Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды — лейкопласты;
  • окрашенные — хлоропласты (зеленого цвета);
  • окрашенные — хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

Виды пластид: хлоропласты, хромопласты, лейкопласты

Строение и функции хлоропластов


Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

Строение хлоропласта
Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.


  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

Сходство молекулы хлорофилла и молекулы гемоглобина
Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

iv>

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Строение хромопласта
Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

>
Строение лейкопласта
Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.


Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Источник: animals-world.ru

Хлоропласт. Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт — основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.

  По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами — наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры — граны. Они сложены наподобие стопки монет.


  В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК. и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.

  Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

  Лейкопласты. находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.

  Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

 

Источник: gimn1567.ru

Происхождение


В настоящее время общепризнано[2] происхождение хлоропластов путём симбиогенеза. Предполагают, что хлоропласты возникли из цианобактерий, так как являются двухмембранным органоидом, имеют собственную замкнутую кольцевую ДНК и РНК, полноценный аппарат синтеза белка (причем рибосомы прокариотического типа — 70S), размножаются бинарным делением, а мембраны тилакоидов похожи на мембраны прокариот (наличием кислых липидов) и напоминают соответствующие органеллы у цианобактерий. У глаукофитовых водорослей вместо типичных хлоропластов в клетках содержатся цианеллы — цианобактерии, потерявшие в результате эндосимбиоза способность к самостоятельному существованию, но отчасти сохранившие цианобактериальную клеточную стенку[3].

Давность этого события оценивают в 1 — 1,5 млрд лет[4].

Часть групп организмов получала хлоропласты в результате эндосимбиоза не с прокариотными клетками, а с другими эукариотами, уже имеющими хлоропласты[5]. Этим объясняется наличие в оболочке хлоропластов некоторых организмов более чем двух мембран[Пр.


#93;. Самая внутренняя из этих мембран трактуется как потерявшая клеточную стенку оболочка цианобактерии, внешняя — как стенка симбионтофорной вакуоли хозяина. Промежуточные мембраны — принадлежат вошедшему в симбиоз редуцированному эукариотному организму. У некоторых[Пр. 3] групп в перипластидном пространстве между второй и третьей мембраной располагается нуклеоморф, сильно редуцированное эукариотное ядро[6].

Хлоропласты содержатся в клетках Хлоропласты содержатся в клетках

Строение

У различных групп организмов хлоропласты значительно различаются по размерам,строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение[7]. В основном хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм.

Оболочка хлоропластов

У различных групп организмов оболочка хлоропластов отличается по строению.

У глаукоцистофитовых, красных, зелёных водорослей[8] и у высших растений оболочка состоит из двух мембран. У других эукариотных водорослей хлоропласт дополнительно окружён одной или двумя мембранами. У водорослей, обладающих четырёхмембранными хлоропластами, наружная мембрана обычно переходит в наружную мембрану ядра.

Перипластидное пространство

Ламеллы и тилакоиды

Ламеллы соединяют полости тилакоидов

Пиреноиды

Пиреноиды — центры синтеза полисахаридов в хлоропластах[9]. Строение пиреноидов разнообразно, и не всегда они морфологически выражены. Могут быть внутрипластидными и стебельчатыми, выступающими в цитоплазму. У зелёных водорослей и растений пиреноиды располагаются внутри хлоропласта, что связано с внутрипластидным запасанием крахмала.

Стигма

Стигмы или глазки встречаются в хлоропластах подвижных клеток водорослей. Располагаются вблизи основания жгутика. Стигмы содержат каротиноиды и способны работать как фоторецепторы[10].

См. также

  • Фотосинтез
  • Триозофосфатный транслокатор
  • Хромопласты
  • Цианеллы

Примечания

Комментарии

  1. Хлоропласты организмов, относящихся к группе хромистов, имеют четырёхслойную оболочку. Предполагается, что в истории их возникновения включение одной клетки в состав другой происходило дважды.
  2. Например, у динофитовых и эвгленовых имеется 3 мембраны, а у охрофитов — 4.
  3. У криптофитовых, хлорарахниофитовых и некоторых динофитовых.

