином в этой молекуле? 1) 10% 2) 40% 3)80% 4) 90% А12.
iv>
ибольшее количество энергииосвобождается при расщеплении одной связи в молекуле 1) Полисахарида 2) белка 3) глюкозы 4) АТФ 2 Вариант А1. Благодаря свойству молекул ДНК самоудваиваться 1) Происходят мутации 2) у особей возникают модификации 3) появляются новые комбинации генов 4) передаётся наследственная информация к дочерним клеткам. А2. Какое значение митохондрии в клетке 1) транспортируют и выводят конечные продукты биосинтеза 2) преобразуют энергию органических веществ в АТФ 3) осуществляют процесс фотосинтеза 4) синтезируют углеводы А3. Митоз в многоклеточном организме составляет основу 1) гаметогенеза 2) роста и развития 3) обмена веществ 4) процессов саморегуляции А4. Каковы цитологические основы полового размножения организма 1) способность ДНК к репликации 2) процесс формирования спор 3)накопление энергии молекулой АТФ 4) матричный синтез иРНК А5. При обратимой денатурации белка происходит 1) нарушение его первичной структуры 2) образование водородных связей 3) нарушение его третичной структуры 4) образование пептидных связей А6. В процессе биосинтеза белка молекулы иРНК переносят наследственную информацию 1) из цитоплазмы в ядро 2) одной клетки в другую 3)ядра к митохондриям 4) ядра к рибосомам. А7. У животных в процессе митоза в отличии от мейоза, образуются клетки 1) соматические 2) с половиной набором хромосом 3)половые 4) споровые. А8. В клетках растений, в отличие от клеток человека, животных, грибов, происходит А) выделение 2) питание 3) дыхание 4) фотосинтез А9.

за деления в которых, хроматиды расходятся к разным полюсам клетки 1) анафаза 2) метафаза 3) профаза 4) телофаза А10. Прикрепление нитей веретена деления к хромосомам происходит 1) Интерфаза; 2) профаза; 3) метафаза; 4) анафаза. А11. Окисление органических веществ с освобождением энергии в клетке происходит в процессе 1) Биосинтеза 2) дыхания 3) выделения 4) фотосинтеза. А12. Дочерние хроматиды в процессе мейоза расходятся к полюсам клетки в 1) Метафазе первого деления 2) Профазе второго деления 3) Анафазе второго деления 4) Телофазе первого деления

Источник: biologia.neznaka.ru

Разделы: Биология


Задачи урока: сформировать знания о фотосинтезе как пластическом обмене веществ у растений, о световой фазе фотосинтеза, механизмах использования энергии света в гранах хлоропластов, расщепления воды, образования кислорода, АТФ, о темновой фазе фотосинтеза, восстановлении углекислого газа до углевода. Проконтролировать первичное усвоение знаний с помощью дидактических материалов.

Оборудование: таблицы по общей биологии (вып. 2), схема “Процесс фотосинтеза”, карточки с заданиями.

ХОД УРОКА

Учитель: На прошлых уроках мы закончили изучение химического состава и строения клетки. Сегодня начинаем новую интересную, непростую тему. О фотосинтезе же мы будем говорить и на следующем уроке. Желающие, подготовьте небольшие сообщения (5 мин.) по следующим темам:

>

1. История изучения фотосинтеза.
2. Космическая роль зеленых растений.
3. Управление продуктивностью процесса фотосинтеза.
4. Хемосинтез.

Раздаются листочки с перечисленными выше темами докладов. Остальные записывают домашнее задание § 10 (“Общая биология”. 10-11 класс. Под ред. Д.К. Беляева и А.О. Рувинского).

Учитель: Энергию можно определить, как способность совершать работу. По закону сохранения энергии – энергия не создается и не уничтожается, а только взаимопревращается. За счет чего же клетка может совершать различного вида работу: химический синтез веществ, необходимый для восстановления и роста тканей, активный транспорт веществ через мембраны, проведение нервных импульсов и др.?
Источником энергии почти для всех этих видов активности служат питательные вещества – органические молекулы, в которых содержится химическая энергия, запасенная в связях между их атомами. При разрыве связей эта энергия может высвободиться. При этом она аккумулируется в форме АТФ (“макроэнергетические связи”) и в этой форме используется затем для выполнения различной работы в клетке.

