фото­синтез протекает в специализированных органеллах клеток — хлоро­пластах. Хлоропласты высших растений имеют форму двояковы­пуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение полностью отвечают назначению: как можно эффектив­нее поглощать солнечную энергию, как можно полнее усваивать углерод. Установ­лено, что количество хлоропластов в клетке измеряется десятка­ми. Это обеспечивает высокое содержание этих органелл на еди­ницу поверхности листа. Так, на 1 мм2 листа фасоли приходится 283 тыс. хлоропластов, у подсолнечника — 465 тыс. Диаметр хло­ропластов в среднем 0,5-2 мкм.

Строение хлоропласта весьма сложное. По­добно ядру и митохондриям хлоропласт окружен оболочкой, со­стоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс или строма, которую пронизывают мембраны — ламеллы (рис.). Ламеллы, соединен­ные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тила­коиды образуют граны, которые различают даже под свето­вым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью меж­гранных тяжей — тилакоидов стромы.


Свойства хлоропластов: способны измененять ориентацию и перемещаться. Например, под влиянием яркого света хлоропласты поворачиваются узкой сто­роной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропласты передвигаются в направлении более вы­сокой концентрации СО2 в клетке. Днем они обычно вы­страиваются вдоль стенок, ночью опускаются на дно клетки.

Химический состав хлоропластов: воды — 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы),  половина из них составляют водорастворимые белки. Такое вы­сокое содержание белков объясняется их многообразными функ­циями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные).

Важнейшей составной частью хлоропластов являются липиды, (30-40% сух. м.). Липиды хлоропластов представлены тремя группами соединений.


  1. Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.

  2. Фотосинтетическне пигменты хлоропластов — гидрофобные вв-а, относящиеся к липоидам (в клеточном соке — водораствори­мые пигменты). Высшие растения содержат 2 формы зеленых пигментов: хлорофилл а и хлорофилл b и 2 формы желтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов, другие пигменты расширяют спектр действия фотосинтеза за счет более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления, участвуют в транспорте водорода, образующегося при фотолизе воды.

  3. Жирорастворимые витаминыэргостерол (провитамин Д), витамины Е, К — сосредоточены практически целиком в хлоро­пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскор­биновой кислоты в хлоропластах в 4-5 раз меньше, чем в лис­тьях.


В хлоропластах листьев присутствует значительное количество РНК и ДНК. НК со­ставляют примерно 1 % сухой массы хлоропластов (РНК — 0.75 %, ДНК — 0,01-0,02 %). Геном хлоропластов представлен кольцевой молекулой ДНК длиной 40 мкм с моле­кулярной массой 108, кодирующей 100-150 белков средних раз­меров. Рибосомы хлоропластов составляют от 20 до 50 % общей популяции рибосом клетки. Т.о., хлоропласты имеют собственную белоксинтезирующую систему. Однако для нормального функционирования хлоропластов необходимо взаи­модеЯствие ядерного и хлоропластного геномов. Ключевой фермент фотосинтеза РДФ-карбоксилаза синтезируется под двойным контролем-ДНК ядра и хлоропласта.

Углеводы не являются конституционными веществами хлоро­пласта. Представлены фосфорными эфирами саха­ров и продуктами фотосинтеза. Поэтому содержание углеводов в хлоропластах значительно колеблется (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накаплива­ются, происходит их быстрый отток. При уменьшении потреб­ности в продуктах фотосинтеза в хлоропластах образуются круп­ные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

Минеральные вещества. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % Fe, 70-72 — Mg и Zn,  50 — Cu, 60 % Ca, содержащихся в тканях листа. Это объясняется высокой и разнообразной ферментативной ак­тивностью хлоропластов (входят с состав простетических групп и кофакторов). Mg входит в состав хлорофилла. Ca стабилизирует мембранные структуры хлоро­пластов.


