Клеточный цикл

Клеточный цикл – это период жизни клетки от одного деления до другого. Состоит из интерфазы и периодов деления. Продолжительность клеточного цикла у разных организмов разная (у бактерий – 20-30 мин, у клеток эукариот – 10-80 ч).

Интерфаза

Интерфаза (от лат. inter – между, phases – появление) – это период между делениями клетки или от деления до ее гибели. Период от деления клетки до ее гибели характерен для клеток многоклеточного организма, которые после деления утратили способность к нему (эритроциты, нервные клетки и т. п.). Интерфаза занимает приблизительно 90 % времени клеточного цикла.

Интерфаза включает:

1) пресинтетический период (G1) – начинаются интенсивные процессы биосинтеза, клетка растет, увеличивается в размерах. Именно в этом периоде до смерти остаются клетки многоклеточных организмов, которые утратили способность к делению;

2) синтетический (S) – происходит удвоение ДНК, хромосом (клетка становится тетраплоидной), удваиваются центриоли, если они есть;

3) постсинтетический (G2) – в основном прекращаются процессы синтеза в клетке, происходит подготовка клетки к делению.

Деление клетки бывает прямым (амитоз) и непрямым (митоз, мейоз).

Амитоз


Амитоз – прямое деление клеток, при котором не образуется аппарат деления. Ядро делится вследствие кольцевой перетяжки. Не происходит равномерного распределения генетической информации. В природе амитозом делятся макронуклеусы (большие ядра) инфузорий, клетки плаценты у млекопитающих. Амитозом могут делиться клетки раковых опухолей.

Непрямое деление связано с образованием аппарата деления. В аппарат деления входят компоненты, которые обеспечивают равномерное распределение хромосом между клетками (веретено деления, центромеры, если есть – центриоли). Деление клетки условно можно разделить на деление ядра (кариокинез) и деление цитоплазмы (цитокинез). Последний начинается к концу деления ядра. Наиболее распространены в природе митоз и мейоз. Иногда встречается эндомитоз – непрямое деление, которое происходит в ядре без разрушения его оболочки.

Митоз

Митоз – это непрямое деление клетки, при котором из материнской образуются две дочерние клетки с идентичным набором генетической информации.


Фазы митоза:

1) профаза – происходит уплотнение хроматина (конденсация), хроматиды спирализируются и укорачиваются (становятся заметными в световой микроскоп), исчезают ядрышки и ядерная оболочка, образуется веретено деления, его нити прикрепляются к центромерам хромосом, центриоли делятся и расходятся к полюсам клетки;

2) метафаза – хромосомы максимально спирализированы и располагаются вдоль экватора (в экваториальной пластинке), гомологичные хромосомы лежат рядом;

3) анафаза – нити веретена деления сокращаются одновременно и растягивают хромосомы к полюсам (хромосомы становятся однохроматидными), самая короткая фаза митоза;

4) телофаза – хромосомы деспирализируются, образуются ядрышки, ядерная оболочка, начинается деление цитоплазмы.

Митоз характерен преимущественно для соматических клеток. Благодаря митозу сохраняется постоянство числа хромосом. Способствует увеличению числа клеток, поэтому наблюдается при росте, регенерации, вегетативном размножении.

Мейоз

Мейоз (от греч. мейозис – уменьшение) – это непрямое редукционное деление клетки, при котором из материнской образуются четыре дочерние, располагающие неидентичной генетической информацией.

Различают два деления: мейоз I и мейоз II. Интерфаза I сходна с интерфазой перед митозом. В постсинтетическом периоде интерфазы процессы синтеза белка не прекращаются и продолжаются в профазе первого деления.


