Эндоплазматический ретикулум (ЭПР), также называемый эндоплазматической сетью, является важной органеллой эукариотических клеток. Он играет ведущую роль в производстве, переработке и транспортировке белков и липидов. ЭПР производит трансмембранные белки и липиды для своей мембраны, а также для многих других клеточных компонентов, включая лизосомы, секреторные везикулы, аппарат Гольджи, клеточную мембрану и вакуоли растительных клеток.

Эндоплазматический ретикулум представляет собой сеть канальцев и сплющенных мешочков, которые выполняют множество функций в клетках растений и животных. Существуют две части ЭПР, которые различаются как по структуре, так и по функциям. Одна часть называется гранулярной (шерховатой) ЭПР, потому что она имеет рибосомы, прикрепленные к цитоплазматической стороне мембраны. Другая часть называется агранулярной (гладкой) ЭПР, так как ей не хватает прикрепленных рибосом.

Обычно гладкая ЭПР представляет собой трубопроводную сеть, а шерховатая ЭПР состоит из серии сплющенных мешочков. Пространство внутри ЭПР называется просветом. Эндоплазматическая сеть обширно простирается от клеточной мембраны через цитоплазму и образует непрерывную связь с ядерной оболочкой. Поскольку ЭПР связан с ядерной оболочкой, просвет и пространство внутри ядерной оболочки являются частью одного и того же отсека.

Гранулярная эндоплазматическая сеть


Гранулярный (шерховатый) эндоплазматический ретикулум производит мембраны и секреторные белки. Рибосомы, прикрепленные к гранулярной ЭПР, синтезируют белки в процессе трансляции. В некоторых лейкоцитах (белых кровяных клетках) шероховатый ЭПР продуцирует антитела. В клетках поджелудочной железы он продуцирует инсулин.

Гранулярный и агранулярный ЭПР, как правило, взаимосвязаны, а белки и мембраны, продуцируемые шероховатым ЭПР, перемещаются в гладкий ЭПР. Некоторые белки отправляются на аппарат Гольджи специальными транспортными везикулами. После того, как белки были модифицированы в Гольджи, они транспортируются в надлежащие пункты назначения внутри клетки или экспортируются из клетки путем экзоцитоза.

Агранулярная эндоплазматическая сеть

Агранулярный (гладкий) эндоплазматический ретикулум обладает широким спектром функций, включая синтез углеводов и липидов. Липиды, такие как фосфолипиды и холестерин, необходимы для создания клеточных мембран. Гладкий ЭПР также служит переходной областью для везикул, которые транспортируют продукты эндоплазматической сети в различные пункты назначения.


В клетках печени агранулярный ЭПР продуцирует ферменты, помогающие детоксифицировать определенные соединения. В мышцах он помогает в сокращении мышечных клеток, а в клетках мозга синтезирует мужские и женские гормоны.

Источник: natworld.info

Эндоплазматическая сеть (эндоплазматический ретикулум) была открыта К. Р. Портером в 1945 г.

Эта структура представляет собой систему взаимосвязанных вакуолей, плоских мембранных мешков или трубчатых образований, создающих мембранную трехмерную сеть внутри цитоплазмы. Эндоплазматическая сеть (ЭПС) встречается практически у всех эукариотов. Она связывает органеллы между собой и транспортирует питательные вещества. Различают две самостоятельные органеллы: гранулярную (зернистую) и гладкую незернистую (агранулярную) эндоплазматическую сеть.

Гранулярная (шероховатая, или зернистая) эндоплазматическая сеть. Представляет собой систему плоских, иногда расширенных цистерн, канальцев, транспортных пузырьков. Размер цистерн зависит от функциональной активности клеток, а ширина просвета может составлять от 20 нм до нескольких мкм. Если цистерна резко расширяется, то она становится заметной при световой микроскопии и ее идентифицируют как вакуоль.

Цистерны образованы двухслойной мембраной, на поверхности которой содержатся специфические рецепторные комплексы, обеспечивающие прикрепление к мембране рибосом, транслирующие полипептидные цепочки секреторных и лизосомальных белков, белков цитолеммы и др., то есть белков, не сливающихся с содержимым кариоплазмы и гиалоплазмы.


Пространство между мембранами заполнено однородным матриксом низкой электронной плотности. Снаружи мембраны покрыты рибосомами. Рибосомы при электронной микроскопии видны как мелкие (диаметром около 20 нм), темные, почти округлые частицы. Если их много, то это придает зернистый вид наружной поверхности мембраны, что и послужило основой для названия органеллы.