– Вспомним, какие особенности строения АТФ делают ее “разменной монетой” экономики клетки? (Две макроэнергетические связи. Во время разрыва одной из них высвобождается гораздо больше энергии – около 40 кДж/моль, чем при разрыве любых других ковалентных связей – 12 кДж/моль)

Итак, органические вещества – источники энергии для жизнедеятельности клетки. А где берут их организмы? Все организмы по источникам получения органических веществ делятся на 2 группы:


Автотрофы –  самостоятельно синтезируют органические вещества из минеральных для своего питания (растения, некоторые бактерии). Гетеротрофы – получают с пищей готовые органические вещества (животные, грибы, большинство бактерий).

Сегодня нас интересует только “большинство” среди автотрофов – растения, а о бактериях мы поговорим на следующем уроке.
Первичные поставщики органических веществ – автотрофы-растения. Используя энергию солнечного света, они строят сложные органические соединения из CO2 и H2O, т.е. фотосинтезируют.
Фотосинтез – процесс образования углеводов из неорганических веществ – CO2 и H2O при использовании энергии солнечного света.

Общее уравнение фотосинтеза:

6CO2 + 6 H2O ––– (свет, хлоропласты)–––> C6H12O6 + 6 O2 ^

В ходе этого процесса из веществ, бедных энергией – углекислого газа и воды – образуется углевод глюкоза (C6H12O6) – богатое энергией вещество, кроме того образуется также молекулярный кислород.
Очень образно описал это явление русский ученый, физиолог растений – К.А.


мирязев: “Дайте самому лучшему повару сколько угодно свежего воздуха, сколько угодно солнечного света и целую речку чистой воды и попросите, чтобы из всего этого он приготовил Вам сахар, крахмал, жиры и зерно, – он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений”. (Климент Аркадьевич – не первый, кто заинтересовался ролью зеленого листа, но он первый обобщил все данные о фотосинтезе, которые были известны в науке к началу XX века и сформулировал научное понятие этого процесса в книге “Жизнь растений”).
Суммарное уравнение отражает только количественные соотношения участвующих в фотосинтезе реагентов и его конечных продуктов, но не химическую природу этого явления. Общее уравнение удалось выяснить ученым к концу XIX века, а химическая природа выяснена в середине XX-го. Хотя все сложности этого процесса до конца не ясны и сегодня.
Сейчас известно о фотосинтезе, что это длинная и сложная цепь реакций, протекающих в хлоропластах при участии большого количества ферментов. Чтобы эти реакции шли, они должны быть разделены в пространстве.

– Вспомните, какое строение имеют хлоропласты (§ 8, рис. 16), как их строение соответствует выполняемой ими функции? (Диск, две мембраны, загибами внутренней мембраны образованы мешочки-тилакоиды, уложенные в стопки-граны. В мембраны тилакоидов встроены молекулы хлорофилла, он и улавливает энергию света; в тилакоидах происходит превращение световой энергии в химическую энергию АТФ).


Главное вещество фотосинтеза – зелёный пигмент – хлорофилл. Это сложное органическое вещество, в центре которого находится атом магния. Хлорофилл находится в мембранах тилакоидов гран, из-за чего хлоропласты приобретают зелёный цвет, а благодаря хлоропластам и остальная часть клетки и весь лист становятся зелёными. Остальные структуры клетки – бесцветны.

Ну, а почему сам хлорофилл кажется нам зелёным? А потому, что он поглощает лучи в красной и синей областях спектра и отражает зелёные лучи, которые и воспринимаются нашим глазом.

По современным данным фотосинтез включает два типа реакций: световые (светозависимые) и темновые (не зависящие от света). Световые реакции территориально привязаны к пространству, ограниченному тилакоидами. Темновые проходят в строме хлоропласта.

Ознакомимся с химизмом фотосинтеза по схеме “Процесс фотосинтеза”.

Но сначала по общему уравнению предположим логику происходящего процесса.

– Чем отличаются атомарные составы CO2 и углеводов? – В глюкозе есть атомы водорода. Значит, фотосинтез должен включать реакции восстановления молекул СО2 до молекул глюкозы, для чего необходима энергия.

