1. Классификация органелл Общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки. Они в свою очередь делятся на:
 

  • мембранные органеллы:
  • митохондрии,
  • эндоплазматическая сеть,
  • пластинчатый комплекс,
  • лизосомы,
  • пероксисомы;
  • немембранные органеллы:
  • рибосомы,
  • клеточный центр,
  • микротрубочки,
  • микрофибриллы,
  • микрофиламенты.

Специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток, делятся на:
 

  • цитоплазматические:
  • миофибриллы,
  • нейрофибриллы,
  • тонофибриллы;
  • органеллы клеточной поверхности:
  • реснички,
  • жгутики.

Общая характеристика мембранных органелл
Все разновидности мембранных органелл имеют общий принцип строения:
 


  • они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
  • стенка их состоит из билипидной мембраны и белков, подобно плазмолемме, однако имеются и некоторые особенности:
  • толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
  • мембраны отличаются по количеству и качеству белков, встроенных в мембраны.

Однако тот факт, что мембраны имеют общий принцип строения позволяет мембранам органелл и плазмолеммы взаимодействовать друг с другом — встраиваться, сливаться, разъединяться, отшнуровываться. Этим достигается рециркуляция мембран. Общий принцип строения мембран объясняется тем, что все они образуются в эндоплазматической сети, а их структурная и функциональная специализация происходит в основном в пластинчатомкомплексе.
 
 2. Строение митохондрий Митохондрии — наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Существует даже точка зрения, что митохондрии в историческом развитии вначале представляли собой самостоятельные организмы, а затем внедрились в цитоплазму клеток, где и ведут сапрофитное существование.


этом свидетельствует, в частности, тот факт, что в митохондриях имеется самостоятельный генетический аппарат (митохондральная ДНК) и синтетический аппарат (митохондриальные рибосомы). Однако сейчас уже достоверно установлено, что часть митохондриальных белков синтезируется в клетке.
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10-20 нм. При этом внешняя мембрана охватывает по периферии в виде мешка всю митохондрию и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складки — кристы. В некоторых клетках (клетки коркового вещества надпочечника) внутренняя мембрана образует не складки, а везикулы или трубочки — трубчато-везикулярные кристы. Внутренняя среда митохондрии (митохондральный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).
 
 3. Функции митохондрий Функции митохондрий образование энергии в виде АТФ. Источником образования энергии в митохондрии (ее "топливом") является пировиноградная кислота (пируват), которая образуется из углеводов, белков и липидов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе в цикле трикарбоновых кислот, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ.

разующаяся в митохондриях и, частично, в гиалоплазме АТФ является единственной формой энергии, используемой клеткой для выполнения различных процессов.
 
 4. Эндоплазматическая сеть Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.
Различают две разновидности эндоплазматической сети:
 

  • зернистая (гранулярная или шероховатая);
  • незернистая или гладкая.

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.
Функции зернистой эндоплазматической сети:
 

  • синтез белков, предназначенных для выведения из клетки ("на экспорт");
  • отделение (сегрегация) синтезированного продукта от гиалоплазмы;
  • конденсация и модификация синтезированного белка;
  • транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
  • синтез билипидных мембран.
iv>

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.
Функции гладкой эндоплазматической сети:
 

  • участие в синтезе гликогена;
  • синтез липидов;
  • дезинтоксикационная функция — нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.
В диктиосомеразличают два полюса:
 

  • цис-полюс — направлен основанием к ядру;
  • транс-полюс — направлен в сторону цитолеммы.

Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в пластинчатый комплекс продукты, синтезированные в зернистой эндоплазматической сети. От транс-полюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его выведения из клетки. Однако часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.
Функции пластинчатого комплекса:
 

  • транспортная — выводит из клетки синтезированные в ней продукты;
  • конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
  • образование лизосом (совместно с зернистой эндоплазматической сетью);
  • участие в обмене углеводов;
  • синтез молекул, образующих гликокаликс цитолеммы;
  • синтез, накопление и выведение муцина (слизи);
  • модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.

Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.
Лизосомынаиболее мелкие органеллы цитоплазмы (0,2-0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты.

>
ркерным ферментом лизосом является кислая фосфатаза.
Функция лизосом — обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.
Классификация лизосом:
 

  • первичные лизосомы — электронноплотные тельца;
  • вторичные лизосомы — фаголизосомы, в том числе аутофаголизосомы;
  • третичные лизосомы или остаточные тельца.

Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.
Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырек — фаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур.


не всегда фагоцитированные вещества расщепляются полностью.
Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза, по механизму, обратному фагоцитозу. Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами.
В процессе фагоцитоза и экзоцитоза осуществляется регуляция мембран в клетке:
 

  • в процессе фагоцитоза часть плазмолеммы отшнуровывается и образует оболочку фагосомы;
  • в процессе экзоцитоза эта оболочка снова встраивается в плазмолемму.

Установлено, что некоторые клетки в течение часа полностью обновляют плазмолемму.
Кроме рассмотренного механизма внутриклеточного расщепления фагоцитированных экзогенных веществ, таким же способом разрушаются эндогенные биополимеры — поврежденные или устаревшие собственные структурные элементы цитоплазмы. Вначале такие органеллы или целые участки цитоплазмы окружаются билипидной мембраной и образуется вакуоль аутофаголизосома, в которой осуществляется гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.
Следует отметить, что все клетки содержат в цитоплазме лизосомы, но в различном количестве. Имеются специализированные клетки (макрофаги), в цитоплазме которых содержится очень много первичных и вторичных лизосом.