Литература

  • Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 1. — 320 с. — 3000 экз. — ISBN 5-7695-2731-5.
  • Карпов С.А. Строение клетки протистов. — СПб.: ТЕССА, 2001. — 384 с. — 1000 экз. — ISBN 5-94086-010-9.
  • Lee, R. E. Phycology, 4th edition. — Cambridge: Cambridge University Press, 2008. — 547 с. — ISBN 9780521682770.

Отрывок, характеризующий Хлоропласты

– Вот как в наше время танцовывали, ma chere, – сказал граф.
– Ай да Данила Купор! – тяжело и продолжительно выпуская дух и засучивая рукава, сказала Марья Дмитриевна.

В то время как у Ростовых танцовали в зале шестой англез под звуки от усталости фальшививших музыкантов, и усталые официанты и повара готовили ужин, с графом Безухим сделался шестой удар. Доктора объявили, что надежды к выздоровлению нет; больному дана была глухая исповедь и причастие; делали приготовления для соборования, и в доме была суетня и тревога ожидания, обыкновенные в такие минуты. Вне дома, за воротами толпились, скрываясь от подъезжавших экипажей, гробовщики, ожидая богатого заказа на похороны графа. Главнокомандующий Москвы, который беспрестанно присылал адъютантов узнавать о положении графа, в этот вечер сам приезжал проститься с знаменитым Екатерининским вельможей, графом Безухим.
Великолепная приемная комната была полна. Все почтительно встали, когда главнокомандующий, пробыв около получаса наедине с больным, вышел оттуда, слегка отвечая на поклоны и стараясь как можно скорее пройти мимо устремленных на него взглядов докторов, духовных лиц и родственников. Князь Василий, похудевший и побледневший за эти дни, провожал главнокомандующего и что то несколько раз тихо повторил ему.
Проводив главнокомандующего, князь Василий сел в зале один на стул, закинув высоко ногу на ногу, на коленку упирая локоть и рукою закрыв глаза. Посидев так несколько времени, он встал и непривычно поспешными шагами, оглядываясь кругом испуганными глазами, пошел чрез длинный коридор на заднюю половину дома, к старшей княжне.
Находившиеся в слабо освещенной комнате неровным шопотом говорили между собой и замолкали каждый раз и полными вопроса и ожидания глазами оглядывались на дверь, которая вела в покои умирающего и издавала слабый звук, когда кто нибудь выходил из нее или входил в нее.
– Предел человеческий, – говорил старичок, духовное лицо, даме, подсевшей к нему и наивно слушавшей его, – предел положен, его же не прейдеши.
– Я думаю, не поздно ли соборовать? – прибавляя духовный титул, спрашивала дама, как будто не имея на этот счет никакого своего мнения.
– Таинство, матушка, великое, – отвечало духовное лицо, проводя рукою по лысине, по которой пролегало несколько прядей зачесанных полуседых волос.
– Это кто же? сам главнокомандующий был? – спрашивали в другом конце комнаты. – Какой моложавый!…
– А седьмой десяток! Что, говорят, граф то не узнает уж? Хотели соборовать?
– Я одного знал: семь раз соборовался.
Вторая княжна только вышла из комнаты больного с заплаканными глазами и села подле доктора Лоррена, который в грациозной позе сидел под портретом Екатерины, облокотившись на стол.
– Tres beau, – говорил доктор, отвечая на вопрос о погоде, – tres beau, princesse, et puis, a Moscou on se croit a la campagne. [прекрасная погода, княжна, и потом Москва так похожа на деревню.]
– N’est ce pas? [Не правда ли?] – сказала княжна, вздыхая. – Так можно ему пить?
Лоррен задумался.
– Он принял лекарство?
– Да.
Доктор посмотрел на брегет.
– Возьмите стакан отварной воды и положите une pincee (он своими тонкими пальцами показал, что значит une pincee) de cremortartari… [щепотку кремортартара…]
– Не пило слушай , – говорил немец доктор адъютанту, – чтопи с третий удар шивь оставался .
– А какой свежий был мужчина! – говорил адъютант. – И кому пойдет это богатство? – прибавил он шопотом.
– Окотник найдутся , – улыбаясь, отвечал немец.
Все опять оглянулись на дверь: она скрипнула, и вторая княжна, сделав питье, показанное Лорреном, понесла его больному. Немец доктор подошел к Лоррену.
– Еще, может, дотянется до завтрашнего утра? – спросил немец, дурно выговаривая по французски.
Лоррен, поджав губы, строго и отрицательно помахал пальцем перед своим носом.
– Сегодня ночью, не позже, – сказал он тихо, с приличною улыбкой самодовольства в том, что ясно умеет понимать и выражать положение больного, и отошел.