Возникновение и развитие хлоропластов. Хлоропласты обра­зуются в меристематических клетках из инициальных частиц или зачаточных пластид (рис.). Инициальная частица состоит из амебоидной стремы, окруженной двухмембранной оболочкой. По мере роста клетки инициалььные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы, в стреме появляются небольшие крахмальные зерна. Одновре­менно внутренняя мембрана начинает разрастаться, образуя складки (впячивания), от которых отшнуровываются пузырьки и трубочки. Такие образования называют пропластидами. Для дальнейшего их развития необходим свет. В темноте же фор­мируются этиопласты, в которых образуется мембранная ре­шетчатая структура — проламеллярное тело. На свету внутрен­ние мембраны пропластид и этиопластов образуют гранильную систему. Одновременно с этим также на свету в граны встра­иваются вновь образованные молекулы хлорофилла и других пигментов. Таким образом, структуры, которые подготавлива­ются к функционированию на свету, появляются и развиваются только при его наличии.


Наряду с хлоропластами имеется ряд других пластид, которые образуются либо непосредственно из пропластид, либо одна из другой путем взаимных превращений (рис.). К ним относятся накапливающие крахмал амилопласты (лейкопласты) и хромо­пласты, содержащие каротиноиды. В цветках и плодах хромо­пласты возникают на ранних стадиях развития пропластид. Хро­мопласты осенней листвы представляют собой продукты деграда­ции хлоропластов, в которых в качестве структур — носителей каротнноидов выступают пластоглобулы.

Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилако­идов.

Ферменты, которые катализируют многочисленные реакции восстановительного цикла углеводов (темповой фазы фотосинте­за), а также разнообразные биосинтезы, в том числе биосинтезы белков, липидов, крахмала, присутствуют главным образом в строме, часть из них является периферическими белками ламелл.

Строение зрелых хлоропластов одинаково у всех высших рас­тений, так же как в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними.
к, в замыкающих клетках устьиц основная функция хлоропластов — фоторегуляция устьичных движений. Хлоропласты не имеют строгой гранальной структу­ры, содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы. Все это свидетельствует об их низкой энергетической нагрузке (эту функцию выполняют мито­хондрии). Другая картина наблюдается при изучении хлоропластов зеленых пло­дов томата. Наличие хорошо развитой гранулярной системы сви­детельствует о высокой фукциональной нагрузке этих органелл и, вероятно, существенном вкладе фотосинтеза при формирова­нии плодов.

Возрастные изменения: Молодые характеризуются ламеллярнои структурой, в таком состоянии хлоропласты способны размножаться путем деления. В зрелых хорошо выражена система гран. В стареющих происходит разрыв тилакоидов стро­мы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов.

Структура хлоропластов лабильна и ди­намична, в ней отражаются все условия жизни растения. Большое влияние оказывает режим минерального питания растений. При недостатке N хлоропласты становятся в 1.5-2 раза мельче, дефицит P и S нарушает нормальную структуру ламелл и гран, одновременная нехватка N и Ca приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке Ca нарушается структура наружной мембраны хло­ропласта. Для поддержания структуры хлоропласта также необхо­дим свет, в темноте идет постепенное разрушение тилакоидов гран и стремы.

Источник: StudFiles.net

Описание клеточных элементов


Какие компоненты клеток именуются пластидами. Это структурные органоиды клетки, имеющие сложное строение и функции, важные для жизни растительных организмов.

Что такое пластиды: строение и функцияКакое имеют пластиды строение под микроскопом рассмотреть сложно, благодаря плотной оболочке они не просвечиваются.

Однако, ученым удалось выяснить, что этот органоид имеет две мембраны, внутри заполнен стромой, аналогичной цитоплазме жидкостью.

Складки внутренней мембраны, уложенные стопочками, образуют граны, которые могут соединяться между собой.

Также внутри присутствуют рибосомы, липидные капли, зерна крахмала. Еще у пластид, особенно у хлоропластов, имеются свои молекулы ДНК.

Это интересно! Сходство, отличия и признаки: голосеменные и покрытосеменные растения

Классификация

Разделяются на три группы по цвету и выполняемым функциям:

  • хлоропласты,
  • хромопласты,
  • лейкопласты.

Хлоропласты

Наиболее глубоко изучены, имеют зеленую окраску. Содержаться в листьях растений, иногда в стеблях, плодах и даже корнях. По внешнему виду похожи на округлые зернышки размером 4-10 микрометров. Малый размер и большое количество значительно увеличивает площадь рабочей поверхности.