кие клетки выполняют защитные функции в тканях и называются клетками-чистильщиками, так как они специализированы на поглощение большого числа экзогенных частиц (бактерий, вирусов), а также распавшихся собственных тканей.
Пероксисомы — микротельца цитоплазмы (0,1-1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
 
 5. Строение и функции немембранных органелл Рибосомы -аппарат синтеза белка и полипептидных молекул.
По локализации подразделяются на:
 

  • свободные (находятся в гиалоплазме);
  • несвободные или прикрепленные (связаны с мембранами эндоплазматической сети).

Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт".
Клеточный центр — цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
 


  • диплосомы;
  • центросферы.

Диплосома состоит из двух центриолей — материнской и дочерней, расположенных под прямым углов друг к другу. Каждая центриоль состоит из микротрубочек, образующих структуру в виде полого цилиндра (диаметром 0,2 мкм, длиной 0,3-0,5 мкм). Микротрубочки с помощью "ручек" объединяются в триплеты (по три трубочки), образуя 9 триплетов.
Центросфера — бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиально отходят микротрубочки (лучистая сфера).
Функции цитоцентра:
 

  • образование веретена деления в профазе митоза;
  • положение центриолей в некоторых эпителиальных клетках предопределяется их полярную дифференцированность;
  • участие в формировании микротрубочек клеточного каркаса;
  • в реснитчатых эпителиальных клетках центриоли являются базальными тельцами ресничек.

Микротрубочки — полые цилиндры (внешний диаметр — 24 нм, внутренний — 15 нм), являются самостоятельными органеллами, образуя цитоскелет, или же входят в состав других органелл (центриолей, ресничек, жгутиков).


енка микротрубочки состоит из глобулярного белка тубулина, который состоит из отдельных округлых образований — глобул, диаметром 5 нм. Такие глобулы могут находиться в гиалоплазме в свободном состоянии или же, под влиянием определенных факторов, соединяться между собой и формировать микротрубочки, а затем снова распадаться. Так формируются, а затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако, в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обуславливает определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки тубулины не обладают способностью к сокращению, а следовательно и микротрубочки не сокращаются. Однако в составе ресничек и жгутиков происходит взаимодействие между микротрубочками и их скольжением относительно друг друга, что и обеспечивает движение ресничек и жгутиков.
Микрофибриллыили промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Они состоят из белка, но разного в разных клетках (в эпителиальных клетках кератина, в фибробластах виментина, в мышечных клетках десминаи другие). Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию. В некоторых клетках (эпидермоциты кожи) микрофибриллы объединяются в пучки и образуют тонофибриллы, которые рассматриваются как специальные органеллы, выполняющие опорную роль.
Микрофиламенты еще более тонкие нитчатые структуры (5-7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина), неодинаковых в разных клетках. Локализуются преимущественно в кортикальном слое цитоплазмы. В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений:
 

  • перемещение органелл;
  • ток гиалоплазмы;
  • изменение клеточной поверхности;
  • образование псевдоподий и перемещение клетки.

Скопление микрофиламентов в мышечных волокнах образует специальные органеллы — миофибриллы.
 
 6. Классификация включений Включения— непостоянные структурные компоненты цитоплазмы.
Классификация включений:
 

  • трофические:
  • лецитин в яйцеклетках;
  • гликоген;
  • липиды, имеются почти во всех клетках;
  • секреторные:
  • секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы);
  • секреторные гранулы в эндокринных железах и другие;
  • экскреторные:
  • вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев);
  • пигментные:
  • меланин;
  • гемоглобин;
  • липофусцин;
  • билирубин и другие.

В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения:
 

  • медикаментозные;
  • частички угля;
  • кремния и так далее.

Эти включения имеют определенный цвет и придают окраску всей клетке (меланин — черный или коричневый, гемоглобин — желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин — в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности.
 

Источник: vmede.org

Одномебранные Двумебранные Немембранные
ЭПС Комплекс Гольджи Лизосомы Вакуоли Ядро Митохондрии Пластиды Рибосомы Центросомы Органы движения

Эндоплазматическая сеть состоит из канальцев и полостей, которые пронизывают всю цитоплазму клетки. ЭПС бывает гладкая и шероховатая. Гладкая ЭПС – транспорт веществ и продуктов распада, атак же синтез жиров и углеводов. Шероховатая ЭПС – биосинтез белка.

Комплекс Гольджи содержит до 20 упрощённых дисковидных мембранных полостей, канальцев и микропузырьков (способные расширяться и превращаться в вакуоли). Функции: накопление и удаление ненужных веществ, образование лизосом.

