Отличительгая черта растительных клеток — ПЛАСТИД. В клетках листьев пластиды зеленые. В клетках других органов растений пластиды могут быть бесцвеиными (клубни), оранжевыми или красными ( корнеплоды, плоды).
1047;еленые пластиды — это хлоропласты.
Зеленый цвет хлоропластам придает пигмент ХЛОРОФИЛЛ. С помощью хлорофилла клетки растений улавливают энергию солнечных лучей и образуют органические везества из неорганических.

Источник: i-otvet.ru

Строение хлоропластов


Данный органоид присутствует только у растений. Хлоропласты имеют форму двояковыпуклой линзы, в результате чего на листья поступает больше света. Покрыты наружной мембраной. Это мембрана гладкая, по сравнению с внутренней. Внутри находятся тилокоиды.

Благодаря дисковидным тилокоидам образуются граны, которые различимы только под микроскопом, а благодаря трубковидным тилокоидам образуется строма, которая соединяет все образовавшиеся граны в одну систему. Количество гран в хлоропластах составляет приблизительно 40-60 единиц. Граны объединяются между собой с помощью межгранных тяжей.

В строме содержится ДНК, рибосомы, РНК. В мембране тилокоид содержится вещество, от которого зависит цвет листьев. Хлорофилл (зелёный) и каротиноиды (красный, оранжевый, желтый).

Именно благодаря хлорофиллу в клетках растений осуществляется процесс фотосинтеза.

Существует 4 вида холорофилла, в зависимости от строения: a, b, c и d. Тип а и б содержат все растения на суше и зеленые водоросли. А и С- диатомовые водоросли, а и d — красные.

Функции хлоропластов

В хлоропластах происходит фотосинтез — процесс преобразования солнечной энергии в кислород. Хлоропласты способны перемещаться в цитоплазме клеток. За счет этого молекулы хлорофилла получают максимальное количество солнечной энергии для осуществления функции фотосинтеза.

Фотосинтез является основным процессом, вследствие которого на нашей планете образуется кислород и органические вещества.


Без фотосинтеза не было бы растений и кислорода, а без них и животных, в том числе невозможно было бы существование человека.

Еще одной функцией хлоропластов является фиксация углекислоты и встраивание углерода в состав органических веществ. Такой процесс называется реакция Кальвина-Бенсона, в честь ученых, открывших ее.

В конце жизненного цикла органоида, хлорофилл начинает разрушаться, функции растительных клеток нарушаются. Это также может происходить из-за изменения светового дня и резкого понижения температуры окружающей среды. Часть хлоропластов становятся хромопластами — зеленые листья изменяют цвет, и вскоре опадают.

Источник: appteka.ru

Хлоропласт: структура

Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:


  • Мембрана — содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя мембрана отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
  • Межмембранное пространство — пространство между внешней и внутренней мембранами.
  • Тилакоидная система — внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
  • Тилакоид с просветом (люменом) — отсек в каждом тилакоиде.
  • Грана — плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
  • Строма — плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
  • Хлорофилл — зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

Хлоропласт: фотосинтез

Хлоропласты в клетке осуществляют» data-layzr=»https://natworld.info/wp-content/uploads/2017/05/фотосинтез-лист-свет-300×219.jpg» alt=»» width=»500″ height=»365″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/05/фотосинтез-лист-свет-300×219.jpg 300w, https://natworld.info/wp-content/uploads/2017/05/фотосинтез-лист-свет-500×365.jpg 500w, https://natworld.info/wp-content/uploads/2017/05/фотосинтез-лист-свет.jpg 650w» sizes=»(max-width: 500px) 100vw, 500px» />


При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.

Источник: natworld.info

Строение и функции хлоропластов


Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

Строение хлоропласта
Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

Сходство молекулы хлорофилла и молекулы гемоглобина
Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.


Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Строение хромопласта
Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.