Мейоз I:

профаза I – хромосомы спирализируются, ядрышко и ядерная оболочка исчезают, образуется веретено деления, гомологичные хромосомы сближаются и слипаются вдоль сестринских хроматид (как молния в замке) – происходит конъюгация, при этом образуются тетрады, или биваленты, образуется перекрест хромосом и обмен участками – кроссинговер, потом гомологичные хромосомы отталкиваются одна от другой, но остаются сцепленными в участках, где состоялся кроссинговер; процессы синтеза завершаются;

метафаза I – хромосомы располагаются вдоль экватора, гомологичные –двухроматидные хромосомы располагаются одна напротив другой по обе стороны экватора;

анафаза I – нити веретена деления одновременно сокращаются, растягивают по одной гомологичной двухроматидной хромосоме к полюсам;

телофаза I (если есть) – хромосомы деспирализируются, образуются ядрышко и ядерная оболочка, происходит распределение цитоплазмы (клетки, которые образовались, гаплоидны).

Интерфаза II (если есть): не происходит удвоения ДНК.

Мейоз II:

профаза II – уплотняются хромосомы, исчезают ядрышко и ядерная оболочка, образуется веретено деления;


метафаза II – хромосомы располагаются вдоль экватора;

анафаза II – хромосомы при одновременном сокращении нитей веретена деления расходятся к полюсам;

телофаза II – деспирализируются хромосомы, образуются ядрышко и ядерная оболочка, делится цитоплазма.

Мейоз происходит перед образованием половых клеток. Позволяет при слиянии половых клеток сохранять постоянство числа хромосом вида (кариотип). Обеспечивает комбинативную изменчивость.

Источник: xn—-9sbecybtxb6o.xn--p1ai

Митоз — непрямое деление

Митоз
Митотический цикл

Митотический цикл включает 2 последовательных этапа: интерфазу и митотическое деление.

Интерфаза (стадия покоя) – подготовка клетки к дальнейшему разделению, где совершается дублирование исходного материала, с последующим его равномерным распределением между новообразованными клетками. Она включает 3 периода:

    • Пресинтетический (G-1) G – от английского gar, то есть промежуток, идет подготовка к последующему синтезу ДНК, выработка ферментов. Экспериментально проводилось ингибирование первого периода, вследствие чего клетка не вступала в следующую фазу.

    • Синтетический (S) — основа клеточного цикла. Происходит репликация хромосом и центриолей клеточного центра. Только после этого клетка может перейти к митозу.
    • Постсинтетический (G-2) или премитотический период — происходит накопление иРНК, которая нужна для наступления собственно митотического этапа. В G-2 периоде синтезируются белки (тубулины) – основная составляющая митотического веретена.

После окончания премитотического периода начинается митотическое деление. Процесс включает 4 фазы:

  1. Профаза – в этот период разрушается ядрышко, растворяется мембрана ядра (нуклеолема), центриоли располагаются на противоположных полюсах, формируя аппарат для деления. Имеет две подфазы:
    • ранняя — видны нитеобразные тела (хромосомы), они еще не четко отделены друг от друга;
    • поздняя — прослеживаются отдельные части хромосом.
  2. Метафаза – начинается с момента разрушения нуклеолемы, когда хромосомы хаотично лежат в цитоплазме и только начинают двигаться к экваториальной плоскости. Между собой все пары хроматид связаны в месте центромеры.
  3. Анафаза – в один момент разобщаются все хромосомы и движутся к противоположным точкам клетки. Это короткая и очень важная фаза, поскольку именно в ней происходит точный раздел генетического материала.
  4. Телофаза – хромосомы останавливаются, снова образуется ядерная мембрана, ядрышка. Посередине образуется перетяжка, она делит тело материнской клетки на две дочерние, завершая митотический процесс. В новообразованных клетках снова начинается G-2 период.

Мейоз — прямое деление

Мейоз
Мейоз — прямое деление

Существует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление). Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом. Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.

Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.