Лизосома (лизис-растворение) – окружённый мембраной клеточный органоид, в полости которого поддерживается кислая среда и находится множество растворимых гидролитических ферментов. Лизосома отвечает за внутриклеточное переваривание макромолекул, в том числе при аутофагии; лизосома способна к секреции своего содержимого в процессе лизосомного экзоцитоза; также лизосома участвует в некоторых внутриклеточных сигнальных путях, связанных с метаболизмом и ростом клетки. Функции: содержат около 30 ферментов, способные расщеплять белки, жиры, углеводы до простых соединений; освобождение организма от мёртвых клеток.

Вакуоли – одномембранные органоиды, содержащиеся в некоторых эукариотических клетках и выполняющие различные функции (секреция, экскреция и хранение запасных веществ, накапливание клеточного сока, аутофагия, автолиз и др.). Вакуоли развиваются из мембранных пузырьков – провакуолей.

Митохондрии – самые крупные органеллы, «энергетические станции клетки». Имеют две мембраны: наружная – гладкая, внутренняя – образует складки (кристы), на которых проходят окислительно-восстановительные процессы с образованием АТФ. Митохондрии имеют собственные ДНК.

Пластиды. Хлоропласты, Хромопласты и Лейкопласты. Хлоропласты содержат два зелёных пигмента. Хлорофилл А и хлорофилл B, а так же каратиноиды (оранжевый каротин, жёлтый – ксантофилл). Функции: на свету происходит процесс фотосинтеза. Хромопласты содержат каратиноиды, которые придают окраску листьям, плодам и цветкам. Лейкопласты находятся в корнях и корневищах и выполняют запасающую функцию.

Центросома, или клеточный центр состоит состоит из двух центриолей (полых цилиндров, стенка которой образована микротрубочками). Функция центриолей: формирование нитей веретена деления.

Рибосома состоит из двух субъединиц (частей) – большой и малой. Большая субъединица состоит из 30-40 молекул белка и двух молекул рибосомальной рРНК. Малая субъединица состоим из 20-30 молекул белка и одной рРНК. Функция: биосинтез белка.

Органы движения:

Жгутики – длинные белковые нити (микрофибриллы), способные сокращаться. Реснички – короткие нити из белка пилина. Ложноножки – цитоплазматические выросты у одноклеточных организмов и некоторых видов клеток многоклеточных. Используются клетками для передвижения (амёбоидное движение) и ловли крупных частиц.

 

<== предыдущая лекция | следующая лекция ==>
История изучения генетики | Строение и функции ядра.

Источник: helpiks.org

Органеллы

Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.

Классификация органелл:

1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;

2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.

В свою очередь, общие органеллы подразделяются на мембранные и немембранные.

Специальные органеллы подразделяются на:

1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);

2) органеллы клеточной поверхности (реснички, жгутики).

К мембранным органеллам относятся:

1) митохондрии;

2) эндоплазматическая сеть;

3) пластинчатый комплекс;

4) лизосомы;

5) пероксисомы.

К немембранным органеллам относятся:

1) рибосомы;

2) клеточный центр;

3) микротрубочки;

4) микрофибриллы;

5) микрофиламенты.

Принцип строения мембранных органелл

Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.

Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.

Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.

Митохондрии

Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.

Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).

Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10 – 20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки – кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).

Функция митохондрий – образование энергии в виде АТФ.

Источником образования энергии в митохондриях является пировиноградная кислота (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.

Различают две разновидности ЭПС:

1) зернистую (гранулярную, или шероховатую);

2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.

Функции зернистой ЭПС:

1) синтез белков, предназначенных для выведения из клетки (на экспорт);

2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;

3) конденсация и модификация синтезированного белка;

4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;

5) синтез компонентов билипидных мембран.

Функции гладкой ЭПС:

1) участие в синтезе гликогена;

2) синтез липидов;

3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).

Пластинчатый комплекс Гольджи (называют транспортным аппаратом клетки)

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.

Функция пластинчатого комплекса:

1) транспортная (выводит из клетки синтезированные в ней продукты);

2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;

3) образование лизосом (совместно с зернистой ЭПС);

4) участие в обмене углеводов;

5) синтез молекул, образующих гликокаликс цитолеммы;

6) синтез, накопление, выведение муцинов (слизи);

7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.

Лизосомы– наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.

Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.

Классификация лизосом:

1) первичные лизосомы – электронно-плотные тельца;

2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;

3) третичные лизосомы или остаточные тельца.

Лизосомы содержатся во всех клетках, однако в неравном количестве. Специализированные клетки – макрофаги – содержат в цитоплазме большое количество первичных и вторичных лизосом. Они выполняют защитную функцию в тканях, поглощают значительное число экзогенных веществ – бактерий, вирусов, других чужеродных агентов и продуктов распада собственных тканей.

 

Пероксисомы

Пероксисомы – микротельца цитоплазмы (0,1 – 1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

Рибосомы

Рибосомы – аппараты синтеза белка и полипептидных молекул.

По локализации подразделяются на:

1) свободные, (находятся в гиалоплазме);

2) несвободные (или прикрепленные), – которые связаны с мембранами ЭПС.

Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка – рибонуклеопротеида. Образуются субъединицы в ядрышке, а сборка в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной (информационной) РНК объединяются в цепочки рибосом – полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализация, характеризуются определенной функциональной специфичностью: свободные рибосомы синтезируют белки.

Клеточный центр

Клеточный центр – цитоцентр, центросома. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:

1) диплосомы;

2) центросферы.