Могут отличаться по цвету, это зависит от вида и концентрации содержащегося в них пигмента. Основной пигмент- хлорофилл, также присутствуют ксантофилл и каротин. В природе существует 4 вида хлорофилла, обозначаемых латинскими буквами: а, b, с, е. Первые два типа содержат клетки высших растений и зеленых водорослей, у диатомовых присутствуют только разновидности — а и с.

Хлоропласты выполняют важную функцию: внутри них происходит процесс фотосинтеза — преобразование солнечного света в энергию химических связей формирующихся углеводов. При этом они могут двигаться вместе с током цитоплазмы или активно передвигаться сами. Так, при слабом освещении они скапливаются у стенок клетки с большим количеством света и поворачиваются к нему большей площадью, а при очень активном освещении, наоборот, встают ребром.

Хромопласты

Что такое пластиды: строение и функцияПриходят на смену разрушенным хлоропластам, бывают желтого, красного и оранжевого оттенков. Цветная окраска формируется благодаря содержанию каротиноидов.


Данные органоиды содержаться в листья, цветах и плодах растений. По форме могут быть округлыми, прямоугольными или даже игольчатыми. Строение аналогично хлоропластам.

Основная функция – придание окраски цветам и плодам, что позволяет привлечь насекомых- опылителей и животных, которые поедают плоды и тем самым способствуют распространению семян растения.

Лейкопласты

Данные пластиды имеют отличия в строении и функциях. Основная задача – запасать питательные вещества впрок, поэтому находятся они преимущественно в плодах, но также могут быть в утолщенных и мясистых частях растения:

  • клубнях,
  • корневищах,
  • корнеплодах,
  • луковицах и других.

Что такое пластиды: строение и функцияБесцветная окраска не позволяет выделить их в структуре клетки, однако лейкопласты легко разглядеть при добавлении небольшого количества йода, который, взаимодействуя с крахмалом, окрашивает их в синий цвет.

Форма близка к округлой, при этом внутри плохо развита система мембран. Отсутствие складок мембран помогает органоиду при запасании веществ.


Крахмальные зерна увеличиваются в размерах и легко разрушают внутренние мембраны пластиды, как-бы растягивая ее. Это позволяет накопить больше углеводов.

В отличие от других пластид, содержат молекулу ДНК в оформленном ядре. При этом, накапливая хлорофилл, лейкопласты могут превращаться в хлоропласты.

Определяя, какую функцию выполняют лейкопласты, нужно отметить их специализацию, поскольку существует несколько типов, запасающих определенные вид органического вещества:

  • амилопласты накапливают крахмал;
  • олеопласты производят и запасают жиры, при этом последние могут запасаться и в других частях клеток;
  • протеинопласты «берегут» белки.

Что такое пластиды: строение и функцияПомимо накопления, могут выполнять функцию расщепления веществ, для чего существуют ферменты, которые активизируются, когда возникает дефицит энергии или строительного материала.

В такой ситуации ферменты начинают расщеплять запасенные жиры и углеводы до мономеров, чтобы клетка получила необходимую энергию.

Все разновидности пластид, не смотря на особенности строения, обладают способностью превращаться друг в друга. Так, лейкопласты могут преобразоваться в хлоропласты, этот процесс мы видим при позеленении клубней картофеля.

В то же время, по осени хлоропласты превращаются в хромопласты, в результате чего листья желтеют. Каждая клетка содержит только один вид пластид.

Это интересно! Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств

Происхождение

Теорий происхождения множество, наиболее обоснованными среди них являются две:

  • симбиоза,
  • поглощения.

Первая рассматривает образование клетки как процесс симбиоза, происходящего в несколько ступеней. В его ходе гетеротрофные и автотрофные бактерии объединяются, получая взаимную выгоду.

Вторая теория рассматривает образование клетки через поглощение более крупными организмами мелких. Однако, при этом не происходит их переваривание, они встраиваются в структуру бактерии, выполняя свою функцию внутри нее. Такое строение оказалось удобным и дало организмам преимущество перед другими.

