Все живые организмы могут быть распределены в одну из двух групп (прокариоты или эукариоты) в зависимости от основной структуры их клеток. Прокариоты — живые организмы, состоящие из клеток, которые не имеют клеточного ядра и мембранных органелл. Эукариоты — живые организмы, клетки которых содержат ядро, а также мембранные органеллы.

Клетка является фундаментальной составляющей нашего современного определения жизни и живых существ. Клетки рассматриваются в качестве основных строительных блоков жизни и используются в определении того, что значит быть «живым».

Давайте взглянем на одно определение жизни: «Живые существа — это химические организации, состоящие из клеток и способные размножаться» (Китон, 1986). Это определение базируется на двух теориях — клеточной теории и теории биогенеза. Клеточная теория впервые была предложена в конце 1830-х годов немецкими учеными Маттиасом Якобом Шлейденом и Теодором Шванном. Они утверждали, что все живые существа состоят из клеток. Теория биогенеза, предложенная Рудольфом Вирховым в 1858 году, утверждает, что все живые клетки возникают из существующих (живых) клеток и не могут появиться спонтанно из неживой материи.


Компоненты клеток заключены в мембрану, которая служит барьером между внешним миром и внутренними составляющими клетки. Клеточная мембрана — избирательный барьер, это означает, что он пропускает некоторые химические вещества, поддерживающие равновесие, необходимое для жизнедеятельности клеток.

Клеточная мембрана регулирует перемещение химических веществ из клетки в клетку следующими способами:

  • диффузия (тенденция молекул вещества к минимизации концентрации, то есть перемещение молекул из области с более высокой концентрацией по направлению к области с более низкой до момента выравнивания концентрации);
  • осмос (движение молекул растворителя через частично проницаемую мембрану для того, чтобы уравнять концентрацию растворенного вещества, которое не в состоянии двигаться через мембрану);
  • селективный транспорт (при помощи мембранных каналов и насосов).

Прокариоты

Прокариоты — организмы, состоящие из клеток, которые не имеют клеточного ядра или любых мембранных органелл. Это означает, что генетический материал ДНК у прокариот не связан в ядре. Кроме того, ДНК прокариот менее структурирована, чем у эукариот. В прокариотах ДНК одноконтурная. ДНК эукариот организована в хромосомы. Большинство прокариот состоят только из одной клетки (одноклеточные), но есть несколько и многоклеточных. Ученые разделяют прокариот на две группы: бактерии и археи.

Типичная клетка прокариота включает:

  • клеточную стенку;
  • плазматическую (клеточную) мембрану;
  • цитоплазму;
  • рибосомы;
  • жгутики и пили;
  • нуклеоид;
  • плазмиды;

Эукариоты

Эукариоты — живые организмы, клетки которых содержат ядро и мембранные органеллы. Генетический материал у эукариот находится в ядре, а ДНК организована в хромосомы. Эукариотические организмы могут быть одноклеточными и многоклеточными. Все животные являются эукариотами. Также эукариоты включают растения, грибы и простейших.

Типичная клетка эукариота включает:

  • плазматическую (клеточную) мембрану;
  • ядрышко;
  • ядро;
  • хромосомы;
  • рибосомы;
  • эндоплазматический ретикулум;
  • аппарат (комплекс) Гольджи;
  • цитоскелет;
  • цитоплазму;
  • лизосомы;
  • центриоль;
  • митохондрии.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Что такое прокариоты и эукариоты

Известно, что все живые организмы по своей природе делятся на клеточные и неклеточные (вирусы). Причем первые тоже подразделяются на 2 категории: прокариоты (надцарство «Доядерные») и эукариоты (надцарство «Ядерные»).

Строение клеток прокариот и эукариот таблица

К прокариотам относятся:

  • бактерии;
  • водоросли.

К эукариотам:

  • грибы;
  • растения;
  • животные.

Чем же они отличаются? Рассмотрим ниже.

Признаки эукариотической клетки

Считается, что ядерные клеточные организмы появились около 1,5 миллиардов лет назад. Хотя в прошлые времена ученые слабо понимали суть явлений на клеточном уровне, но в своих трудах у них часто стали появляться приблизительные рисунки этой единицы организма.

Строение клеток прокариот и эукариот таблица

Подписи в каждом утверждают об одной отличительной особенности клеток данного типа – наличие ядра, покрытого двойным слоем мембраны.

Именно в ядре хранится основной генетический материал этих организмов. Кроме того в нем есть несколько ядрышек с большей частью объема всех типов РНК.

Также в такой клетке есть другие образования – органеллы, которые находятся в ее цитоплазме. К ним относят:

  • митохондрии – напоминают своей структурой белки, также содержат ДНК;
  • лизосомы – являются пузырьками, помогающими общему метаболизму этой клетки;
  • хлоропласты.

Эти соединения также разделены мембранами, основная роль которых является связь различных элементов единицы организма с внешней средой. Чтобы все элементы состава хорошо функционировали, для полного «скелета» в этой клетке есть нити и микротрубочки.

Процесс дыхания более распространен среди живых организмов, образованных этими клетками.

Строение клеток прокариотов

В отличие от предыдущего надцарства, у простейших отсутствует ядро в клетке.

Строение клеток прокариот и эукариот таблица

В ней вместо ядра находится одна хромосома в цитоплазме, передающая генетический материал.

Строение клеток прокариот и эукариот таблица

Размножаются просто – делением клетки. В клеточной жидкости очень мало различных видов структур. Они также покрыты мембраной. В их состав входят рибосомы.

Рассмотрим основных представителей этого надцарства.

Бактерии и циано-бактерии

Под первыми понимают одноклеточные микроорганизмы. С помощью жгутиков они очень подвижны.

