Строение растительной и животной клеткиПо своему строению клетки всех живых организмов можно разделить на два больших отдела: безъядерные и ядерные организмы.

Для того чтобы сравнить строение растительной и животной клетки, следует сказать, что обе эти структуры принадлежат к надцарству эукариот, а значит, содержат мембранную оболочку, морфологически оформленное ядро и органеллы разного назначения.

  • Сравнение животной и растительной клетки
  • Краткое сравнение растительной и животной клетки
  • Общие признаки строения
  • Что из этого следует

Сравнение животной и растительной клетки


Растительная Животная
Способ питания Автотрофный Гетеротрофный
Клеточная стенка Находится снаружи и представлена целлюлозной оболочкой. Не меняет своей формы Называется гликокаликсом – тонкий слой клеток белковой и углеводной природы. Структура может менять свою форму.
Клеточный центр Нет. Может быть только у низших растений Есть
Деление Образуется перегородка между дочерними структурами Образуется перетяжка между дочерними структурами
Запасной углевод Крахмал Гликоген
Пластиды Хлоропласты, хромопласты, лейкопласты; отличаются друг от друга в зависимости от окраски Нет
Вакуоли Крупные полости, которые заполнены клеточным соком. Содержат большое количество питательных веществ. Обеспечивают тургорное давление. В клетке их относительно немного. Многочисленные мелкие пищеварительные, у некоторых – сократительные. Строение различно с вакуолями растений.

Особенность строения растительной клетки:

  • Растительная клетка особенности строенияЕсть пластиды;
  • Присутствует прочная целлюлозная оболочка;
  • Автотрофный тип питания;
  • Синтез макроэргических соединений, который происходит в хлоропластах и митохондриях;
  • Наличие крупных вакуолей;
  • Ядерный центр присутствует только у низших растений;
  • Минеральные соли находятся в виде кристаллов (включений).

Особенность строения животной клетки:

  • Животная клетка особенности строенияПластиды отсутствуют;
  • Непрочная клеточная оболочка, которая называется гликокаликсом;
  • Гетеротрофы;
  • Синтез макроэргических соединений (АТФ) осуществляется исключительно в митохондриях;
  • Вакуоли только мелкие, крупные отсутствуют;
  • Ядерный центр есть у всех эукариот;
  • Минеральные соли растворены в цитоплазме.

Это интересно: атф это что за вещество – состав, функции и роль в организме.

Краткое сравнение растительной и животной клетки

  • Растительная и животная клеткиЕсли сравнивать эти две структуры, важным отличием является способ питания: все растения относятся к автотрофам. Для животных органические вещества являются главным источником углерода, которые попадают в организм вместе с пищей, таким образом они относятся к гетеротрофам.

  • У растений есть пластиды для фотосинтеза, которые обуславливают их цвет (хромопласты – красные, хлоропласты – зеленые и лейкопласты – бесцветные), во втором типе клеток хлоропласты отсутствуют.
  • Снаружи растения покрыты плотной оболочкой, которая называется плазматическая мембрана и состоит из целлюлозы, тогда как у животных наружная мембрана представлена гликокаликсом.

Это интересно: сколько у человека хромосом?

Общие признаки строения

  1. Растительная и животная клетки общие признаки строенияВсе ядерные структуры покрыты очень тонкой мембранной оболочкой, которая ограждает их от взаимодействия с внешней средой. С помощью специальных наростов, называемых складкам, они очень близко прилегают друг к другу. Обмен веществ осуществляется через специальные отверстия – поры, которые пронизывают мембрану.
  2. Главным органоидом всех типов клеток растений и животных является ядро. Чаще всего оно находится в центре и может содержать одно или несколько ядрышек, которые, в свою очередь, синтезируют белок и структуры РНК.

  3. В обеих структурах содержится бесцветная полужидкая цитоплазма, которая заполняет пространство между ядром и мембраной. В ней находятся органоиды и запасные питательные вещества.
  4. Важным является генетический код, который наследуется одинаково.
  5. Обмен веществ и энергии происходит по одинаковому принципу.
  6. Одинаковый процесс деления, т.к. и животная, и растительная могут делиться путем митоза.
  7. Имеют одинаковую химическую составляющую.
  8. Сходный состав органоидов (ЭПС, Аппарат Гольджи, рибосомы, лизосомы, митохондрии).