Диплосома состоит из двух центриолей (материнской и дочерней), расположенных под прямым углом друг к другу. Каждая центриоль состоит из микротрубочек, образующих полый цилиндр, диаметром 0,2 мкм, длиной 0,3 – 0,5 мкм. Микротрубочки объединяются в триплеты (по три трубочки), образуя всего девять триплетов. Центросфера – бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиарно отходят микротрубочки (по типу лучистой сферы).

Функции цитоцентра:

1) образование веретена деления в профазе митоза;

2) участие в формировании микротрубочек клеточного каркаса;

3) выполнение роли базисных телец ресничек в реснитчатых эпителиальных клетках центриоли.

Положение центриолей в некоторых эпителиальных клетках определяет их полярную дифференцированность.

Микротрубочки

Микротрубочки – полые цилиндры (внешний диаметр – 24 мм, внутренний – 15 им), являются самостоятельными органеллами, образуя цитоскелет. Они также могут входить в состав других органелл – центриолей, ресничек, жгутиков. Стенка микротрубочек состоит из глобулярного белка тубулина, который образован отдельными округлыми образованиями глобулы диаметром 5 нм. Глобулы могут находиться в гиалоплазме в свободном состоянии или соединяться между собой, в результате чего формируются микротрубочки. Они могут затем вновь распадаться на глобулы. Таким образом формируются и затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обусловливая определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки-тубулины не обладают способностью к сокращению, следовательно, и микротрубочки не сокращаются. В составе ресничек и жгутиков происходит взаимодействие микротрубочек между собой, их скольжение друг относительно друга, что обеспечивает движение этих органелл.

Микрофибриллы

Микрофибриллы (промежуточные филаменты) представляют собой тонкие неветвящиеся нити.

В основном микрофибриллы локализуются в кортикальном, (подмембранном) слое цитоплазмы. Они состоят из белка, который в различных по классу клетках имеет определенную структуру (в эпителиальных клетках – это белок кератин, в мышечных клетках – десмин).

Функциональная роль микрофибрилл – участвовать наряду с микротрубочками в формировании клеточного каркаса, выполняя опорную функцию.

Микротрубочки могут объединяться в пучки и образовывать тонофибриллы, которые рассматриваются как самостоятельные органеллы и выполняют опорную функцию.

Микрофиламенты

Микрофиламенты – еще более тонкие нитчатые структуры (5 – 7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина).

Микрофиламенты локализуются в основном в кортикальном слое цитоплазмы.

В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл, ток гиалоплазмы, изменение клеточной поверхности, образование псевдоподии и перемещение клетки.

Скопление микрофиламентов в мышечных волокнах образует специальные органеллы мышечной ткани – миофибриллы.

Включения

Включения – непостоянные структурные компоненты цитоплазмы. Классификация включений:

1) трофические;

2) секреторные;

3) экскреторные;

4) пигментные.

 

8) Вакуолярная система клетки. Лизосомы и пероксисомы, их структура и фукции.

Вакуолярная система — совокупность одномембранных органелл цитоплазмы. По строению выделяют следующие компоненты вакуолярной системы, различающиеся и по своим функциям: гранулярный эндоплазматический ретикулум, аппарат Гольджи, лизосомы, гладкий эндоплазматический ретикулум, пероксисомы. Одномембранные органеллы клетки, составляющие вакуолярную систему, обеспечивают синтез и транспорт внутриклеточных биополимеров и продуктов секреции, выводимых из клетки; поглощение путем фагоцитоза, в том числе в реакциях иммунного ответа; биосинтез липидов, в том числе компонентов мембран, стероидных гормонов и др.; дезактивацию ядов путем окисления до безвредных продуктов; разрушение активных форм кислорода и другое .

Общая схема функционирования вакуолярной системы 1. Гранулярный эндоплазматический ретикулум: котрансляционный синтез растворимых внутривакуолярных белков (секреторные белки, гидролазы лизосом и др.); котрансляционный синтез нерастворимых белков, входящих в состав всех мембран вакуолярной системы; первичная модификация растворимых и нерастворимых (мембранных) белков, их соединение с олигосахаридами — первичное гликозилирование синтезированных белков, образование гликопротеидов; синтез мембранных липидов и их встраивание в мембрану —
«сборка мембран».

2. Отделение вакуолей, содержащих новообразованные продукты, и их переход вцис-зону аппарата Гольджи (ЭПР—АГ-комплекс).

3. Цис-зона аппарата Гольджи: вторичная модификация гликопротеидов; синтез полисахаридов (гемицеллюлоза растений) и гексозаминогликанов.

4. Промежуточная зона аппарата Гольджи: дополнительные модификации гликопротеидов, трансгликозилирование.

5. Транс- Гольджи сеть: сортировка секреторных и лизосомных белков; отделение вакуолей.

6. Экзоцитоз (секреция).

7. Экзоцитоз постоянный.

8. Отделение первичных лизосом с гидролазами.

9. Эндоцитоз.

10. Вторичная лизосома.

11. Рециклизация рецепторов гидролаз.

12. Рециклизация рецепторов плазматической мембраны.