Между тем князь Василий отворил дверь в комнату княжны.
В комнате было полутемно; только две лампадки горели перед образами, и хорошо пахло куреньем и цветами. Вся комната была установлена мелкою мебелью шифоньерок, шкапчиков, столиков. Из за ширм виднелись белые покрывала высокой пуховой кровати. Собачка залаяла.
– Ах, это вы, mon cousin?
Она встала и оправила волосы, которые у нее всегда, даже и теперь, были так необыкновенно гладки, как будто они были сделаны из одного куска с головой и покрыты лаком.
– Что, случилось что нибудь? – спросила она. – Я уже так напугалась.
– Ничего, всё то же; я только пришел поговорить с тобой, Катишь, о деле, – проговорил князь, устало садясь на кресло, с которого она встала. – Как ты нагрела, однако, – сказал он, – ну, садись сюда, causons. [поговорим.]
– Я думала, не случилось ли что? – сказала княжна и с своим неизменным, каменно строгим выражением лица села против князя, готовясь слушать.
– Хотела уснуть, mon cousin, и не могу.
– Ну, что, моя милая? – сказал князь Василий, взяв руку княжны и пригибая ее по своей привычке книзу.
Видно было, что это «ну, что» относилось ко многому такому, что, не называя, они понимали оба.
Княжна, с своею несообразно длинною по ногам, сухою и прямою талией, прямо и бесстрастно смотрела на князя выпуклыми серыми глазами. Она покачала головой и, вздохнув, посмотрела на образа. Жест ее можно было объяснить и как выражение печали и преданности, и как выражение усталости и надежды на скорый отдых. Князь Василий объяснил этот жест как выражение усталости.
– А мне то, – сказал он, – ты думаешь, легче? Je suis ereinte, comme un cheval de poste; [Я заморен, как почтовая лошадь;] а всё таки мне надо с тобой поговорить, Катишь, и очень серьезно.
Князь Василий замолчал, и щеки его начинали нервически подергиваться то на одну, то на другую сторону, придавая его лицу неприятное выражение, какое никогда не показывалось на лице князя Василия, когда он бывал в гостиных. Глаза его тоже были не такие, как всегда: то они смотрели нагло шутливо, то испуганно оглядывались.

Источник: wiki-org.ru

фото­синтез протекает в специализированных органеллах клеток — хлоро­пластах. Хлоропласты высших растений имеют форму двояковы­пуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение полностью отвечают назначению: как можно эффектив­нее поглощать солнечную энергию, как можно полнее усваивать углерод. Установ­лено, что количество хлоропластов в клетке измеряется десятка­ми. Это обеспечивает высокое содержание этих органелл на еди­ницу поверхности листа. Так, на 1 мм2 листа фасоли приходится 283 тыс. хлоропластов, у подсолнечника — 465 тыс. Диаметр хло­ропластов в среднем 0,5-2 мкм.

Строение хлоропласта весьма сложное. По­добно ядру и митохондриям хлоропласт окружен оболочкой, со­стоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс или строма, которую пронизывают мембраны — ламеллы (рис.). Ламеллы, соединен­ные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тила­коиды образуют граны, которые различают даже под свето­вым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью меж­гранных тяжей — тилакоидов стромы.

Свойства хлоропластов: способны измененять ориентацию и перемещаться. Например, под влиянием яркого света хлоропласты поворачиваются узкой сто­роной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропласты передвигаются в направлении более вы­сокой концентрации СО2 в клетке. Днем они обычно вы­страиваются вдоль стенок, ночью опускаются на дно клетки.

Химический состав хлоропластов: воды — 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы),  половина из них составляют водорастворимые белки. Такое вы­сокое содержание белков объясняется их многообразными функ­циями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные).