Профаза 1:


  1. Лептотена — хромосомы просматриваются в виде тоненьких ниток, происходит их укорочение.
  2. Зиготена — стадия конъюгации гомологичных хромосом, как следствие образуются биваленты. Конъюгация важный момент мейоза, хромосомы максимально сближаются друг с другом, чтобы осуществить кроссинговер.
  3. Пахитена — происходит утолщение хромосом, их все большее укорочение, идет кроссинговер (обмен генетической информацией между гомологичными хромосомами, это основа эволюции и наследственной изменчивости).
  4. Диплотена – стадия удвоенных нитей, хромосомы каждого бивалента расходятся, сохраняя связь только в области перекреста (хиазмы).
  5. Диакинез — ДНК начинает конденсироваться, хромосомы становятся совсем короткими и расходятся.

Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.

Метафаза 1: биваленты расположены посередине клетки.

Анафаза 1:к противоположным полюсам движутся удвоенные хромосомы.

Телофаза 1:завершается процесс деления, клетки получают по 23 бивалента.

Без последующего удвоения материала клетка вступает во второй этап деления.

Профаза 2: снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.


Метафаза 2: две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.

Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.

Телофаза 2: процесс деления завершается, формируется ядерная оболочка, и каждая клетка получает по 23 хроматиды.

Мейоз – важный механизм в жизни всех организмов. В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид. Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.

Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.

Источник: animals-world.ru

Ход урока

В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток. Молекулярная сущность деления заключена в способности ДНК к самоудвоению молекул.

Объявление темы урока. Поскольку фазы митоза и мейоза в общих чертах мы уже изучали в 9 классе, задачей общей биологии является рассмотрение этого процесса на молекулярном и биохимическом уровне. В связи с этим особое внимание мы уделим изменению хромосомных структур.


Клетка является не только единицей строения и функции у живых организмов, но также и генетической единицей. Это единица наследственности и изменчивости, проявляющихся в процессе деления клеток. Элементарным носителем наследственных свойств клетки является ген. Ген представляет собой отрезок молекулы ДНК из нескольких сотен нуклеотидов, где закодировано строение одной молекулы белка и проявление какого-то наследственного признака клетки. Молекула ДНК в комплексе с белком образует хромосому. Хромосомы ядра и локализованные в них гены являются основными носителями наследственных свойств клетки. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности.

В делящейся клетке хромосома имеет вид двойной палочки и состоит из двух разделенных щелью вдоль оси хромосомы половинок или хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Внутреннее строение хромосом, число нитей ДНК в них меняются в жизненном цикле клетки.

Вспомним: что такое клеточный цикл? Какие этапы выделяют в клеточном цикле? Что происходит на каждом этапе?

Интерфаза включает в себя три периода.

Пресинтетический период G1 наступает сразу после деления клетки. В это время в клетке происходит синтез белков, АТФ, разных видов РНК и отдельных нуклеотидов ДНК. Клетка растет, и в ней интенсивно накапливаются различные вещества. Каждая хромосома в этот период однохроматидна, генетический материал клетки обозначается 2n 1xp 2с (n – набор хромосом, хр – число хроматид , с – количество ДНК ).


В синтетическом периоде S осуществляется редупликация молекул ДНК клетки. В результате удвоения ДНК в каждой из хромосом оказывается вдвое больше ДНК, чем было до начала S-фазы, но число хромосом не изменяется. Теперь генетический набор клетки составляет 2n 2xp 4с (диплоидный набор, хромосомы двухроматидны, количество ДНК – 4).

В третьем периоде интерфазы – постсинтетическом G2 – продолжается синтез РНК, белков и накопление клеткой энергии. По окончании интерфазы клетка увеличивается в размерах и начинается ее деление.

Деление клетки.

В природе существует 3 способа клеточного деления – амитоз, митоз мейоз.

Амитозом делятся прокариотические организмы и некоторые клетки эукариот, например, мочевого пузыря, печени человека, а также старые либо поврежденные клетки. Сначала в них делится ядрышко, затем ядро на две или несколько частей путем перетяжек и в конце деления перешнуровывается цитоплазма на две или несколько дочерних клеток. Распределение наследственного материала и цитоплазмы не равномерно.