Это интересно: формы естественного отбора это что, значение термина в биологии.

Что из этого следует

  1. Принципиальное сходство в особенностях строения и молекулярного состава клеток растений и животных указывает на родство и единство их происхождения, вероятнее всего, от одноклеточных водных организмов.
  2. В составе обоих видов содержится множество элементов Периодической таблицы, которые в основном существуют в виде комплексных соединений неорганической и органической природы.
  3. Однако различным является то, что в процессе эволюции эти два типа клеток далеко отошли друг от друга, т.к. от различных неблагоприятных воздействий внешней среды они имеют абсолютно разные способы защиты и также имеют различные друг от друга способы питания.
  4. Растительная клетка главным образом отличается от животной крепкой оболочкой, состоящей из целлюлозы; специальными органоидами – хлоропластами с молекулами хлорофилла в своем составе, с помощью которых осуществим фотосинтез; и хорошо развитыми вакуолями с запасом питательных веществ.

Источник: obrazovanie.guru

Строение клетки растения

В природе существуют как одноклеточные растения, так и многоклеточные. Например, в подводном мире можно встретить одноклеточные водоросли, которые имеют все функции присущие живому организму.

Многоклеточная особь – это не просто набор клеток, а единый организм, способный образовывать различные ткани, органы, которые взаимодействуют друг с другом.

Строение растительной клетки у всех растений одинаковое и состоит из одних и тех же компонентов. Её состав следующий:

  • оболочка (пластинка, межклетник, плазмодесмы и плазмолеммы, тонопласт);
  • вакуоли;
  • цитоплазма (митохондрии; хлоропласты и другие органоиды);
  • ядро (ядерная оболочка, ядрышко, хроматин).

Общий план строения растительной клетки

Рис. 1. Строение клетки растения.

Изучение строения и функций растительной клетки показало, что:


  • самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От других органоидов отделяет ядро ядерная оболочка;
  • бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
  • под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
  • клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и придача формы;
  • маленькими составными компонентами являются пластиды. Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;
  • внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;

Общий план строения растительной клетки

Рис. 2. Изменения размера вакуоли при росте растения.


  • митохондрии способны передвигаться вместе с цитоплазмой, их основная роль – обмен веществ. Именно здесь происходит процесс дыхания и образования АТФ;
  • аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение ненужных веществ;
  • рибосомы синтезируют белок. Находятся они в цитоплазме, ядре, митохондриях, пластидах.

Строение аппарата Гольджи

Рис. 3. Строение аппарата Гольджи.

Особенности растительного организма

Исследование разнообразия царства растений выявило такие особенности:

  • в отличие от других живых организмов, растения имеют вакуоль, которая хранит все питательные и полезные вещества, расщепляет отжившие старые органеллы и белки;
  • клеточная стенка по своему составу отличается от грибного хитина и стенок бактерий. В её состав входит целлюлоза, пектин и лигнин;
  • связь между клетками осуществляется при помощи плазмодесм – так называемые поры в клеточной стенке;
  • пластиды имеются только в растительном организме. Помимо хлоропластов это могут быть лейкопласты, которые делятся на два вида: одни из них запасают жиры, другие – крахмал. А также хромопласты, которые синтезируют и хранят пигменты;
  • в отличие от животного организма, у растительной клетки нет центриолей.

Источник: obrazovaka.ru

Характеристика растений и их клеток

Как и грибы, растительные клетки сохранили защитную клеточную стенку от своих предков. Типичная клетка растений имеет сходное строение с типичной эукариотной клеткой, но не имеет центриолей, лизосом, промежуточных волокон, ресничек или жгутиков, как животная клетка. Однако клетки растений обладают рядом других специализированных структур, включая жесткую клеточную стенку, центральную вакуоль, плазмодесмату и хлоропласты. Хотя растения (и их типичные клетки) не подвижны, некоторые виды производят гаметы (половые клетки), которые обладают жгутиками и, следовательно, способны двигаться.

Все растения можно разделить на два основных типа: сосудистые и несосудистые. Сосудистые растения считаются более развитыми, чем несосудистые, потому что имеют специализированные ткани: ксилему, которая участвует в структурной поддержке и водопроводности, а также флоэму, которая является транспортной системой для продуктов фотосинтеза. Следовательно, они также обладают корнями, стеблями и листьями, представляющими более высокую форму организации, отсутствующую в растениях без сосудистых тканей.