Виды пластидов в растительной клетке

Пластиды — их функции в клетке и типы

Вывод

Пластиды в растительных клетках – это своеобразная «фабрика», где осуществляется производство, связанное с токсичными промежуточными веществами, высокой энергией и процессами преобразования свободных радикалов.

Источник: uchim.guru

Пластиды: хлоропласты

Пластиды – характерные только для растительных клеток органоиды, отсутствующие в клетках животных, грибов, бактерий и цианобактерий.

Клетки высших растений содержат 10-200 пластид. Их размер от 3 до 10 мкм. Большинство из них имеют форму двояковыпуклой линзы, но иногда могут быть в форме пластинок, палочек, зёрен и чешуек.

В зависимости от присутствующего в пластиде пигмента пигмента эти органоиды делят на группы:

  • хлоропласты (гр. сhloros – зелёный) – зелёного цвета,
  • хромопласты – жёлтого, оранжевого и красноватого цвета,
  • лейкопласты – бесцветные пластиды.

Большинство водорослей вместо пластид имеют хроматофоры (обычно в клетке он один, имеет значительные размеры, имеет форму спиральной ленты, чаши, сетки или звёздчатой пластинки).

Пластиды имеют достаточно сложное внутреннее строение.

Пластиды. Автор24 — интернет-биржа студенческих работ

Хлоропласты имеют свои ДНК, РНК, рибосомы, включения: зёрна крахмала, капли жира. Снаружи хлоропласты ограничены двойной мембраной, внутреннее пространство заполнено стромой – полужидким веществом), которое содержит граны — особенные, свойственные лишь хлоропластам структуры.

Граны представлены пакетами плоских круглых мешочков (тилакоидов), которые сложены как столбик монет перпендикулярно широкой поверхности хлоропласта. Тилакоиды соседних гран между собой соединяются в единую взаимосвязанную систему мембранными каналами (межмембранными ламелами).

В толще и на поверхности гран в определённом порядке расположен хлорофилл.

Хлоропласты имеют разное количество гран.

Хлоропласты не прикреплены в определённых местах цитоплазмы, а могут изменять своё положение или пассивно, или активно перемещаются ориентировано к свету (фототаксис).

Особенно чётко активное движение хлоропластов наблюдается при значительном повышении одностороннего освещения. В таком случае хлоропласты скопляются у боковых стенок клетки, а к источнику света ориентируются ребром. При слабом освещении хлоропласты ориентируются к свету более широкой стороной и располагаются вдоль стенки клетки, обращённой к свету. При средней силе освещения хлоропласты занимают срединное положение. Таким образом достигаются наиболее благоприятные условия для процесса фотосинтеза.

Благодаря сложной внутренней пространственной организации структурных элементов хлоропласты способны эффективно поглощать и использовать лучистую энергию, а также происходит разграничение во времени и пространстве многочисленных и разнообразных реакций, составляющих процесс фотосинтеза. Реакции этого процесса, зависимые от света, происходят лишь в тилакоидах, а биохимические (темновые) реакции – в строме хлоропласта.

В природе существует четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержатся в хлоропластах высших растений и зелёных водорослей, диатомовые водоросли содержат хлорофиллы a и c, красные – a и d. Хлорофиллы a и b изучены лучше других (впервые их выделил в начале ХХ столетия российский учёный М.С. Цвет).

Кроме них существует четыре вида бактериохлорофиллов – зелёных пигментов зелёных и пурпурных бактерий: a, b, c, d.

Большинство бактерий, способных к фотосинтезу, содержат бактериохлорофилл а, некоторые – бактериохлорофилл b, зелёные бактерии – c и d.

Хлорофилл достаточно эффективно поглощает лучистую энергию и передаёт её другим молекулам. Благодаря этому хлорофилл – единственное вещество на Земле, способное обеспечивать процесс фотосинтеза.

Пластидам, как и митохондриям, свойственна в определённой степени автономность внутри клетки. Они способны размножаться в основном путём деления.

Наряду с фотосинтезом в хлоропластах происходит синтез других веществ, таких как белки, липиды, некоторые витамины.

Благодаря наличию в пластидах ДНК, они играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность).

Источник: spravochnick.ru