Урок № 3. Генетика – наука о закономерностях наследственности и изменчивости. Хромосомная теория наследственности. Современные представления о гене и геноме (07.05.2020 г.)
(✒Пишем тему, дату)

Цель урока:Expand text… Повторить тему об онтогенезе, пройдя тестирование. Изучить новую тему, связанную с генетикой, с современными представлениями о гене, геноме.

План урока: 1. Тестирование "Онтогенез"
2. Изучение новой темы.

😊Добрый день, ребята, на этом уроке вам нужно будет в качестве повтора темы, связанной с прошлым уроком пройти тест.
1. Ссылка для прохождения теста: https://forms.gle/3a5c8XwcSnwQXhoT7
Так же он прикреплен ниже.
❗Алгоритм прохождения теста:
1. Пишете свою фамилию, имя,
2. Отвечаете на все вопросы
3. Нажимаете на красную кнопочку "ОТПРАВИТЬ"
4. Нажимаете на красную кнопочку "ПОСМОТРЕТЬ БАЛЛЫ".
Просмотрите правильность ваших ответов.
Если вы набрали баллы:
8 баллов — оценка 5,
7, 6 баллов — оценка 4,
5, 4 баллов — оценка 3,
3, 2 или 1 балл — оценка 2.
Результаты вашего тестирования придут автоматически на мою почту, поэтому мне ФОТО ТЕСТИРОВАНИЯ ОТПРАВЛЯТЬ НЕ НАДО.


2. Изучение новой темы.
Изучить картинки, связанные с темой урока, желательно по порядку:
Знак означает письменное задание.
Знак 💬 означает устное задание.

Картинка № 1. "Проверь себя". Выписываем определения терминов ГЕНЕТИКА, НАСЛЕДСТВЕННОСТЬ, ИЗМЕНЧИВОСТЬ, ГЕН, ГЕНОТИП, ФЕНОТИП. Вспоминаем, что такое доминантный и рецессивный признак.
Картинка № 2 "Генетическая символика". Вспомните написание символов, относящихся к генетическим терминам и понятиям.
Картинка № 3 "Хромосомная теория наследственности". Кратко конспектируем.
Картинка № 4. Кратко конспектируем.

Д.з. — найти информацию в интернет ресурсах или вспомнить и написать в тетрадь имя ученого, который впервые открыл законы генетики. (В 9 классе уже изучали эту тему).

Всего доброго, будьте здоровы!

Источник: vk.com

Комбинативная изменчивость


В основе комбинативной изменчивости лежит половой процесс, в результате которого образуется множество разнообразных генотипов. Генотип представляет собой сочетание генов обоих родителей, число генов организма исчисляется тысячами или десятками тысяч. При половом размножении комбинации генов приводят к формированию нового генотипа и фенотипа, у любого ребенка можно обнаружить признаки, типичные для его матери или отца (рис. 1), тем не менее даже среди близких родственников не найти двух абсолютно одинаковых людей.

Наследственность картинки

Рис. 1. Формирование нового генотипа и фенотипа

Причины такого огромного разнообразия лежат в явлении комбинативной изменчивости (рис. 2).

Наследственность картинки

Рис. 2. Независимое расщепление

Появление зеленых гладких и желтых морщинистых семян во втором поколении от скрещивания растений с зелеными гладкими и желтыми морщинистыми семенами является примером комбинативной изменчивости.

Рекомбинация генов, основанная на явлении перекреста хромосом, или явление кроссинговера – второй важный признак комбинативной изменчивости (рис. 3).

Наследственность картинки


Рис. 3. Кроссинговер

Каждая наша клетка несет хромосомы дедушек и бабушек, определенная часть этих хромосом получила в результате кроссинговера часть своих генов от гомологичных хромосом, принадлежавших ранее другой линии предков, такие хромосомы называют рекомбинантными.

Рекомбинантные хромосомы – хромосомы, вызывающие в зиготе появление признаков, нетипичных для родителей.

Случайная встреча гамет при оплодотворении является третьим очень важным  признаком комбинативной  изменчивости, в моногибридном скрещивании (рис. 4) возможны три генотипа: АА, Аа, аа.

Наследственность картинки

Рис. 4. Моногибридное скрещивание

Каким именно генотипом будет обладать зигота, зависит от случайной комбинации гамет.

Все три источника комбинативной изменчивости действуют независимо и одновременно, создавая большое разнообразие новых генотипов и фенотипов. Новые комбинации генетического материала легко образуются и легко разрушаются при переходе из поколения в поколение, поэтому в потомстве у родителей, которые имеют какие-то особенные признаки, появляются особи, явно уступающие родителям.

Источник: interneturok.ru

iv>

Под изменчивостью понимают способность организмов приобретать признаки и свойства отличные от родительских, характерных для данного вида. Изменчивость является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.

Традиционно различают ненаследственную и наследственную изменчивость.

Модификационная изменчивость

Модификационная (фенотипическая) изменчивость — изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не приводит к изменениям генотипа особи — все изменения касаются только фенотипа.

Напомню, что генотипом называют генетическую конституцию — совокупность генов одного организма, полученных от родителей. Фенотип (греч. phаino — обнаруживаю) — совокупность наблюдаемых характеристик организма (любой морфологический, гистологический, биохимический, поведенческий признак).

Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года.

Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников.


Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для хищников.

Еще одним примером модификационной изменчивости служит изменение окраски шерсти у гималайских кроликов. Они рождаются полностью белыми, так как их эмбриональное развитие протекает в условиях повышенной температуры.

Однако в результате воздействия холода на разные участки их тела, шерсть начинает темнеть. В естественных условиях шерсть темная на ушах, носе, лапах и хвосте.

В эксперименте лед привязывают к спине, и через некоторое время шерсть на этом месте начинает темнеть. Это наглядно демонстрирует влияние внешней среды на проявление признака.

Вам известно, что человек, побывавший на солнце, получает его «отпечаток» — загар. Потемнение цвета кожи в данном случае связано с активной выработкой пигмента меланина, который защищает кожу и внутренние органы от УФ излучения.

Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени — все дело в норме реакции.

Норма реакции

Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.

>

Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.

Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.

Итак, подведем итоги. Для фенотипической (ненаследственной, групповой, определенной) изменчивости характерно:

  • Причина изменения — влияние факторов внешней среды
  • Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам
  • Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом
  • Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)
Наследственная изменчивость

Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) — форма изменчивости, вызванная изменениями генотипа организма, которые могут быть связаны с мутационной или комбинативной изменчивостью.

В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она — наследственная.


Комбинативная изменчивость

Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Эти комбинации возникают во время мейоза в результате хорошо вам знакомого (я надеюсь!) кроссинговера — обмена участками между гомологичными хромосомами.

Запомните, что в основе комбинативной изменчивости лежит три краеугольных момента:

  • Случайная комбинация генов в ходе кроссинговера
  • Независимое расхождение хромосом в мейозе
  • Случайная встреча гамет при оплодотворении

Я всегда говорю ученикам, что комбинативная изменчивость — это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере, не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении.

То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.

Мутационная изменчивость

Мутационная изменчивость связана с возникновением мутаций. Мутации (лат. mutatio — изменение) — внезапные, возникающие спонтанно или вызванные мутагенами наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Для того, чтобы понять суть мутационной изменчивости, давайте дадим характеристику мутациям:


  • Мутации — резкие спонтанные изменения генотипа
  • Стойкие, передаются потомкам через половые клетки (гаметы)
  • Ненаправленные. Большинство мутаций — вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма
  • Носят индивидуальный характер

Среди мутаций различают следующие виды:

  • Генные (точечные)
  • Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация).

    Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. К примеру: изначально триплет ДНК «ТАЦ» кодировал аминокислоту «Мет», нуклеотид «Т» выпал из триплета произошла вставка нуклеотида «Г». В результате вместо аминокислоты «Мет» теперь синтезируется аминокислота Вал.

    Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. Только что вы узнали об универсальной схеме — изменении фенотипа в результате изменений генотипа.

  • Хромосомные

  • В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.

    В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия), перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).

  • Геномные мутации
  • Данный тип мутаций проявляется в изменении числа хромосом. Выделяют:

    • Автополиплоидию — кратное увеличение числа наборов хромосом
    • В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов более крупные и сочные плоды.

      В селекции полиплоидию у растений вызывают добавлением специального химического вещества — колхицина, который блокирует образование нитей веретена деления. Вследствие этого хромосомы не расходятся и остаются в одной клетке — набор хромосом увеличивается в 2 раза.

    • Аллополиплоидия (греч. állos — другой и polýploos — многократный) — объединение в организме хромосомных наборов от разных видов или родов

    • Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m). В результате такого скрещивания получают растение — тритикале. Тритикале дает отличный урожай, однако из-за геномной мутации это растение стерильно.

      Также примером отдаленной гибридизации, соответственно и аллополиплоидии, является гибрид осла (самца) и лошади (самки) — мул. Это животное отличается большой выносливостью, но опять-таки бесплодное вследствие геномной мутации.

    • Анеуплоидия (греч. ἀν- — отрицательная приставка + εὖ — полностью + πλόος — кратный + εἶδος — вид
    • Анеуплоидия — изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке («лишние» хромосомы).

      В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом — нуллисомии. Если к паре хромосом добавляется одна лишняя, говорят о трисомии.

      Наследственные болезни, в том числе связанные с геномными мутациями: синдром Шерешевского-Тёрнера, Дауна — мы более детально обсудим в следующей статье, которая посвящена наследственным заболеваниям.

Раз уж мы затронули аутбридинг, то следует коснуться явления инбридинга и гетерозиса для их полного понимания.

Инбридинг (англ. in — в, внутри + breeding — разведение) — скрещивание близкородственных форм, в результате которого в ряду поколений увеличивается гомозиготность. С помощью инбридинга выводят чистые линии (AA, aa, BB, bb). Однако известно, что близкородственное скрещивание может приводить к проявлению рецессивных генов заболеваний и ослаблению потомства.

Гетерозис (греч. ἕτερος — другой + -ωσις — состояние) — явление увеличения жизнеспособности гибридов, вследствие унаследования ими различных вариантов аллельных генов от своих разнородных родителей. Увеличение жизнеспособности связывают с переходом генов в гетерозиготное состояние.

Источник: studarium.ru