Несосудистые растения, входящие в группу мохообразные, обычно не более 3-5 см в высоту, так как не имеют структурной поддержки, характерной сосудистым растениям. Они также в большей степени зависят от окружающей среды, чтобы поддерживать соответствующее количество влаги и, как правило, встречаются во влажных затемненных местах.

По оценкам, сегодня в мире насчитывается не менее 260 000 видов растений. Они варьируются по размеру и сложности от небольших мхов до гигантских секвой, самых больших живых организмов на планете, растущих до 100 м. Лишь малый процент от этих видов, непосредственно используется людьми для питания, жилья и медицины.

Тем не менее, растения являются основой экосистемы и пищевой цепи на Земле, и без них сложные формы жизни, такие как животные (включая людей), никогда бы не развились. Действительно, все живые организмы напрямую или косвенно зависят от энергии, создаваемой фотосинтезом, а побочный продукт этого процесса — кислород жизненно необходим для животных. Растения также уменьшают количество углекислого газа, присутствующего в атмосфере, препятствуют эрозии почв, влияют на уровень и качество воды.

Растениям свойственны жизненные циклы, которые включают чередование поколений диплоидных форм, содержащих парные наборы хромосом в ядрах клеток и гаплоидные формы, которые обладают только одним набором. Как правило, эти две формы растения очень разные по внешнему виду. В высших растениях диплоидная фаза, известная как спорофит (из-за способности вырабатывать споры), обычно доминирует и более узнаваема, чем генерация гаплоидных гаметофитов. Однако у мохообразных, поколение гаметофит является доминирующим и физиологически необходимым для фазы спорофит.


Животные должны потреблять белок для получения азота, но растения могут использовать неорганические формы этого элемента и, следовательно, не нуждаются во внешнем источнике белка. Однако растениям обычно требуется значительное количество воды, которое необходимо для процесса фотосинтеза, для поддержания структуры клеток, облегчения роста и в качестве средства доставки питательных веществ к растительным клеткам.

Количество и типы питательных веществ, необходимых для разных видов растений, значительно различается, однако некоторые элементы необходимы растениям в больших количествах. Эти питательные вещества включают кальций, углерод, водород, магний, азот, кислород, фосфор, калий и серу. Также, есть несколько микроэлементов, которые требуются растениями в меньших количествах: бор, хлор, медь, железо, марганец, молибден и цинк.

Источник: natworld.info

Поверхностный аппарат клетки

Надмембранной структурой животных клеток является гликокаликс, а растительных клеток – оболочка, или клеточная стенка (состоит в основном из целлюлозы).

Гликокаликс – свойственное животным клеткам образование на поверхности мембраны. Он образован молекулами полисахаридов, которые соединены с белками и липидами мембраны и окружают её как «антенны». Благодаря ему при образовании тканей между клетками возникают контакты. Это свойство клеток лежит в основе явления тканевой совместимости. Функция полисахаридных «антенн» — распознавание сигналов внешней среды.

Клеточная оболочка свойственна клеткам растений, грибов, бактерий. Это мёртвое образование, располагающееся на поверхности плазматической мембраны. Клеточная оболочка полностью проницаема для воды и газов. В её состав в растительной клетке входят целлюлоза, гемицеллюлоза, пектин.

К изменениям клеточной оболочки относятся:

  • одревеснение, которое сопровождается её пропиткой веществом лигнином (это придаёт ей твёрдость);
  • пробкование – пропитка суберином (клеточная оболочка становится непроницаемой для газов и воды);
  • кутинизация – пропитка кутином – жирообразным веществом, оберегающим растения от излишнего испарения;
  • осизнение, которое защищает от вымывания клетки водных растений;
  • минерализация – пропитка клеточной оболочки соединения ми кремния (хвощ, осока).

Растительные клетки соединяются между собой с помощью тяжей цитоплазмы – плазмодесм.

Функции клеточной оболочки: защищает содержимое клетки, играет роль внешнего скелета.

Подмембранные клеточные комплексы

Подмембранные комплексы клетки – микронити, микротрубочки, пеликула.

Цитоплазма всех клеток содержит внутренний цитоскелет, который состоит из микротрабекулярной системы, микротрубочек и микрофиламентов.