Строение клеток прокариот и эукариот таблица

Обитают во всех сферах жизни. От внешней среды они защищены муреином и особой оболочкой.

Второй вид представлен простейшими клетками с маленькими рибосомами и одной наследственной хромосомой.

Водоросли


Обитают в основном в водной среде и на почве. У них автотрофное питание. Их плавучесть обуславливают вакуоли. Кроме того, для них, как и для представителей царства растений, характерен фотосинтез.

Строение клеток прокариот и эукариот таблица

Примеры представлены зелеными водорослями. Размножаются также простым делением. При очень неблагоприятных условиях для движения могут использовать споры.

Сходства и различия прокариот и эукариот

Сравнительная таблица «Характеристика надцарств» показывает признаки, по которым нетрудно выявить основные отличия.


Признаки Надцарство Прокариоты Надцарство Эукариоты
Размер D = 0,5 – 5 мкм D = 40 мкм
Наследственность ДНК в цитоплазме ДНК в ядре
Структура Мало образований, мембран практически нет. Есть внешние и внутренние мембраны, различные структуры, позволяющие проводить реакции пищеварения, дыхания и размножения.
Оболочка В состав входят полисахариды, аминокислоты и муреин. Основой оболочки растений является целлюлоза, а у грибов – хитин.
Фотосинтез Нет хлоропластов, но он протекает в мембранах. Протекает в специальных образованиях – пластидах.
Обмен азота У некоторых он есть. Он не происходит.

Заключение

Итак, без представителей этих двух надцарств невозможно представить жизнь на земле. Какова же их роль в природе? Все просто: простейшие являются организмами, без которых невозможны практически все биохимические процессы в биосистеме. Кроме того, многие участвуют в процессе фотосинтеза, служат источником питания и дыхания растений.

Эукариоты не только являются для других питанием, но и являются основной регулирующей силой популяции разных видов, т. е одним из механизмов естественного отбора.


Источник: 1001student.ru

Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

2.5.2. Энергетический обмен в клетке (диссимиляция)

Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается


несколькими ферментативными реакциями.

 

Первый этап

– подготовительный

. В желудочно-кишечном тракте

многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков

до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов,

нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

Второй этап – бескислородный (гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением .


Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

Третий этап – кислородный , состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование или клеточное дыхание происходит, на

Источник: StudFiles.net

Строение бактериальной клетки

Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).


Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) — одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом. Плазмиды — внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой.

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили — прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Спорообразование у бактерий — способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом — делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

Конъюгация

Конъюгация — однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F+), так и в клетке-реципиенте (F)).

Трансформация — однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция — перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы открыты в 1892 г. Д.И. Ивановским при изучении мозаичной болезни табака (пятнистость листьев). Вирусы — неклеточные формы жизни. Проявляют признаки, характерные для живых организмов, только во время паразитирования в клетках других организмов. Вирусы являются внутриклеточными паразитами, но, в отличие от других паразитов, они паразитируют на генетическом уровне (ультрапаразиты). Существует несколько точек зрения на происхождение вирусов: 1) вирусы возникли в результате дегенерации клеточных организмов; 2) вирусы можно рассматривать как группу «потерявшихся», вышедших из-под контроля клетки генов («осколок генома»); 3) вирусы произошли от клеточных органоидов и др.

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов — 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом. Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

Бактериофаг

Вирусы, паразитирующие в бактериальных клетках, называются бактериофагами. Бактериофаг состоит из головки, хвостика и хвостовых отростков, с помощью которых он осаждается на оболочке бактерий. В головке содержится ДНК или РНК. Фаг частично растворяет клеточную стенку и мембрану бактерии и за счет сократительной реакции хвостика «впрыскивает» свою нуклеиновую кислоту в ее клетку.

Только паразитируя в клетке-хозяине, вирус может репродуцироваться, воспроизводить себе подобных.

В цикле репродукции вируса можно выделить следующие стадии.

  1. Осаждение на поверхности клетки-хозяина.
  2. Проникновение вируса в клетку-хозяина (могут попасть в клетку-хозяина путем: а) «инъекции», б) растворения оболочки клетки вирусными ферментами, в) эндоцитоза; попав внутрь клетки вирус переводит ее белок-синтезирующий аппарат под собственный контроль).
  3. Встраивание вирусной ДНК в ДНК клетки-хозяина (у РНК-содержащих вирусов перед этим происходит обратная транскрипция — синтез ДНК на матрице РНК).
  4. Транскрипция вирусной РНК.
  5. Синтез вирусных белков.
  6. Синтез вирусных нуклеиновых кислот.
  7. Самосборка и выход из клетки дочерних вирусов. Затем клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Вирус ВИЧ

Вирусы способны паразитировать в клетках большинства существующих живых организмов, вызывая различные заболевания (грипп, коревая краснуха, полиомиелит, СПИД, оспа, бешенство и др.). Возбудитель СПИДа — вирус иммунодефицита человека (ВИЧ) — относится к ретровирусам. Имеет сферическую форму, диаметром 100–150 нм. Наружная оболочка вируса состоит из мембраны, образованной из клеточной мембраны клетки-хозяина. В мембрану встроены рецепторные «грибовидные» образования. Под наружной оболочкой располагается сердцевина вируса, имеющая форму усеченного конуса и образованная особыми белками. Внутри сердцевины располагаются две молекулы вирусной РНК. Каждая молекула РНК содержит 9 генов ВИЧ и фермент (обратная транскриптаза), осуществляющий синтез вирусной ДНК на матрице вирусной РНК.

Вирус иммунодефицита человека поражает главным образом CD4-лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7–10 лет.

Источником заражения служит только человек — носитель вируса иммунодефицита. СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.

 

Источник: licey.net