На мембранах рибосомы располагаются в виде скоплений — полисом, которые образуют разнообразные по форме розетки, гроздья или спирали. Такая особенность распределения рибосом объясняется тем, что они связаны с одной из иРНК, с которой считывают информацию, синтезируют полипептидные цепочки. Такие рибосомы прикрепляются к мембране ЭПС с помощью одного из участков большой субъединицы.

В некоторых клетках гранулярная эндоплазматическая сеть (гр. ЭПС) состоит из редких разрозненных цистерн, но может образовывать крупные локальные (очаговые) скопления. Слабо развита гр. ЭПС в малодифференцированных клетках или в клетках с низкой секрецией белков. Скопления гр. ЭПС находятся в клетках, активно синтезирующих секреторные белки. При повышении функциональной активности цистерны органеллы становятся множественными и нередко расширяются.

Гр. ЭПС хорошо развита в секреторных клетках поджелудочной железы, главных клетках желудка, в нейронах и др. В зависимости от типа клеток гр. ЭПС может распределяться диффузно или локализоваться в одном из полюсов клетки, при этом многочисленные рибосомы окрашивают данную зону базофильно.
пример, в плазматических клетках (плазмоцитах) хорошо развитая гр. ЭПС обусловливает яркую базофильную окраску цитоплазмы и соответствует участкам концентрации рибонуклеиновых кислот. В нейронах органелла располагается в виде компактно лежащих параллельных цистерн, что при световой микроскопии проявляется в виде базофильной зернистости в цитоплазме (хроматофильное вещество цитоплазмы, или тигроид).

В большинстве случаев на гр. ЭПС синтезируются белки, которые не используются самой клеткой, а выделяются во внешнюю среду: белки экзокринных желез организма, гормоны, медиаторы (белковые вещества эндокринных желез и нейронов), белки межклеточного вещества (белки коллагеновых и эластических волокон, основного компонента межклеточного вещества). Белки, образуемые гр. ЭПС, входят также в состав лизосомальных гидролитических ферментных комплексов, располагающихся на внешней поверхности мембраны клетки. Синтезированный полипептид не толькко накапливается в полости ЭПС, но и перемещается, транспортируется по каналам и вакуолям от места синтеза в другие участки клетки. В первую очередь такой транспорт осуществляется в направлении комплекса Гольджи. При электронной микроскопии хорошее развитие ЭПС сопровождается параллельным увеличением (гипертрофией) комплекса Гольджи. Параллельно с ним усиливается развитие ядрышек, увеличивается число ядерных пор. Нередко в таких клетках имеются многочисленные секреторные включения (гранулы), содержащие секреторные белки, увеличивается число митохондрий.


Белки, накапливающиеся в полостях ЭПС, минуя гиалоплазму, чаще всего транспортируются в комплекс Гольджи, где они модифицируются и входят в состав либо лизосом, либо секреторных гранул, содержимое которых остается изолированным от гиалоплазмы мембраной. Внутри канальцев или вакуолей гр. ЭПС происходит модификация белков, связывание их с сахарами (первичное гликозилирование); конденсация синтезированных белков с образованием крупных агрегатов — секреторных гранул.

На рибосомах гр. ЭПС синтезируются мембранные интегральные белки, встраивающиеся в толщу мембраны. Здесь же со стороны гиалоплазмы идет синтез липидов и их встраивание в мембрану. В результате этих двух процессов наращиваются сами мембраны ЭПС и другие компоненты вакуолярной системы.

Основная функция гр. ЭПС — это синтез на рибосомах экспортируемых белков, изоляция от содержимого гиалоплазмы внутри мембранных полостей и транспорт этих белков в другие участки клетки, химическая модификация или локальная конденсация, а также синтез структурных компонентов клеточных мембран.

В процессе трансляции рибосомы прикрепляются к мембране гр. ЭПС в виде цепочки (полисомы). Возможность связаться с мембраной обеспечивают сигнальные участки, которые прикрепил ются к специальным рецепторам ЭПС — причальный белок. После этого рибосома связывается с белком, фиксирующим ее к мембране, а образующаяся полипептидная цепочка транспортируется через поры мембран, которые открываются при помощи рецепторов.
результате субъединицы белков оказываются в межмембранном пространстве гр. ЭПС. К образующимся полипептидам может присоединиться олигосахарид (гликозилирование), который отщепляется от долихол-фосфата, прикрепленного к внутренней поверхности мембраны. В последующем содержимое просвета канальцев и цистерн гр. ЭПС с помощью транспортных пузырьков переносится в цис-компартмент комплекса Гольджи, где подвергается дальнейшей трансформации.