Важнейшей составной частью хлоропластов являются липиды, (30-40% сух. м.). Липиды хлоропластов представлены тремя группами соединений.

  1. Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.

  2. Фотосинтетическне пигменты хлоропластов — гидрофобные вв-а, относящиеся к липоидам (в клеточном соке — водораствори­мые пигменты). Высшие растения содержат 2 формы зеленых пигментов: хлорофилл а и хлорофилл b и 2 формы желтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов, другие пигменты расширяют спектр действия фотосинтеза за счет более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления, участвуют в транспорте водорода, образующегося при фотолизе воды.

  3. Жирорастворимые витаминыэргостерол (провитамин Д), витамины Е, К — сосредоточены практически целиком в хлоро­пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскор­биновой кислоты в хлоропластах в 4-5 раз меньше, чем в лис­тьях.

В хлоропластах листьев присутствует значительное количество РНК и ДНК. НК со­ставляют примерно 1 % сухой массы хлоропластов (РНК — 0.75 %, ДНК — 0,01-0,02 %). Геном хлоропластов представлен кольцевой молекулой ДНК длиной 40 мкм с моле­кулярной массой 108, кодирующей 100-150 белков средних раз­меров. Рибосомы хлоропластов составляют от 20 до 50 % общей популяции рибосом клетки. Т.о., хлоропласты имеют собственную белоксинтезирующую систему. Однако для нормального функционирования хлоропластов необходимо взаи­модеЯствие ядерного и хлоропластного геномов. Ключевой фермент фотосинтеза РДФ-карбоксилаза синтезируется под двойным контролем-ДНК ядра и хлоропласта.

Углеводы не являются конституционными веществами хлоро­пласта. Представлены фосфорными эфирами саха­ров и продуктами фотосинтеза. Поэтому содержание углеводов в хлоропластах значительно колеблется (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накаплива­ются, происходит их быстрый отток. При уменьшении потреб­ности в продуктах фотосинтеза в хлоропластах образуются круп­ные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

Минеральные вещества. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % Fe, 70-72 — Mg и Zn,  50 — Cu, 60 % Ca, содержащихся в тканях листа. Это объясняется высокой и разнообразной ферментативной ак­тивностью хлоропластов (входят с состав простетических групп и кофакторов). Mg входит в состав хлорофилла. Ca стабилизирует мембранные структуры хлоро­пластов.

Возникновение и развитие хлоропластов. Хлоропласты обра­зуются в меристематических клетках из инициальных частиц или зачаточных пластид (рис.). Инициальная частица состоит из амебоидной стремы, окруженной двухмембранной оболочкой. По мере роста клетки инициалььные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы, в стреме появляются небольшие крахмальные зерна. Одновре­менно внутренняя мембрана начинает разрастаться, образуя складки (впячивания), от которых отшнуровываются пузырьки и трубочки. Такие образования называют пропластидами. Для дальнейшего их развития необходим свет. В темноте же фор­мируются этиопласты, в которых образуется мембранная ре­шетчатая структура — проламеллярное тело. На свету внутрен­ние мембраны пропластид и этиопластов образуют гранильную систему. Одновременно с этим также на свету в граны встра­иваются вновь образованные молекулы хлорофилла и других пигментов. Таким образом, структуры, которые подготавлива­ются к функционированию на свету, появляются и развиваются только при его наличии.

Наряду с хлоропластами имеется ряд других пластид, которые образуются либо непосредственно из пропластид, либо одна из другой путем взаимных превращений (рис.). К ним относятся накапливающие крахмал амилопласты (лейкопласты) и хромо­пласты, содержащие каротиноиды. В цветках и плодах хромо­пласты возникают на ранних стадиях развития пропластид. Хро­мопласты осенней листвы представляют собой продукты деграда­ции хлоропластов, в которых в качестве структур — носителей каротнноидов выступают пластоглобулы.

Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилако­идов.

Ферменты, которые катализируют многочисленные реакции восстановительного цикла углеводов (темповой фазы фотосинте­за), а также разнообразные биосинтезы, в том числе биосинтезы белков, липидов, крахмала, присутствуют главным образом в строме, часть из них является периферическими белками ламелл.