Строение лейкопласта
Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Источник: animals-world.ru

Хлоропласты

Хлоропласты (от греч. chloros — зеленый и plastos — вылепленный, образованный), внутриклеточные органеллы растительной клетки — пластиды, в которых осуществляется фотосинтез. Окрашены в зеленый цвет благодаря присутствию в них основного пигмента фотосинтеза — хлорофилла. Основная функция хлоропласт, состоящая в улавливании и преобразовании световой энергии, нашла отражение и в особенностях их строения. У высших растений Х. — тельца линзообразной формы диаметром 3-10 мкм и толщиной 2-5 мкм, представляют собой систему белково-липидных мембран, погруженных в основное вещество — матрикс, или строму, и отграничены от цитоплазмы наружной мембраной (оболочкой). Внутренние мембраны образуют единую (непрерывную) пластинчатую, или ламеллярную, систему, состоящую из замкнутых уплощенных мешочков (цистерн) — т. н. тилакоидов, которые группируются по 10-30 (стопками) в граны (до 150 в хлоропласте), соединяющиеся между собой крупными тилакоидами. При таком строении значительно увеличивается фотоактивная поверхность Х. и обеспечивается максимальное использование световой энергии. В мембране тилакоидов, состоящей из двух слоев белка, разделенных слоем липидов, осуществляется первичная световая стадия фотосинтеза, ведущая к образованию двух необходимых для ассимиляции CO2 соединений — восстановленного никотинамид-адениндинуклеотидфосфата (НАДФхН) и богатого энергией соединения аденозинтрифосфата (АТФ) . Источником энергии для образования молекул АТФ является разность потенциалов, которая образуется на мембране в результате векторного (направленного) переноса заряда. Разделение заряда по обеим сторонам мембраны обеспечивается особым расположением компонентов электронно-транспортной цепи в мембране, перешнуровывающих ее толщу. Благодаря мембранам, играющим роль "перегородок", осуществляется пространственное разобщение продуктов фотосинтеза, например O2 и восстановителей, без которых эти продукты взаимодействовали бы друг с другом. Наружная поверхность тилакоида покрыта частицами диаметром 14-15 нм, которые представляют собой "факторы сопряжения", участвуют в синтезе АТФ. В строме же сосредоточены ферменты фиксации CO2; (темновая стадия фотосинтеза).

У растений, способных к "кооперативному" фотосинтезу, существует 2 типа хлоропласт, различающихся по строению и функциям. Одни из них, находящиеся в клетках мезофилла, мелкие с гранами, другие, более крупные, содержатся в клетках обкладки проводящих сосудистых пучков, граны в них лишь зачаточные или совсем отсутствуют. В Х. второго типа функционирует фотосистема 1, которая образует АТФ в ходе циклического фосфорилирования, а НАДФхН — за счет реакции декарбоксилирования яблочной кислоты. Хлоропласт клеток обкладки фиксируют CO2 на рибулозодифосфате, то есть с помощью цикла Калвина, а Х. клеток мезофилла — на фосфоенолпирувате (путь Хетча — Слэка); таким образом взаимодействие хлоропласт обоих типов обеспечивает высокую эффективность фотосинтеза у растений. В строму Х., наряду с ферментами фиксации CO2, включены нити ДНК, рибосомы, крахмальные зерна, осмиофильные гранулы.

Наличие в хлоропластах собственного генетического аппарата и специфической белоксинтезирующей системы обусловливает определенную, хотя и относительную, автономию Х. в клетке. При развитии и размножении растения в новых генерациях клеток Х. возникают только путем деления. Происхождение хлоропласт связывают с симбиогенезом, полагая, что современные Х. — потомки сине-зеленых водорослей, вступившие в симбиоз с древними ядерными гетеротрофными клетками бесцветных водорослей или простейших.

Хлоропласты занимают 20-30% объема растительной клетки. У водорослей, например хламидомонады, имеется один Х., в клетке высших растений содержится от 10 до 70 Х. Развиваются хлоропласты из так называемых инициальных частиц, или пропластид, — небольших пузырьков, отделяющихся от ядра. В конце вегетации растения Х. в результате разрушения хлорофилла утрачивают зеленую окраску и превращаются в хромопласты.

Источник: MirZnanii.com