Гладкая (агранулярная) ЭПС. Она может быть связана с гр. ЭПС переходной зоной, но, тем не менее, является самостоятельной органеллой с собственной системой рецепторных и ферментативных комплексов. Она состоит из сложной сети канальцев, плоских и расширенных цистерн и транспортных пузырьков, но если в гр. ЭПС преобладают цистерны, то в гладкой эндоплазматической сети (глад. ЭПС) больше канальцев диаметром около 50…100 нм.

К мембранам глад. ЭПС не прикрепляются рибосомы, что обусловлено отсутствием рецепторов к этим органеллам. Таким образом, глад. ЭПС хотя и является морфологическим продолжением гранулярной, не просто эндоплазматическая сеть, на которой в данный момент нет рибосом, а представляет собой самостоятельную органеллу, на которую рибосомы не могут прикрепиться.

Глад. ЭПС участвует в синтезе жиров, метаболизме гликогена, полисахаридов, стероидных гормонов и некоторых лекарственных веществ (в частности, барбитуратов). В глад. ЭПС проходят заключительные этапы синтеза всех липидов клеточных мембран. На мембранах глад. ЭПС находятся липидтрансформирующие ферменты — флиппазы, перемещающиеся молекулы жиров и поддерживающие асимметрию липидных слоев.


Глад. ЭПС хорошо развита в мышечных тканях, особенно поперечнополосатых. В скелетных и сердечных мышцах она формирует крупную специализированную структуру — саркоплазматический ретикулум, или L-систему.

Саркоплазматический ретикулум состоит из взаимно переходящих друг в друга сетей L-трубочек и краевых цистерн. Они оплетают специальные сократительные органеллы мышц — миофибриллы. В поперечнополосатых мышечных тканях органелла содержит белок — кальсеквестрин, связывающий до 50 ионов Са2+. В гладких мышечных клетках и немышечных клетках в межмембранном пространстве имеется белок кальретикулин, также связывающий Са2+.

Таким образом, глад. ЭПС является резервуаром ионов Са2+. В момент возбуждения клетки при деполяризации ее мембраны ионы кальция выводятся из ЭПС в гиалоплазму ведущий механизм, запускающий сокращение мышц. Это сопровождается сокращением клеток и мышечных волокон за счет взаимодействия актомиозиновых или актоминимиозиновых комплексов миофибрилл. В покое происходит обратное всасывание Са2+ в просвет канальцев глад. ЭПС, что ведет к снижению содержания кальция в матриксе цитоплазмы и сопровождается расслаблением миофибрилл. Белки кальциевого насоса регулируют трансмембранный перенос ионов.


Повышение концентрации ионов Са2+ в матриксе цитоплазмы также ускоряет секреторную активность немышечных клеток, стимулирует движение ресничек и жгутиков.

Глад. ЭПС дезактивирует различные вредные для организма вещества за счет их окисления с помощью ряда специальных ферментов, особенно в клетках печени. Так, при некоторых отравлениях в клетках печени появляются ацидофильные зоны (не содержащие РНК), сплошь заполненные гладким эндоплазматическим ретикулумом.

В коре надпочечников, в эндокринных клетках половых желез глад. ЭПС участвует в синтезе стероидных гормонов, и на ее мембранах находятся ключевые ферменты стероидогенеза. В таких эндокриноцитах глад. ЭПС имеет вид обильных канальцев, которые в поперечном сечении видны как многочисленные пузырьки.

Глад. ЭПС образуется из гр. ЭПС. В отдельных участках глад. ЭПС образуются новые липопротеидные мембранные участки, лишенные рибосом. Эти участки могут разрастаться, отщепляться от гранулярных мембран и функционировать как самостоятельная вакуолярная система.

Источник: www.activestudy.info

История открытия

Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

Строение

Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.


Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм, 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.

Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

Выделяют два вида ЭПР:

  • гранулярный эндоплазматический ретикулум
  • агранулярный (гладкий) эндоплазматический ретикулум

На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.

Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

Функции эндоплазматического ретикулума

При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов.
я ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.

Функции агранулярного эндоплазматического ретикулума

Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

Синтез гормонов

К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.

Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют встретившиеся молекулы активных веществ, которые таким образом могут быть растворены быстрее. В случае непрерывного поступления ядов, медикаментов или алкоголя, образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

Саркоплазматический ретикулум

Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, образует ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10−3 моль, в то время как в цитозоле порядка 10−7 моль (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И приём и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи от физиологических условий.

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как: активация или торможение ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.

Функции гранулярного эндоплазматического ретикулума

Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

Синтез белков

Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.

Синтез мембран

Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.

Источник: dic.academic.ru

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция. Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов, веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

  • ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков: гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки ( комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

Источник: spravochnick.ru