13. Гладкий эндоплазматический ретикулум: синтез и конденсация липидов, депонирование ионов Са2+, синтез и ресорбция гликогена и др.

14. Транспорт в зону аппарата Гольджи.

15. Транспорт от аппарата Гольджи в эндоплазматический ретикулум.

 

Источник: allrefs.net

 

Содержание

 

Введение

 

1. Понятие об органеллах. Классификация органелл.

2. Реснички и жгутики.

 

 

Заключение

 

Список использованной литературы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

  Цитология  –  наука  о  клетках  –  элементарных  единицах   строения, функционирования и воспроизведения живой материи.  Объектами  цитологических исследований  являются  клетки  многоклеточных   организмов,   бактериальные клетки, клетки простейших. У многоклеточных  форм  клетки  входят  в  состав тканей, их жизнедеятельность подчинена  координирующему  влиянию  целостного организма. Подавляющее большинство клеток не видимы невооруженным глазом, поэтому изучение клеток тесно связано с развитием техники микроскопирования.  Первые микроскопы были сконструированы в начале XVIIв. 
  Впервые  клетки  в  срезах  пробки   описаны   в   1665г.   английским естествоиспытателем  Робертом   Гуком,   применившим   для   их   наблюдения построенную им усовершенствованную модель  микроскопа.  Он  видел,  что  все вещество   пробки   состоит   из   большого   числа   маленьких   отделений, разграниченных тонкими диафрагмами, или полостей, наполненных воздухом.  Эти полости, или ячейки, он  назвал  "клетками"  (от  греч.  kytos  –  полость). Термин "клетка" утвердился  в  биологии,  несмотря  на  то  что  Роберт  Гук наблюдал, собственно, не клетки, а лишь  целлюлозные  оболочки  растительных клеток и что клетки в действительности не полости. В дальнейшем  клеточное  строение  многих  частей  растений  видели  и описали М. Мальпиги и Н. Грю, а также А Левенгук. В целом уровень знаний о клетке, достигнутый в  XVII  веке,  почти  не изменился до  начала  XIX  века.  К  этому  времени  явилось  общепризнанным существование только одной из частей клеток, а именно  целлюлозной  оболочки растительных клеток, которая  составляла  клетку  Гука  или  пузырек  Грю  и Мальпиги. В 1839 г. Т. Шванн распространил представление о клеточном строении на животных, постулировав, что клетки  являются  элементарной  структурой  всех тканей  животных.  Он  установил  также,  что  клетки  животных  и  растений гомологичны по развитию и аналогичны по функциональному значению,  и  сделал вывод,  что  "клетки  представляют  собой  организмы,  а  животные,  как   и растения, - это сумма этих организмов, расположенных  согласно  определенным законам". Т. Шванн впервые применил термин клеточная теория,  а  его  данные послужили убедительным  ее  обоснованием.  Коренное   улучшение   всей   техники   микроскопирования    позволило  исследователям  к  началу  XX   столетия   обнаружить   основные   клеточные органоиды, выяснить  строение  ядра  и  закономерности  клеточного  деления, расшифровать механизмы оплодотворения и созревания половых клеток. 
  В  1876г. был открыт клеточный центр, в 1894г.  –  митохондрии,  в  1898г.  –  аппарат Гольджи. 
     
     
     
     

1. Понятие об органеллах. Классификация органелл.

 

Органеллы — постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Органеллы — части тела («органы») одноклеточных организмов, выполняющие разнообразные жизненные функции; иногда термин «органеллы» употребляется как синоним органоидов. Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрии, хлоропласты — это клеточные органеллы. В эукариотных  клетках помимо перечисленных выше есть и другие  органеллы.

1. Классификации органоидов

  • По принципу организации:

— Мембранные

— Немембранные

  • По значению:

— Общего значения

— Специального значения

 Различают мембранные органеллы — митохондрии, эндоплазматическую сеть, аппарат Гольджи, лизосомы, гладкую эндоплазматическую сеть (к категории мембранных органелл относится и плазмолемма); немембранные органеллы: свободные рибосомы и полисомы, микротрубочки, центриоли и филаменты (микрофиламенты, промежуточные филаменты). Во многих клетках органеллы могут принимать участие в образовании особых структур, характерных для специализированных клеток. Так, реснички и жгутики образуются за счет центриолей и плазматической мембраны, микроворсинки — это выросты плазматической мембраны с гиалоплазмой и микрофиламентами, акросома спермиев — это производное элементов аппарата Гольджи, “эллипсоид” зрительных клеток — скопления митохондрии и пр.

  • Мембранные органеллы представляют собой одиночные или связанные друг с другом отсеки цитоплазмы отграниченные мембраной от окружающей их гиалоплазмы, имеющие свое собственное содержимое, отличное по составу, свойствам и функциям от других частей клетки, т. е. это замкнутые, закрытые объемные зоны — компартменты. В гиалоплазме мембранные органеллы распределены закономерно. Эндоплазматическая сеть, различные вакуоли, возникающие из нее, составляют вакуолярную систему цитоплазмы, систему синтеза и внутриклеточного транспорта веществ. Кроме того, в ее состав входят комплекс Гольджи. лизосомы, аутолизосомы и пероксисомы. Для всех элементов вакуолярной системы характерно наличие одной ограничивающей мембраны. Митохондрии отделены от гиалоплазмы двумя мембранами (двухмембранные органеллы).
  • Эндоплазматическая сеть была открыта К. Р. Портером в 1945 г. Этот компонент цитоплазмы представляет собой совокупность вакуолей, плоских мембранных мешков, или трубчатых образований, создающих как бы мембранную сеть внутри цитоплазмы. Различают два типа — гранулярную и гладкую эндоплазматическую сеть.