Митоз – универсальный способ деления эукариотических клеток, при котором из диплоидной материнской клетки образуются две подобные ей дочерние клетки.

Длительность митоза 1-3 часа и в его процессе 4 фазы: профаза, метафаза, анафаза и телофаза.

Профаза. Обычно самая продолжительная фаза клеточного деления.

Увеличивается объем ядра, хромосомы спирализуются. В это время хромосома состоит из двух хроматид, соединенных между собой в области первичной перетяжки или центромеры. Затем растворяются ядрышки и ядерная оболочка – хромосомы лежат в цитоплазме клетки. Центриоли расходятся к полюсам клетки и образуют между собой нити веретена деления, а в конце профазы нити крепятся к центромерам хромосом. Генетическая информация клетки, по-прежнему, как в интерфазе (2n 2хр 4с).

Метафаза. Хромосомы располагаются строго в зоне экватора клетки, образуя метафазную пластину. На стадии метафазы хромосомы имеют самую малую длину, так как в это время они сильно спирализованы и конденсированы. Поскольку хромосомы хорошо видны подсчет и изучение хромосом обычно проходит в этот период деления. По продолжительности это самая короткая фаза митоза, так как она длится то мгновение, когда центромеры удвоенных хромосом располагаются строго по линии экватора. И уже в следующий момент начинается следующая фаза.

Анафаза. Каждая центромера расщепляется на две, и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды. На полюса приходят по одной хроматиде из пары – это дочерние хромосомы. Количество генетической информации на каждом полюсе теперь равно (2n 1хр 2с).

Завершается митоз телофазой. Процессы, происходящие в этой фазе, обратны процессам, которые наблюдались в профазе. На полюсах происходит деспирализация дочерних хромосом, они утоньшаются и становятся слаборазличимыми. Вокруг них образуются ядерные оболочки, а затем появляются ядрышки. Одновременно с этим идет деление цитоплазмы: в животных клетках – перетяжкой, а у растений со средины клетки к периферии. После образования цитоплазматической мембраны в растительных клетках формируется целлюлозная оболочка. Образуются две дочерние клетки с диплоидным набором однохроматидных хромосом (2n 1хр 2с).

Следует отметить, что все процессы, происходящие в клетке, в том числе и митоз, находятся под генетическим контролем. Гены контролируют последовательные стадии редупликации ДНК, движение, спирализацию хромосом и т.д.

Биологическое значение митоза:

  1. Точное распределение хромосом и их генетической информации между дочерними клетками.
  2. Обеспечивает постоянство кариотипа и генетическую преемственность во всех клеточных проявлениях; т.к. иначе было бы не возможным постоянство строения и правильность функционирования органов и тканей многоклеточного организма.
  3. Обеспечивает важнейшие процессы жизнедеятельности – эмбриональное развитие, рост, восстановление тканей и органов, а также бесполое размножение организмов.

Мейоз

Образование половых клеток (гамет) происходит иначе, чем процесс размножения соматических клеток. Если бы образование гамет шло таким же путем, то после оплодотворения (слияния мужской и женской гамет) число хромосом каждый раз удваивалось бы. Однако этого не происходит. Каждому виду свойственно определенное число и свой специфический набор хромосом (кариотип).

Мейоз – это особый вид деления, когда из диплоидных (2п) соматических клеток половых органов образуются половые клетки (гаметы) у животных и растений или споры у споровых растений с гаплоидным (п) набором хромосом в этих клетках. Затем в процессе оплодотворения ядра половых клеток сливаются, и восстанавливается диплоидный набор хромосом (n+n=2n).

В непрерывном процессе мейоза идут два последовательных деления: мейоз I и мейоз II. В каждом делении те же фазы, что и в митозе, но разные по продолжительности и изменениям генетического материала. В результате мейоза I число хромосом в образовавшихся дочерних клетках уменьшается вдвое (редукционное деление), а при мейозе II гаплоидность клеток сохраняется (эквационное деление).