(Далее обсуждаем схему на рис. 1 и параллельно заполняем табл. 1 на доске и в тетрадях учащихся). <Таблица 1>.


В каких органеллах клетки осуществляется процесс фотосинтеза

Рис. 1.

Световая фаза.

Её смысл – превратить световую энергию солнца в химическую энергию молекул АТФ и других молекул, богатых энергией. Эти реакции протекают непрерывно, но их легче изучать, разделив на три стадии:

1. а) Свет, попадая на хлорофилл, сообщает ему достаточно энергии для того, чтобы от молекулы мог оторваться один электрон; б) электроны захватываются белками-переносчиками, встроенными, наряду с хлорофиллом, в мембраны тилакоида и выносятся на сторону мембраны, обращённую в строму; в) в строме всегда есть вещество, являющееся переносчиком водорода, по своей природе оно является динуклеотидом и называется сокращённо НАДФ+ – окисленная форма (никотин–амид–аденин–динуклеотид–фосфат). Это соединение захватывает возбуждённые светом e и протоны, которые всегда есть в строме, и восстанавливается, превращаясь в НАДФ·H2.

2. Молекулы воды разлагаются под действием света (фотолиз воды): образуются электроны, Н+ и O2. Электроны замещают e, утраченные хлорофиллом на стадии 1. Протоны пополняют протонный резервуар, который будет использоваться на стадии 3. Кислород выходит за пределы клетки в атмосферу.

3. Протоны, накапливаясь внутри тилакоида, образуют положительно заряженное электрическое поле. Со стороны, обращённой в строму, мембрана заряжена отрицательно. Постепенно разность потенциалов по обе стороны мембраны возрастает и, когда она достигает критической величины (? 200 милливольт), открывается пора в ферменте, встроенном в мембрану тилакоида (фермент называется АТФ-синтетаза). Протоны устремляются по протонному каналу в ферменте наружу – в строму. На выходе из протонного канала создаётся высокий уровень энергии, который идёт на синтез АТФ (АДФ + Фн > АТФ). Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях образования углеводов.

Итак, результат световой фазы – образование молекул, богатых энергией АТФ и НАДФ·H2, и побочного продукта – O2?.

Темновая фаза.

Эта фаза проходит в строме хлоропласта, куда поступает CO2 из воздуха, а также продукты световой фазы АТФ и НАДФ·H2. Здесь эти соединения используются в серии реакций, “фиксирующих” CO2 в форме углеводов. Проследим по схеме: CO2 присоединяется к пятиуглеродному сахару (рибулёзодифосфату), который есть в строме. Образующаяся при этом шестиуглеродная молекула нестабильна и сразу расщепляется на две трёхуглеродные молекулы, каждая из которых присоединяет фосфатную группу от АТФ. Обогащённая энергией молекула становится способной присоединить водород от переносчика НАДФ·H2. На пятом этапе судьба трёхуглеродных молекул может быть различной: одни из них соединяются друг с другом и образуют шестиуглеродные молекулы, например, глюкозы, а те дальше объединяются в сахарозу, крахмал, целлюлозу и другие вещества. Другие трёхуглеродные молекулы используются для синтеза аминокислот, присоединяя азотсодержащие группы. Наконец, третьи вовлекаются в длинный ряд реакций, основной результат которых сводится к превращению пяти трёхуглеродных молекул в три пятиуглеродные молекулы рибулёзодифосфата. Он снова присоединяет углекислый газ, увеличивая общее количество фиксированного углерода в растении. Иными словами, процесс представляет собой цикл Кальвина (Нобелевская премия 1961 г).

Для создания одной молекулы глюкозы цикл должен повториться шесть раз: при этом всякий раз к запасу фиксированного углерода в растении прибавляется по одному атому углерода из CO2.

АДФ, Фн и НАДФ+ из цикла Кальвина возвращаются на поверхность мембран и снова превращаются в АТФ и НАДФ·H2.

В дневное время, пока светит солнце, в хлоропластах не прекращается активное движение этих молекул: они снуют туда и сюда, как челноки, соединяя два независимых ряда реакций. Этих молекул в хлоропластах немного, поэтому АТФ и НАДФ·H2, образовавшиеся днём, на свету, после захода солнца быстро расходуются в реакциях фиксации углерода. Затем фотосинтез прекращается до рассвета. С восходом солнца вновь начинается синтез АТФ и НАДФ·H2, а вскоре возобновляется и фиксация углерода.