Гранулярная эндоплазматическая сеть на ультратонких срезах представлена замкнутыми мембранами, которые образуют на сечениях уплощенные мешки, цистерны, трубочки. Ширина полостей цистерн значительно варьирует в зависимости от функциональной активности клетки. Наименьшая ширина их — около 20 нм, но они могут достигать диаметра в несколько микрометров. Отличительной чертой этих мембран является то, что они со стороны гиалоплазмы покрыты рибосомами.

Гранулярная эндоплазматическая сеть бывает представлена редкими разрозненными цистернами или их локальными скоплениями. Скопления эндоплазматической сети являются принадлежностью клеток, активно синтезирующих секреторные белки. Так, в клетках печени и некоторых нервных клетках гранулярная Эндоплазматическая сеть собрана в отдельные зоны. В клетках поджелудочной железы гранулярная Эндоплазматическая сеть в виде плотно упакованных друг около друга мембранных цистерн занимает базальную и околоядерную зоны клетки. Рибосомы, связанные с мембранами эндоплазматической сети, участвуют в синтезе белков, выводимых из данной клетки (“экспортируемые” белки). Кроме того, гранулярная Эндоплазматическая сеть принимает участие в синтезе белков — ферментов, необходимых для организации внутриклеточного метаболизма, а также используемых для внутриклеточного пищеварения.

  • В 1898 г. К. Гольджи, используя свойства связывания тяжелых металлов (осмия или серебра) с клеточными структурами, выявил в нервных клетках сетчатые образования, которые он назвал внутренним сетчатым аппаратом, который позднее стали называть комплексом Гольджи. Подобные структуры затем описаны во всех клетках эукариот.

       При рассмотрении в электронном микроскопе комплекс Гольджи представлен мембранными структурами, собранными вместе в небольшой зоне. Отдельная зона скопления этих мембран называется диктиосомой. Таких зон в клетке может быть несколько. В диктиосоме плотно друг к другу (на расстоянии 20—25 нм) расположены 5—10 плоских цистерн, между которыми располагаются тонкие прослойки гиалоплазмы. Каждая цистерна имеет переменную толщину: в центре ее мембраны могут быть сближены (до 25 нм), а на периферии иметь расширения, ампулы, ширина которых непостоянна. Кроме плотно расположенных плоских цистерн, в зоне комплекса Гольджи наблюдается множество мелких пузырьков (везикул), которые встречаются главным образом в его периферических участках. Иногда видно, как они отшнуровываются от ампулярных расширений на краях плоских цистерн. Принято различать в зоне диктиосомы проксимальный и дистальный участки. В секретирующих клетках обычно комплекс Гольджи поляризован: его проксимальная часть обращена к ядру, в то время как дистальная — к поверхности клетки. Комплекс Гольджи участвует в сегрегации и накоплении продуктов, синтезированных в цитоплазматической сети, в их химических перестройках, созревании; в цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белками, что приводит к образованию мукопротеидов, и, главное, с помощью элементов аппарата Гольджи происходит процесс выведения готовых секретов за пределы клетки. Кроме того, комплекс Гольджи обеспечивает формирование клеточных лизосом. В пузырьках комплекса Гольджи иногда происходит накопление ресинтезированных молекул липидов и образование сложных белков липопротеидов, которые могут транспортироваться пузырьками за пределы клетки. Мембраны комплекса Гольджи образуются при участии гранулярной эндоплазматической сети.

  • Лизосомы — это разнообразный класс шаровидных структур размером 0,2—0,4 мкм, ограниченных одиночной мембраной. Характерным признаком лизосом является наличие в них гидролитических ферментов — гидролаз (протеиназы, нуклеазы, глюкозидазы, фосфатазы, липазы), расщепляющих различные биополимеры. Лизосомы были открыты в 1949 г. де Дювом. Среди лизосом можно выделить по крайней мере 3 типа: первичные лизосомы, вторичные лизосомы (фаголизосомы и аутофагосомы) и остаточные тельца. Разнообразие морфологии лизосом объясняется тем, что эти частицы участвуют в процессах внутриклеточного переваривания, образуя сложные пищеварительные вакуоли как экзогенного (внеклеточного), так и эндогенного (внутриклеточного) происхождения.

Первичные лизосомы представляют собой мелкие мембранные пузырьки размером около 0,2—0,5 мкм, заполненные бесструктурным веществом, содержащим гидролазы, в том числе активную кислую фосфатазу, которая является маркерным для лизосом ферментом. Эти мелкие пузырьки практически очень трудно отличить от мелких везикул на периферии зоны комплекса Гольджи, которые также содержат кислую фосфатазу. Местом ее синтеза является гранулярная эндоплазматическая сеть, затем этот фермент появляется в проксимальных участках диктиосом, а затем в мелких везикулах по периферии диктиосом и, наконец, в первичных лизосомах. Таким образом, весь путь образования первичных лизосом очень сходен с образованием секреторных (зимогенных) гранул в клетках поджелудочной железы, за исключением последнего этапа — выбрасывания из клетки.