Профаза мейоза I – удвоенные в интерфазе гомологичные хромосомы попарно сближаются. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой и могут разрываться в одинаковых местах. Во время этого контакта гомологичные хромосомы могут обмениваться соответствующими участками (генами), т.е. идет кроссинговер. Кроссинговер вызывает перекомбинацию генетического материала клетки. После этого процесса гомологичные хромосомы снова разъединяются, растворяются оболочки ядра, ядрышек и образуется веретено деления. Генетическая информация клетки в профазе составляет 2n 2хр 4с (диплоидный набор, хромосомы двухроматидные, количество молекул ДНК – 4).

Метафаза мейоза I – хромосомы располагаются в плоскости экватора. Но если в метафазе митоза гомологичные хромосомы имеют положение, независимое друг от друга, то в мейозе они лежат рядом – попарно. Генетическая информация прежняя (2n 2хр 4с).

Анафаза I – к полюсам клетки расходятся не половинки хромосом из одной хроматиды, а целые хромосомы, состоящие из двух хроматид. Значит, из каждой пары гомологичных хромосом в дочернюю клетку попадет лишь одна, но двухроматидная хромосома. Их число в новых клетках уменьшится вдвое (редукция числа хромосом). Количество генетической информации на каждом полюсе клетки становится меньше (1n 2хр 2с).

В телофазе первого деления мейоза формируются ядра, ядрышки и делится цитоплазма – образуются две дочерние клетки с гаплоидным набором хромосом, но эти хромосомы состоят из двух хроматид (1n 2хр 2с).

Вслед за первым наступает второе деление мейоза, но ему не предшествует синтез ДНК. После короткой профазы мейоза II двухроматидные хромосомы в метафазе мейоза II располагаются в плоскости экватора и крепятся к нитям веретена деления. Их генетическая информация прежняя – (1n 2хр 2с).

В анафазе мейоза II к противоположным полюсам клетки расходятся хроматиды и в телофазе мейоза II образуются четыре гаплоидные клетки с однохроматидными хромосомами (1n 1хр 1с). Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое. Такие половые клетки образуются у половозрелых особей различных организмов. Процесс формирования гамет называют гаметогенез.

Биологическое значение мейоза:

1.Образование клеток с гаплоидным набором хромосом. При оплодотворении обеспечивается постоянный для каждого вида набор хромосом и постоянное количество ДНК.

2.Во время мейоза происходит случайное расхождение негомологичных хромосом, что приводит к большому числу возможных комбинаций хромосом в гаметах. У человека число возможных комбинаций хромосом в гаметах составляет 2n, где n – число хромосом гаплоидного набора: 223=8 388 608. Число возможных комбинаций у одной родительской пары 223 х 223

3.Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом

определяют закономерности наследственной передачи признака от родителей потомству.

Из каждой пары двух гомологичных хромосом (материнской и отцовской), входящих в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится только одна хромосома. При этом она может быть: 1) отцовской хромосомой; 2) материнской хромосомой; 3) отцовской с участком материнской хромосомы; 4) материнской с участком отцовской. Эти процессы приводят к эффективной рекомбинации наследственного материала в гаметах, образуемым организмом. В результате обуславливается генетическая разнородность гамет и потомства.

При объяснении учащиеся заполняют таблицу: «Сравнительная характеристика митоза и мейоза»

Типы деления Митоз (непрямое деление) Мейоз (редукционное деление)
Число делений одно деление два деление
Происходящие процессы Репликация и транскрипция отсутствуют В профазе 1 происходит конъюгация гомологичных хромосом и кроссинговер
К полюсам клетки расходятся хроматиды В первом делении к полюсам клетки расходятся гомологичные хромосомы
Число дочерних клеток 2 4
Набор хромосом в дочерних клетках (n – набор хромосом, хр – хроматиды, с – число ДНК) Число хромосом остается постоянным2n 1хр 2c (хромосомы однохроматидные) Число хромосом уменьшается вдвое 1n 1хр 1c (хромосомы однохроматидные)
Клетки, где происходит деление Соматические клетки Соматические клетки половых органов животных; спорообразующие клетки растений
Значение Обеспечивает бесполое размножение и рост живых организмов Служит для образования половых клеток

Закрепление изученного материала (по табл., тестовая работа).