Итак, в результате фотосинтеза происходит превращение световой энергии в энергию химических связей в молекулах органических веществ. А растения, таким образом, являются посредниками между Космосом и жизнью на Земле”.

Таблица 1.

Фотосинтез.

(Для проверки усвоения материала лекции предлагаю учащимся выполнить задания №№ 1 – 10. Ответы: №1–в, №2–а, №3–б, №4–б, №5–а, №6–б, №7–б; №8 – [А]: б, д, з, [Г]: а, в, г, е, ж; №9 – а) 2; б) 1, 3; в) 4; №10 – I (а, в, д, е, ж); II (б, г)).

Задания к теме “Фотосинтез”.

1. В каких органеллах клетки осуществляется процесс фотосинтеза?

а) митохондрии,
б) рибосомы,
в) хлоропласты,
г) хромопласты.

2. Какие лучи спектра поглощает хлорофилл?

а) красные и фиолетовые,
б) зеленые и желтые.

3. При расщеплении какого соединения выделяется свободный кислород при фотосинтезе?

а) CO2,
б) H2O,
в) АТФ.

4. На какой стадии фотосинтеза образуется свободный кислород?

а) темновая,
б) световая,
в) постоянно.

5. Что происходит с АТФ в течение световой стадии?

а) синтез,
б) расщепление.

6. В течение какой стадии в хлоропласте образуется первичный углевод?

а) световая стадия,
б) темновая стадия.

7. Расщепляется ли молекула CO2 при синтезе углеводов?

а) да,
б) нет.

8. Распределите буквы, относящиеся к перечисленным ниже организмам в двух столбцах:

а) человек,
б) ромашка,
в) кишечная палочка,
г) мышь,
д) зверобой,
е) сойка,
ж) инфузория,
з) картофель

9. Подставив цифры к буквам, укажите в какой части хлоропласта (буквы справа) локализуются перечисленные слева вещества или процессы.

10. Перечислите наиболее важные процессы световой (I) и темновой (II) фаз фотосинтеза, подставив подходящие буквы к цифрам I и II.

а) возбуждение электронов хлорофилла,
б) связывание рибулёзодифосфата с углекислым газом,
в) синтез молекул АТФ,
г) синтез глюкозы,
д) фотолиз воды,
е) образование свободного кислорода,
ж) образование атомов водорода в форме НАДФ·H2.

15.02.2005

Источник: urok.1sept.ru

Хлоропласт: структура

Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:

  • Мембрана — содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя мембрана отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
  • Межмембранное пространство — пространство между внешней и внутренней мембранами.
  • Тилакоидная система — внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
  • Тилакоид с просветом (люменом) — отсек в каждом тилакоиде.
  • Грана — плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
  • Строма — плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
  • Хлорофилл — зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

Хлоропласт: фотосинтез

В каких органеллах клетки осуществляется процесс фотосинтеза

При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Хлоропласт – органелла фотосинтеза, строение, размножение, развитие основных структурных элементов на свету и в темноте.

Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла. Хлоропласты содержат также вспомогательные пигменты — каротиноиды (оранжевого цвета). По форме хлоропласты — это овальные линзовидные тельца размером (5—10) х (2—4) мкм. В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы. Весь процесс фотосинтеза протекает в зеленых пластидах — хлоропластах. Различают три вида пластид: лейкопласты — бесцветные, хромопласты — оранжевые, хлоропласты — зеленые. В лейкопластах синтезируется и отлагается в запас крахмал, в хромопластах накапливаются каротиноиды, в хлоропластах сосредоточен зеленый пигмент хлорофилл и происходит фотосинтез. Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа. Внутренняя мембрана хлоропласта образует впячивания внутрь стромы — тилакоиды, или ламеллы, которые имеют форму уплощенных мешочков (цистерн). Несколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света. Хлоропласты содержатся только в эукариотических (ядерных) клетках зеленых растений. В клетках фотосинтезирующих прокариотов — бактерий фотосинтезирующие системы расположены в пластинчатых структурах — хроматофорах , которые содержат почти те же элементы фотосинтетического аппарата, что и хлоропласты.

Источник: StudFiles.net