Строение зрелых хлоропластов одинаково у всех высших рас­тений, так же как в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов — фоторегуляция устьичных движений. Хлоропласты не имеют строгой гранальной структу­ры, содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы. Все это свидетельствует об их низкой энергетической нагрузке (эту функцию выполняют мито­хондрии). Другая картина наблюдается при изучении хлоропластов зеленых пло­дов томата. Наличие хорошо развитой гранулярной системы сви­детельствует о высокой фукциональной нагрузке этих органелл и, вероятно, существенном вкладе фотосинтеза при формирова­нии плодов.

Возрастные изменения: Молодые характеризуются ламеллярнои структурой, в таком состоянии хлоропласты способны размножаться путем деления. В зрелых хорошо выражена система гран. В стареющих происходит разрыв тилакоидов стро­мы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов.

Структура хлоропластов лабильна и ди­намична, в ней отражаются все условия жизни растения. Большое влияние оказывает режим минерального питания растений. При недостатке N хлоропласты становятся в 1.5-2 раза мельче, дефицит P и S нарушает нормальную структуру ламелл и гран, одновременная нехватка N и Ca приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке Ca нарушается структура наружной мембраны хло­ропласта. Для поддержания структуры хлоропласта также необхо­дим свет, в темноте идет постепенное разрушение тилакоидов гран и стремы.

Источник: StudFiles.net

Пластиды (греч.plastides – созидающие, образующие) – это мембранные органоиды фотосинтезирующих эукариотических органоидов – высших растений, низших водорослей, некоторых одноклеточных. Пластиды присутствуют во всех типах клеток растения, в каждом типе находится свой набор этих органоидов. Всем пластидам свойственен ряд общих черт. Они имеют свой генетический аппарат и окружены оболочкой, состоящей из двух концентрических мембран.

Все пластиды развиваются из пропластид. Они представляют собой мелкие органоиды, присутствующие в клетках меристемы, судьба которых определяется потребностями дифференцированных клеток. Все типы пластид представляют собой единый генетический ряд.

Лейкопласты (греч.leucos — белый) – бесцветные пластиды, которые содержатся в клетках растительных органов, лишенных окраски. Они представляют собой округлые образования, наибольший размер которых – 2-4 мкм. Они окружены оболочкой, состоящей из двух мембран, внутри которой находится белковая строма. Строма лейкопластов содержит небольшое число пузырьков и плоских цистерн – ламелл. Лейкопласты способны развиваться в хлоропласты, процесс их развития связан с увеличением размеров, усложнением внутренней структуры и образованием зеленого пигмента – хлорофилла. Такая перестройка пластид происходит, например, при позеленении клубней картофеля. Лейкопласты способны также переходить в хромопласты. В некоторых тканях, таких как эндосперм в зерновке злаков, в корневищах и клубнях лейкопласты превращаются в хранилище запасного крахмала – амилопласты. Онтогенетические переходы одной формы в другую необратимы, хромопласт не может сформировать ни хлоропласт, ни лейкопласт. Точно так же хлоропласт не может вернуться в состояние лейкопласта.

Хлоропласты (chloros-зеленый) – основная форма пластид, в которых протекает фотосинтез. Хлоропласты высших растений представляют собой линзовидные образования, ширина которых составляет по короткой оси 2-4 мкм, по длинной – 5 мкм и больше. Количество хлоропластов в клетках разных растений варьирует очень сильно, в клетках высших растений содержится от 10 до 30 хлоропластов. В гигантских клетках палисадной ткани махорки их обнаружено около тысячи. Хлропласты водорослей первоначально были названы хроматофорами. У зеленых водорослей может быть один хроматофор на клетку, у эвгленовых и динофлагеллят молодые клетки содержат от 50 до 80 хлоропластов, старые – 200-300. Хлоропласты водорослей могут быть чашевидными, лентовидными, спиралевидными, пластинчатыми, звездчатыми, в них обязательно присутствует плотное образование белковой природы – пиреноиды, вокруг которого концентрируется крахмал.