Д/з

Литература:

  1. Ю.И. Полянский. Учебник для 10-11 классов средней школы. –М.: «Просвещение», 1992.
  2. И.Н. Пономарева, О.А. Корнилова, Т.Е. Лощилина. Учебник «Биология» 11 класс, базовый уровень, –М.: «Вентана-Граф», 2010.
  3. С.Г. Мамонтов Биология для поступающих в ВУЗЫ. –М.: 2002.
  4. Н. Грин, У.Стаут, Д. Тейлор. Биология в 3 т. –М.: «Мир», 1993.
  5. Н.П. Дубинина. Общая биология. Пособие для учитетеля. –М.: 1990.
  6. Н.Н. Приходченко, Т.П. Шкурат «Основы генетики человека». Уч.пос. – Ростов н/Д: «Феникс», 1997.

Приложения.

15.02.2013

Источник: xn--i1abbnckbmcl9fb.xn--p1ai

Деление клеток

Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

Тип Хромосомный набор Характеристика
Соматические 2n Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые 1n Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Клеточный цикл

Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды. Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М. Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).

Интерфаза — подготовка клетки к делению — состоит из трёх периодов.

Периоды интерфазы

Периоды Число хромосом и хроматид Процессы
Пресинтетический (G1) 2n2c Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S) 2n4c Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2) 2n4c Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Митоз

Митоз состоит из четырёх фаз.

Фазы митоза

Фазы Число хромосом и хроматид Процессы
Профаза 2n4c Хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза 2n4c Хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза 2n2c Центромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза 2n2c Дочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Как и митоз, каждое из мейотических делений состоит из четырёх фаз.

Фазы мейоза
Фазы Число хромосом и хроматид Процессы
Профаза I 2n4c Происходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), то есть обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.
Метафаза I 2n4c Происходят процессы, аналогичные процессам метафазы митоза.
Анафаза I 1n2c В отличие от анафазы митоза, центромеры не делятся и к полюсам клетки отходит не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид и скреплённой общей центромерой.
Телофаза I 1n2c Образуются две клетки с гаплоидным набором.
Интерфаза 1n2c Короткая. Репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается.
Профаза II 1n2c Аналогичны процессам во время митоза.
Метафаза II 1n2c Аналогичны процессам во время митоза.
Анафаза II 1n1c Аналогичны процессам во время митоза.
Телофаза II 1n1c Аналогичны процессам во время митоза.

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

У прокариот митоза и мейоза нет. Бактерии размножаются бесполым путём — делением клетки при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.
Кроме того, для бактерий характерен половой процесс — конъюгация. При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Источник: examer.ru

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл — это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1)  пресинтетическая (G1) (2n2c, где n-число хромосом, c- число молекул). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2)  синтетическая (S) (2n4c). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2) (2n4c). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1—1,5 ч, G2-периода интерфазы — 2—3 ч, S-периода интерфазы — 6—10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

sxema_mitoza

Рис. 1. Схема митоза в клетках корешка лука

sxema_mitoza2

Рис. 2. Схема митоза в клетках корешка лука : 1- интерфаза; 2,3 — профаза; 4 — метафаза; 5,6 — анафаза; 7,8 — телофаза; 9 — образование двух клеток

sxema_mitoza33

Рис. 3. Митоз в клетках кончика корешка лука: а — интерфаза; б — профаза; в — метафаза; г — анафаза; л, е — ранняя и поздняя телофазы

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Нетипичные формы митоза

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

1. Амитоз — это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.

Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, — оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.

2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

 

 

 

Источник: xn--90aeobapscbe.xn--p1ai