Вторичные лизосомы, или внутриклеточные пищеварительные вакуоли, формируются при слиянии первичных лизосом с фагоцитарными вакуолями (фагосомами) или пиноцитозными вакуолями, образуя фаголизосомы, или гетерофагосомы, а также с измененными органеллами самой клетки, подвергающимися перевариванию (аутофагосомы). При этом ферменты первичной лизосомы получают доступ к субстратам, которые они и начинают расщеплять. Вещества, попавшие в состав вторичной лизосомы, расщепляются гидролазами до мономеров, которые транспортируются через мембрану лизосомы в гиалоплазму, где они реутилизируются, т. е. включаются в различные обменные процессы. Однако расщепление, переваривание биогенных макромолекул внутри лизосом может идти в ряде клеток не до конца. В этом случае в полостях лизосом накапливаются непереваренные продукты. Такая лизосома носит название “телолизосома”, или остаточное тельце. Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах наблюдается вторичная структуризация неперевариваемых липидов, которые образуют слоистые структуры. Там же происходит отложение пигментных веществ. Так, у человека при старении организма в клетках мозга, печени и в мышечных волокнах в телолизосомах происходит отложение “пигмента старения” — липофусцина.

При участии лизосом в переваривании внутриклеточных элементов (аутолизосомы) они могут обеспечивать модификацию продуктов, приготавливаемых самой клеткой, например, с помощью гидролаз лизосом. В клетках щитовидной железы гидролизуется тироглобулин, что приводит к образованию гормона тироксина, который затем выводится в кровеносное русло. В аутофагосомах обнаруживаются фрагменты или даже целые цитоплазматические структуры, например митохондрии, элементы цитоплазматической сети, рибосомы, гранулы гликогена и др., что является доказательством их определяющей роли в процессах дегратации.

Таким образом, мембранные органеллы клетки, составляющие вакуолярную систему, обеспечивают синтез и транспорт внутриклеточных биополимеров, продуктов секреции, выводимых из клетки, что сопровождается биосинтезом всех мембран этой вакуолярной системы. Производные вакуолярной системы — лизосомы и пероксисомы — участвуют в деградации экзогенных и эндогенных субстратов клетки.

     К немембранным органеллам клетки относятся: центриоли, микротрубочки, филаменты, рибосомы и полисомы.

  • Центриоли (centrioli), обычно их две (диплосома), представляют собой мелкие тельца, окруженные плотным участком цитоплазмы. От каждой центриоли лучеобразно отходят микротрубочки, получившие название центросферы. Диплосома (две центриоли) и центросфера образуют клеточный центр, который располагается или возле ядра клетки, или возле поверхности комплекса Гольджи. Центриоли в диплосоме расположены под углом друг к другу. Каждая центриоль представляет собой цилиндр, стенка которого состоит из микротрубочек длиной около 0,5 мкм и диаметром около 0,25 мкм. Центриоли являются полуавтономными самообновляющимися структурами, которые удваиваются при делении клетки. Вначале центриоли расходятся в стороны, и возле каждой из них образуется дочерняя центриоль. Таким образом, перед делением в клетке имеются две попарно соединенные центриоли две диплосомы.
  • Микротрубочки (microtubuli) представляют собой различной длины полые цилиндры диаметром 20-30 нм. Многие микротрубочки входят в состав центросферы, где они имеют радиальное направление. Другие микротрубочки расположены под цитолеммой, в апикальной части клетки. Здесь они вместе с пучками микрофиламентов образуют внутриклеточную трехмерную сеть. Стенки микротрубочек имеют толщину 6-8 нм. Микротрубочки образуют цитоскелет клетки и участвуют в транспорте веществ внутри нее.
  • Цитоскелет клетки представляет собой трехмерную сеть, в которой различные белковые нити связаны между собой поперечными мостиками. В образовании цитоскелета, помимо микротрубочек, участвуют также актиновые, миозиновые и промежуточные филаменты, которые выполняют не только опорную, но и двигательную функцию клетки.
  • Рибосомы (ribosomae) имеются во всех клетках, они участвуют в образовании белковых молекул — в синтезе белка. Размер рибосомы 20х30 нм. Это сложные рибонуклеопротеиды, состоящие из белков и молекул РНК в соотношении 1: 1. Различают рибосомы одиночные — монорибосомы и собранные в группы — полирибосомы, или полисомы. Рибосомы располагаются свободно на поверхности мембран, в результате чего образуется зернистая (гранулярная) эндоплазматическая сеть.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Реснички и жгутики

 