Ультраструктура хлоропластов обнаруживает большое сходство с митохондриями, прежде всего в строении оболочки хлоропласта – перистромия. Он окружен двумя мембранами, которые разделены узким межмембранным пространством шириной около 20-30 нм. Наружная мембрана обладает высокой проницаемостью, внутренняя – менее проницаема и несет специальные транспортные белки. Следует подчеркнуть, что наружная мембрана непроницаема для АТФ. Внутренняя мембрана окружает большую центральную область – строму, это аналог митохондриального матрикса. Строма хлоропласта содержит разнообразные ферменты, рибосомы, ДНК и РНК. Есть и существенные различия. Хлоропласты значительно крупнее митохондрий. Их внутренняя мембрана не образует крист и не содержит цепи переноса электронов. Все важнейшие функциональные элементы хлоропласта размещены в третьей мембране, которая образует группы уплощенных дисковидных мешочков – тилакоидов она называется тилакоидная мембрана. Эта мембрана включает в свой состав пигмент-белковые комплексы, прежде всего хлорофилл, пигменты из группы каротиноидов, из которых обычны каротин и ксантофилл. Кроме того, в тилакоидную мембрану включены компоненты электрон-транспортных цепей. Внутренние полости тилакоидов создают третий внутренний компартмент хлоропласта – тилакоидное пространство. Тилакоиды образуют стопки – граны, содержащие их от нескольких штук до 50 и более. Размер гран, в зависимости от числа тилакоидов в них, может достигать 0,5 мкм, в этом случае они доступны для наблюдений светового микроскопа. Тилакоиды в гранах плотно соединены, в месте контакта их мембран толщина слоя составляет около 2 нм. В состав гран, кроме тилакоидов, входят участки ламелл стромы. Это плоские, протяженные, перфорированные мешки, располагающиеся в параллельных плоскостях хлоропласта. Они не пересекаются и замкнуты. Ламеллы стромы связывают отдельные граны. При этом полости тилакоидов и полости ламелл не связаны.

Функция хлоропластов – фотосинтез, образование органических веществ из углекислого газа и воды за счет энергии солнечного света. Это один из важнейших биологических процессов, постоянно и в огромных масштабах, совершающихся на нашей планете. Ежегодно растительность земного шара образует более 100 млрд т. органического вещества, усваивая около 200 млрд тонн углекислого газа и выделяя во внешнюю среду около 145 млрд тонн свободного кислорода.

Хромопласты Это пластиды растительной клетки, имеющие окраску желто-оранжевой гаммы. Их можно определить как сенильные, деградирующие органоиды клетки, они образуются при разрушении хлоропластов. Об этом свидетельствует и химический состав пластид. Если в хлоропластах белки составляют около 50% их общей массы, а липиды 30%, то в хромопластах это соотношение меняется следующим образом: 22% белков, 58% липидов, ДНК уже не обнаруживается. Окраска хромопластов зависит от присутствия каротиноидов и разрушения хлорофилла. Азотсодержащие соединения (производные пиррола), возникающие при распаде хлорофилла, оттекают из листьев так же, как и белки, образующиеся при распаде белково-липидной системы мембран. Липиды остаются внутри перистромия. В них растворяются каротиноиды, окрашивая пластиды в желтые и оранжевые тона. Образование хромопластов из хлоропластов происходят двумя путями. Например, у лютика хромопласты образуются из бледно-зеленых хлоропластов, содержащих крахмал. Постепенно исчезают хлорофилл и крахмал, увеличивается содержание желтого пигмента, который растворяется в липидных каплях, образуя глобулы. Одновременно с образованием глобул происходит окончательное разрушение ламеллярной структуры хлоропласта. В сформировавшемся хромопласте сохраняется только перистромий, глобулы покрывают всю его внутреннюю поверхность, а центр пластиды выглядит оптически пустым. Роль хромопластов в клетке не ясна. Но для растительного организма в целом эти пластиды играют важную роль, так как органы растения, в которых прекращается фотосинтез, становятся привлекательными для насекомых, птиц, других животных, которые осуществляют опыление растений и распространение их плодов и семян. При осеннем пожелтении листьев разрушение хлоропластов и образование хромопластов приводит к утилизации белков и азотсодержащих соединений, которые перед листопадом оттекают в другие органы растения.

Источник: media.ls.urfu.ru