Микротрабекулярная система представляет сеть тонких фибрилл (микротрабекул) толщиной 2 – 3 нм, которые пересекают цитоплазму в различных направлениях и связывают все внутриклеточные компоненты: микротрубочки, органеллы и цитоплазматическую мембрану в единое целое.

Микротрабекулы состоят из различных белков, которые объединяются в сложные комплексы. В точках пересечения или в местах соединения концов трабекул располагаются рибосомы.

Система микротрабекул цитоплазма разделяется на две фазы: полимерную, богатую белками, и жидкую – в промежутках между трабекулами.

Микротрубочки есть во всех эукариотических клетках и представляют собой неразветвлённые полые цилиндры. Это очень тонкие структуры с внешним диаметром, не превышающим 30 нм, и с толщиной стенки 5 нм. Длина их может достигать нескольких микрометров. Цитоплазматические микротрубочки могут легко распадаться (разбираться) и собираться вновь. Микротрубочки образованы глобулярным белком тубулином (одна субъединица образована двумя молекулами белка).

Считают, что роль матрицы (организатора микротрубочек) при образовании микротрубочек могут играть центриоли, базальные тельца ресничек и жгутиков, а также особенные структуры хромосом в месте первичной перетяжки – кинетохоры (центромеры). Процесс происходит при наличии ионов магния, АТФ и в кислой среде. Распадение микротрубочек ускоряется с повышением концентрации ионов кальция и снижением температуры.

Микротрубочки вместе с трабекулярной системой выполняя опорную функцию в клетке придают ей определённую форму. С их участием так же образуется веретено деления и обеспечивается расхождение хромосом к полюсам клетки, они способствуют перемещению клеточных органелл: благодаря им последние направляются в нужное место.

Микрофиламенты представлены тонкими нитями, расположенными во всей цитоплазме клетки.

Микрофиламенты образованы белком актином, молекулы которого полимеризируются в длинную фибриллу, состоящую из двух, закрученных относительно друг друга, спиралей. В клетках содержится 10-15% актина от общего количества всех белков. В микрофиламентах можно найти нити ещё одного важного сократительного белка – миозина, хотя содержание его значительно меньше. Взаимодействие актина и миозина лежит в основе сокращения мышц. Актиновые микрофиламенты взаимодействуют с микротрубочками поверхностного слоя цитоплазмы и с плазмолеммой, что обеспечивает двигательную активность цитоплазмы. Также считают, что они участвуют в образовании перетяжки во время деления клеток, в эндоцитозе и обеспечении амебоидного движения.

К подмембранным компонентам относится также пеликула, которая представляет уплотнённый внешний слой цитоплазмы многих простейших (эвглены, инфузорий и т. п.). Пеликула обеспечивает относительное постоянство формы клетки и придаёт прочности поверхностному аппарату.

Цитоплазма

Цитоплазма – полужидкое содержимое клетки, в которой расположены все органоиды.

Пространство между органоидами клетки заполнено цитозолем — растворимой частью цитоплазмы. Цитоплазма содержит соли, сахара, белки, аминокислоты, ионы, АТФ, ферменты и т. п.

Цитоплазма — это матрикс для всех элементов клетки, обеспечивающий взаимодействие клеточных структур, в ней проходят все клеточные химические реакции и перемещение веществ внутри клетки и между клетками.

Цитоплазма состоит из матрикса (гиалоплазмы), цитоскелета, органелл и включений.

Цитоскелет, или внутриклеточный скелет, представлен системой белковых образований – микронитей и микротрубочек. Его основные функции:

  • опорная;
  • изменение формы клетки;
  • движение;
  • обеспечение определённого расположения ферментов в клетке.

Органеллы – постоянные клеточные структуры, каждая из которых выполняет определённые функции, обеспечивают те или иные процессы жизнедеятельности клетки (питание, дыхание, движение, синтез и транспорт органических соединений, сохранение и передача наследственной информации).

Органеллы эукариот делятся на:

  • двумембранные (пластиды, митохондрии),
  • одномембранные (эндоплазматическая сеть, вакуоли, аппарат (комплекс) Гольджи, лизосомы),
  • немембранные (рибосомы, клеточный центр),
  • органеллы движения (псевдоподии, жгутики, реснички, миофибриллы).

Включения – временные компоненты клеток. К ним относя продукты синтеза и конечные продукты обмена веществ: капли жира, зёрна крахмала и гликогена, кристаллы солей.

Источник: spravochnick.ru