Реснички — органеллы, представляющие собой тонкие (диаметром 0,1—0,6 мкм) волосковидные структуры на поверхности эукариотических клеток. Длина их может составлять от 3—15 мкм до 2 мм (реснички гребных пластинок гребневиков). Могут быть подвижны или нет: неподвижные реснички играют роль рецепторов. Характерны для инфузорий. У многих беспозвоночных животных ими покрыта вся поверхность тела (ресничные черви, личинки кишечнополостных и губок) или отдельные его участки (например, жабры у полихет и двустворчатых моллюсков, подошва ноги у брюхоногих моллюсков. У коловраток из специализированных ресничек состоит коловращательный аппарат. У многих беспозвоночных (кишечнополостные, гребневики, турбеллярии и др.) реснички также имеются на клетках кишечного эпителия. У позвоночных (в том числе человека) клетки с подвижными ресничками также есть во многих органах. У человека ресничным эпителием выстланы дыхательные пути, евстахиевы трубы, семявыносящие канальцы, желудочки мозга и спинномозговой (центральный) канал. Видоизмененные реснички служат световоспринимающим аппаратом фоторецепторов сетчатки глаза и воспринимающим запахи аппаратом хеморецепторов обонятельного эпителия.

Строение. Снаружи покрыты мембраной, являющейся продолжением плазмалеммы — цитоплазматической мембраны. В центре проходит две полные (состоящие из 13 протофиламентов) микротрубочки, на периферии — девять пар микротрубочек, из которых в каждой паре одна полная, а вторая неполная (состоит из 11 протофиламентов). У основания находится базальное тело (кинетосома), имеющее в поперечном разрезе ту же структуру, что и половинка центриоли, то есть состоящее из девяти троек микротрубочек.

Механизм работы. К каждой полной микротрубочке периферических пар (дублетов) вдоль всей ее длины присоединены «ручки» из двигательного белка динеина (см. статью аксонема). При гидролизе АТФ головки динеина «шагают» по микротрубочке соседнего дублета. Если бы микротрубочки не были закреплены на кинетосоме, это вызвало бы скольжение дублетов друг относительно друга. Такое скольжение наблюдается в эксперименте на ресничках, обработанных трипсином (длина аксонемы при добавлении АТФ увеличивается в результате в 9 раз). В интактной ресничке происходит изгибание дублетов и, в результате, всей реснички. Как правило, реснички совершают удары в одной плоскости. У инфузорий прямой удар (продвигающий клетку вперед) ресничка совершает в выпрямленном состоянии, а возвратный — в изогнутом. Как регулируется согласованное изгибание разных дублетов, видимо, неизвестно. При деполяризации мембраны и поступлении внутрь клетки ионов кальция у инфузорий направление прямого удара может меняться на противоположное.

Жгутик — поверхностная структура, присутствующая у многих прокариотических и эукариотических клеток и служащая для их движения в жидкой среде или по поверхности твёрдых сред. Жгутики прокариот и эукариот резко различаются: бактериальный жгутик имеет толщину 10—20 нм и длину 3—15 мкм, он пассивно вращается расположенным в мембране мотором; жгутики же эукариот толщиной до 200 нм и длиной до 200 мкм, они могут самостоятельно изгибаться по всей длине. У эукариот часто также присутствуют реснички, идентичные по своему строению жгутику, но более короткие (до 10 мкм).

Жгутики бактерий состоят из трёх субструктур:

  • Филамент (фибрилла, пропеллер) — полая белковая нить толщиной 10—20 нм и длиной 3—15 мкм, состоящая из флагеллина, субъединицы которого уложены по спирали. Полость внутри используется при синтезе жгутика — он происходит в направлении от ЦПМ. По полости к собираемому в настоящий момент участку переносятся субъединицы флагеллина.
  • Крюк — более толстое, чем филамент (20—45 нм), белковое (не флагеллиновое) образование.
  • Базальное тело (трансмембранный мотор)

Базальное тело и механизм его работы. Базальное тело представляет собой систему колец, находящихся в ЦПМ и клеточной стенке бактерий. Два внутренних кольца — M и S-кольца (сейчас чаще рассматриваются как единое MS-кольцо) — являются обязательными элементами, причём M-кольцо находится в ЦПМ, а S — в периплазме грамотрицательных и пептидогликановом слое грамположительных бактерий. Ещё два кольца — P и L — есть только у грамотрицательных бактерий, они расположены в пептидогликановом слое и наружной мембране соответственно, неподвижны и лишь направляют стержень ротора мотора. Вокруг MS-кольца расположены статоры — белковые комплексы MotA4/MotB4 представляющие собой протонный канал (их может быть от 8 до 16). Точный механизм работы базального тела не известен. Большинство исследователей полагает что поступление протона из периплазмы или внешней среды в MotA4/MotB4 комплекс вызывает конформационные изменения белков, благодаря электростатическому взаимодействию или прямому контакту это изменение приводит к повороту MS-кольца, а его дальнейшее движение возвращает исходную конформацию комплексу и выталкивает протон в цитозоль. У Escherichia coli для одного оборота жгутика требуется перемещение около 1000 протонов. Показано, что жгутик может работать даже у пустых клеточных оболочек при условии что внешний pH ниже внутреннего.

Таким образом, базальное тело преобразует химическую энергию в работу, вращаясь за счёт градиента концентрации протонов или, в редких случаях, ионов натрия (некоторые морские бактерии рода Vibrio, алкалофильные Bacillus, Acetobacterium woodii), это вращение осуществляется со скоростью до 100 об/сек, причём его направление может изменяться менее чем за 0,1 сек.

Источник: znakka4estva.ru